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ABSTRACT

Purpose: As to January 11, 2021, coronavirus disease (COVID-19) has caused more than 2 million deaths
worldwide. Mainly diagnostic methods of COVID-19 are: (i) nucleic acid testing. This method requires high
requirements on the sample testing environment. When collecting samples, staff are in a susceptible environment,
which increases the risk of infection. (ii) chest computed tomography. The cost of it is high and some radiation
in the scan process. (iii) chest X-ray images. It has the advantages of fast imaging, higher spatial recognition than
chest computed tomography. Therefore, our team chose the chest X-ray images as the experimental dataset in this
paper. Methods: We proposed a novel framework—BEVGG and three methods (BEVGGC-I, BEVGGC-II, and
BEVGGC-III) to diagnose COVID-19 via chest X-ray images. Besides, we used biogeography-based optimization
to optimize the values of hyperparameters of the convolutional neural network. Results: The experimental results
show that the OA of our proposed three methods are 97.65% ± 0.65%, 94.49% ± 0.22% and 94.81% ± 0.52%.
BEVGGC-I has the best performance of all methods.Conclusions:TheOA of BEVGGC-I is 9.59%± 1.04% higher
than that of state-of-the-art methods.
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1 Introduction

The novel coronavirus is the cause of COVID-19, which is highly infectious. The main
symptoms of this disease are fever, dry cough, fatigue, etc. [1,2]. Critically ill patients will have
dyspnea within a week, and may have moderate or low fever, or even no obvious fever Dara
et al. [3]. Mild patients only showed low fever, mild fatigue, etc., without pneumonia. Pneumonia
is mainly caused by bacteria or viruses, with low infectivity. The main symptoms of this disease
are fever, cough and expectoration etc. People with poor immunity are susceptible to infection,
such as infants and the elderly. But most patients can return to normal after treatment [4].

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.016416


730 CMES, 2021, vol.129, no.2

The current diagnostic methods of COVID-19 are: (i) nucleic acid testing. This method needs
a long time from sample collection to publish test results, which requires high requirements on
the sample testing environment. In addition, samples are vulnerable to contamination; hence, this
method has the possibility of sampling failure, which needs to repeat the collection operation [5].
(ii) chest computed tomography (CCT). The cost of this method is high, and there is some
radiation in the scan process of computed tomography. In addition, for lesions with a density
similar to normal tissues, which are easy to miss by plain scanning [6]. (iii) chest X-ray images.
The cost of this method is lower than chest computed tomography. It has fast imaging, a short
time to obtain the diagnosis results [7]. Besides, chest X-ray images have higher spatial recognition
than CCT, and are easy to store for a long time. Therefore, our team chose chest X-ray images
as our experimental dataset in this paper. Here, three different chest X-ray images (COVID-19,
Normal, and Pneumonia) are shown in Fig. 1.

(a) (b) (c)

Figure 1: Samples of chest X-ray images (a) Sample of COVID-19 (b) Sample of normal (c)
Sample of pneumonia

At present, scholars in mounting numbers used deep learning technology in the diagnosis
COVID-19. Xu et al. [8] set the chest CT image to dataset of experiment, and used V-Net
for image segmentation. Then input the segmentation results into ResNet-18 for three categories
(COVID-19, Influenza and Normal) detection network. The overall accuracy of the model is
86.7%. There are some other chest CT methods reported in recent literature [9–11]. Although
the chest CT images are used as the dataset in the methods mentioned above, which have low
detection accuracy.

Narin et al. [12] used chest X-ray images as the dataset, and proposed three models
(ResNet-50, Perception-V3, and Perception ResNet-V2) to detect COVID-19. Here, the dataset
used in this experiment is divided into Normal and COVID-19, and each type image has the
same numbers. The experimental results show that the ResNet-50 model has the best perfor-
mance, which is 98.0%. Following by Inception V3, the accuracy is 97.0%. The last is Inception
ResNet-V2, which accuracy is 87%. Although the proposed method can achieve high detection
accuracy, of which structures are complex, with weak robustness and unreliable generalization of
used to deal with multi-classification problems.

To solve above problems, our team proposed a novel framework and three methods to
diagnose COVID-19 based on chest X-ray images. In this paper, the contributions of this study
are listed as follows:

(i) A novel framework—Biogeography-based optimization Expert-VGG (BEVGG) is proposed.
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(ii) Three novel methods—BEVGGC-I, BEVGGC-II, and BEVGGC-III based on the BEVGG
framework are proposed.

(iii) We find our three methods are superior to state-of-the-art methods, and BEVGGC-I has
the best performance of all methods.

2 Dataset

The experimental dataset used in this paper is a public dataset from the Kaggle web-
site [13]. This dataset consists of 6939 chest X-ray images, which are divided into three categories
(COVID-19, Normal, and Pneumonia), and each category has 2313 images. The number ratio
of each category of chest X-ray images is 1:1:1. In each category image, 80% of the samples
were randomly selected as training set and 20% of the rest were used as test set. In Section 4,
we keep the same division ratio of training set and test set to perform 10-fold cross validation.
The experimental results are from NVIDIA QUADRO RTX 8000. The other parameters of the
device are as follows. GPU memory is 48 GB GDDR6 with ECC. Total graphics power is 260 W.
NVIDIA tensor cores is 576. NVIDIA RT cores is 72. And the total board power is 295 W. Fig. 2
shows the chest X-ray images from our dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: Samples of our dataset (a) Sample 1 of COVID-19 (b) Sample 2 of COVID-19 (c)
Sample 3 of COVID-19 (d) Sample 4 of COVID-19 (e) Sample 1 of normal (f) Sample 2 of
normal (g) Sample 3 of normal (h) Sample 4 of normal (i) Sample 1 of pneumonia (j) Sample 2
of pneumonia (k) Sample 3 of pneumonia (l) Sample 4 of pneumonia
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According to Fig. 2, we can see that for the chest of X-ray images of COVID-19, it is
usually manifested as multiple ground glass shadows and infiltrating shadows in both lungs. If
the condition is serious, pulmonary consolidation can occur, but pleural effusion is rare. For the
chest X-ray images of pneumonia, there are fuzzy cloud like or uniform infiltration shadow. The
hilar is dense, gradually shallow outward, and the edge is not clear. It usually does not invade the
whole lung lobe, most of them involve in one lung lobe, especially in the lower lobe.

3 Methodology

To ease the understanding of this paper, Tab. A1 shows all variables used in our study.
Tab. A2 gives the abbreviation and their full names. Tabs. A1 and A2 are in the appendix at the
end of the paper.

3.1 Biogeography-Based Optimization
Biogeography-based optimization (BBO) is an efficient optimization algorithm, suitable for

solving high-dimensional and multi-objective optimization problems [14]. To facilitate the descrip-
tion of the BBO, our team introduced the following concepts: (i) Habitats. Habitats are places
where species live, reproduce, mutate and die. This variable corresponds to a set of solutions in
the problem to be optimized. (ii) Suitable Index Variable (SIV). This variable is used to describe
the environmental variables of species living in each habitat, such as sunlight, vegetation coverage,
water sources, food, etc. [15]. This variable corresponds to the independent variable in a set of
solutions of the problem to be optimized [16]. (iii) Habitats Suitable Index (HSI). HSI is used
to measure a habitat that is suitable for species. The value of this variable can be obtained
by calculating the SIV using the objective function [17]. This variable is used to measure the
suitability of a set of solutions in the problem to be optimized. Fig. 3 shows the habitats and
species migration path of BBO.

Figure 3: Habitats and species migration path of BBO

The process of BBO optimization of a problem can be divided into two stages: migration
and mutation. The migration stage also can be divided into two operations: immigration and
emigration. When the algorithm performs the migration operation, it determines the immigration
SIV and the emigration SIV according to the migration rate [18] replaces the value of the
immigration SIV with the emigration SIV. When the algorithm performs the mutation operation,
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it randomly generates a value for each SIV and compares it with the mutation rate. If the value is
less than the mutation rate, performs mutation, viz., it randomly changes the corresponding SIV
to a new value. Otherwise, the mutation is not performed. Both migration and mutation follow
the following formula:

IS = Imax

(
1− S

Smax

)
(1)

OS = Omax ·S
Smax

(2)

NS =Nmax

(
1−BS
Bmax

)
(3)

Here, IS represents the rate of immigration when the species number is S. Imax represents
the maximum rate of immigration. S represents the number of species. OS represents the rate of
emigration when the species number is S. Omax represents the maximum rate of emigration. NS
represents the rate of mutation when the species number is S. Nmax represents the maximum rate
of mutation. BS represents the probability of the habitat has the species number is S. And Bmax
represents the maximum probability of species [19].

Both migration and mutation in the BBO are to improve the diversity of the solution to be
optimized. The mutation is often performing after migration. At the same time, elitism is intro-
duced to better preserve the optimal solution generated during each iteration. Through the above
content, BBO has the advantages of fewer parameters, simple operation and fast convergence
speed. It has a good ability to solve the problem of optimizing multiple CNN hyperparameters.

When we used BBO to optimize the hyperparameters of CNN, the corresponding relationship
between BBO variables and CNN variables is as follows. SIV represents the value of the hyper-
parameters to be optimized. The objective function of BBO represents CNN. HSI represents the
output of CNN. Habitat represents a set of solutions of all the hyperparameters to be optimized.
When we perform the BBO, through continuous iteration, the optimization operation is completed.

3.2 Improvement I: A Novel Framework—BEVGG
In this section, our team proposed a novel framework for the detection COVID-19 based on

chest X-ray images. Which consists of convolution layer, pooling layer and the fully connected
layer.

3.2.1 Convolution Operation
The function of convolution operation is to extract image features on input images. The

steps of convolution operation are [20]: convolution kernel calculates the image information
of the receptive field with the corresponding convolution operator to obtain the image feature
information [21]. The specific calculation method follows the formula (4) and (5).

DC =
⌊
EC −FC + 2LC

TC
+ 1

⌋
(4)

RC =GC ×FC (5)

Here, DC represents the output size of convolution operation. EC represents the input size of
convolution operation. FC represents the convolution kernel size. LC represents the padding size.
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TC represents the stride size of the convolution kernel. RC represents the number of parameters
in convolution operation. And GC represents the number of convolution kernels.

Therefore, convolution operation has the characteristics of local connection and weight shar-
ing, thus convolution operation can be used to achieve efficient and fast feature extraction of
images.

3.2.2 Pooling Operation
The image information extracted by convolution operation can be directly fed to the fully

connected layer. If this is done, the fully connected layer will handle a huge number of calculations
and limit the performance of the model. Therefore, we introduced pooling operation to reduce the
dimensionality of extracted features and reduce the risk of overfitting [22]. There are two common
pooling operations: max-pooling and average pooling. Which are shown as Figs. 4 and 5. The
following content explained them, respectively.

Figure 4: Max-pooling method

Figure 5: Average pooling method

In the max-pooling operation, the maximum value of each receptive field is selected as
the output of the pooling area. Therefore, the max-pooling operation can better preserve the
texture information and reduce the deviation of the estimated average value caused by convolution
parameter errors.
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The calculation formula of output size through pooling operation is shown as follows:

DP =
⌈
EP−FP
TP

+ 1
⌉

(6)

Here, DP represents the output size of pooling operation. EP represents the input size of
pooling operation. FP represents the pooling kernel size. And TP represents the stride size of
pooling kernel.

In the average pooling operation, the average of all values in each receptive field is calculated
as the output of the pooling area. Therefore, the average pooling operation can better preserve
the overall features of the image, highlight the background information of the image, and reduce
the increase in estimation variance caused by the limited neighborhood size.

According to the above, pooling operation can both reduce the number of parameters and
the risk of overfitting. It also has translation invariance.

3.2.3 A Novel Framework—BEVGG
Fig. 6 shows the framework—Biogeography-based optimization Expert-VGG (BEVGG)—our

team proposed. In the feature extraction structure of BEVGG, convolution layer and pooling
layer have 5 layers respectively, after each convolution layer, batch normalization and Rectified
Linear Unit (ReLu) are performed. In the classification structure of BEVGG, there are three fully
connected layers. For the rationality proof of the BEVGG structure, please refer to Section 4.

Figure 6: The structure of BEVGG

3.3 Depthwise Separable Convolution
According to the contents of Section 3.2.1, when standard convolution kernel performs con-

volution operation, all channels of input image in the receptive field of convolution kernel are
calculated at the same time. And one convolution kernel can just extract one feature. If we want
to extract more features from input images, the number of convolution kernels will be added
accordingly.

Fig. 7 shows the depthwise separable convolution (DSC) that performs the convolution opera-
tion process. The biggest difference between DSC and standard convolution is that the convolution
process of DSC is divided into two steps [23]. Step 1, each channel of input image is calculated
by DSC kernel. Step 2, all channels of the result from step 1 are calculated at the same time by
1× 1 convolution kernel.
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The advantage of DSC operation is that this convolution operation can significantly reduce
the number of parameters in the convolution operation.

Figure 7: Convolution operation process of depthwise separable convolution

The calculated parameters methods of standard convolution and DSC are as follows:

RCC =EC ×LI ×FCC ×FCC ×HI ×GC (7)

RDC =EC ×LI ×FDC ×FDC ×HI +GC (8)

Here, RCC represents the number of parameters in standard convolution operation. FCC
represents the size of conventional convolution kernel. HI represents the number of channels of
input images. RDC represents the number of parameters in DSC operation. FDC represents the
size of convolution kernel in Step 1 of DSC [24].

According to the above contents, the parameters of convolution operation using DSC are
less than that of using standard convolution. The more convolution kernels used in models, the
parameters of convolution using DSC are less than that of using standard convolution, and the
advantages of DSC are more significant.

3.4 Dilated Convolution
In Section 3.2.1 and Section 3.3, we have described both the convolution operation of stan-

dard convolution and DSC. The receptive field of both of them is continuous. In this part, we
introduced a convolution with discontinuous receptive field—dilated convolution [25]. The recep-
tive field of standard convolution and dilated convolution are shown in Fig. 8. Since the receptive
field of dilated convolution is filled with different numbers of blocks between each small receptive
field according to different dilated rates, the dilated convolution can catch more image information
than that of the convolution that has the continuous receptive field [26].

Figure 8: Two types of receptive field
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The calculated method of a single dilated convolution’s receptive field is as follows:

J = FC + (FC − 1)(K − 1) (9)

Here, J represents the receptive filed size of dilated convolution. K represents the size of the
dilation rate. When we use multiple dilated convolutional layers continuously, the receptive field
of the last dilated convolutional layers needs to accumulate layer by layer [27].

In Section 3.5, we discussed the three methods (BEVGGC-I, BEVGGC-II, and BEVGGC-III)
proposed by our team based.

3.5 Improvement II: Three Methods—BEVGGC-I, BEVGGC-II, and BEVGGC-III
In this section, we described three methods proposed by our team (BEVGGC-I, BEVGGC-II,

and BEVGGC-III). The structures of them are shown as Figs. 9–11. Here, we also used BBO to
optimize the values of different hyperparameters of our methods as shown in Fig. 9.

Figure 9: The structure of BEVGGC-I

Figure 10: The structure of BEVGGC-II
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Figure 11: The structure of BEVGGC-III

In the structure of BEVGGC-I, we set all the convolutional layers to standard convolutional
layers. And we used BBO to optimize the standard convolution kernel size and stride size of the
first three convolutional layers. The other parameters (weights, biases) of the model are optimized
by back propagation simultaneously. BEVGG has five convolution layers. Due to experimental
conditions, we choose the hyperparameters in the first three convolution layers for optimization.

In the process of BBO optimizing the BEVGGC-I hyperparameters, each convolution kernel
size and convolution kernel stride size in the first three convolutional layers as each SIV. By
continuously changing the candidate values of each SIV, the array of all SIVs is as a habitat.
And the value of the CNN output is as HSI of each habitat. Through continuous performance
of iterative operations, the output after BBO optimized is obtained. The following BBO optimizes
hyperparameters of models refer to this method.

In the structure of BEVGGC-II, we set all the convolutional layers to depthwise separable
convolutional layers. And we used BBO to optimize the depthwise separable convolution kernel
size and stride size of the first three convolutional layers. The other parameters (weights, biases)
of the model are optimized by back propagation simultaneously.

In the structure of BEVGGC-III, we set the first three convolutional layers are dilated con-
volutional layers, the remaining convolutional layers are depthwise separable convolutional layers.
Here, to make the model shows better performance, we determined the dilated rate value is 2
through trial and error. And we also used BBO to optimize the dilated convolution kernel size
and stride size of the first three convolutional layers. The other parameters (weights, biases) of
the model are optimized by back propagation simultaneously.
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3.6 Measure
To compare the diagnostic performance of different methods, confusion matrix [28] is intro-

duced as shown in Tab. 1. Here, TP represents the predicted class and the actual class both are
positive. TN represents the predicted class and the actual class both are negative. FP represents
the predicted class is positive, but the actual class is negative. And FN represents the predicted
class is negative, but the actual class is positive [29].

Table 1: Sample of confusion matrix

Confusion matrix Predicted class

Positive Negative

Actual class Positive TP FN
Negative FP TN

Besides, we defined five metrics: Accuracy, Precision, Sensitivity, Specificity and F1 scores.

Accuracy= TP+TN
TP+FN +FP+TN

(10)

Precision= TP
TP+FP

(11)

Sensitivity= TP
TP+FN

(12)

Specificity= TN
TN +FP

(13)

F1 = 2 ∗Precision ∗Sensitivity
Precision+Sensitivity

(14)

To prove the robustness of the methods, 10 runs 10-fold cross validation is introduced.
Therefore, we divided the experimental dataset randomly according to the dividing method of
10-fold cross validation, and obtained 10 same size new datasets with different data distribution
based on the original experimental dataset. In the selection of test set, we select two increasing
number subsets as test set, and the remaining 8 subsets as training set. And our experiments are
carried out on these datasets.

According to the above contents, an ideal confusion matrix of our experiment is as Tab. 2.

Table 2: Sample of an ideal confusion matrix

Confusion matrix Predicted class

COV Nor Pne

Actual class COV 463 0 0
Nor 0 463 0
Pne 0 0 463
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An ideal 10 runs 10-fold cross validation confusion matrix is shown as Tab. 3. According to
the selection method of test set, the number of each category in Tab. 2 is 463 and the number
of each category in Tab. 3 is 4630.

Table 3: Sample of an ideal 10 runs 10-fold cross validation confusion matrix

Confusion matrix Predicted class

COV Nor Pne

Actual class COV 4630 0 0
Nor 0 4630 0
Pne 0 0 4630

To better understand the performance of different methods, Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) is introduced. By analyzing the Grad-CAM result of original chest
X-ray images of each method, we can more intuitively compare the detection performance between
different methods. Fig. 12 shows the Grad-CAM result image of an original chest X-ray images.
It is worth noting that the higher color brightness areas in Grad-CAM result image, the greater
the output reference weight.

(a) (b)

Figure 12: A sample of Grad-CAM result of the original chest X-ray images (a) A sample of the
original Chest X-ray images (b) Grad-CAM result of (a)

4 Experiment Results and Discussions

In this part, we have compared, analyzed and discussed the experimental results. Besides, we
also compared our methods with state-of-the-art methods.

4.1 Ablation Experiments of BEVGGC
In this section, ablation experimental results of BEVGGC are shown to prove the rationality

of the structure proposed by our team of BEVGGC (13 layers of the feature extraction structure
and 3 layers of the fully connected layer).

Tabs. 5, 8 and 11 show the confusion matrix of BEVGGC with 9 different structures. Tabs. 6,
9 and 12 show the four confusion matrix metrics corresponding to the above confusion matrix,
respectively. And Tabs. 14 and 15 show the results of BEVGGC optimized by BBO. Here, FL
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represents the fully connected layer. COV represents the chest X-ray images of COVID-19. Nor
represents the chest X-ray images of Normal. And Pne represents the chest X-ray images of
Pneumonia. BEVGGC (8-2) represents the BEVGGC with 8 layers of feature extraction structure
and 2 layers of the fully connected layer. BEVGGC (8-3) represents the BEVGGC with 8 layers
of feature extraction structure and 3 layers of the fully connected layer. BEVGGC (8-4) represents
the BEVGGC with 8 layers of feature extraction structure and 4 layers of the fully connected
layer. For other similar descriptions, please refer to the above content.

In Tabs. 4, 7 and 10, the C1 represents the first convolutional layer of BEVGGC. M1
represents the first max-pooling layer of BEVGGC. FL1 represents the first fully connected layer
of BEVGGC. Other similar descriptions refer to this content. And the following contents refer to
this definition.

Table 4: Value of hyperparameters of BEVGGC (8-2, 3, 4)

C1 M1 C2 M2 C3 M3 C4 M4

Kernel 5 2 3 2 3 2 3 2
Stride 1 2 1 2 1 2 1 2
Channels 3/16 16/32 32/64 64/128
BEVGGC (8-2) FL1 FL2
Neurons 120 3
BEVGGC (8-3) FL1 FL2 FL3
Neurons 120 60 3
BEVGGC (8-4) FL1 FL2 FL3 FL4
Neurons 120 80 40 3

Table 5: Confusion matrix of BEVGGC (8-2, 3, 4)

Confusion matrix Predicted class
(2 layers of FL)

Predicted class
(3 layers of FL)

Predicted class
(4 layers of FL)

COV Nor Pne COV Nor Pne COV Nor Pne

Actual class COV 4456 97 77 4458 90 82 4485 76 69
Nor 145 4347 138 147 4357 126 158 4325 147
Pne 76 210 4344 65 225 4340 103 198 4329

As can be seen from Tab. 6, all three have the highest accuracy for COV, followed by Pne,
the lowest accuracy for Nor. BEVGGC (8-2) and BEVGGC (8-4) have the highest precision for
Pne. BEVGGC (8-3) has the highest precision for COV. All three have the highest sensitivity to
COV, the highest specificity to Pne and the highest F1 scores to COV.

Table 6: Five confusion matrix metrics of three BEVGGC structures (8-2, 3, 4) (unit: %)

Accuracy Precision Sensitivity Specificity F1 scores

COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne

8-2 97.16 95.75 96.39 95.27 93.40 95.28 96.24 93.89 93.82 97.61 96.68 97.68 95.76 93.64 94.55
8-3 97.24 95.77 96.41 95.46 93.26 95.43 96.29 94.10 93.74 97.71 96.60 97.75 95.87 93.68 94.57
8-4 97.08 95.83 96.28 94.50 94.04 95.25 96.87 93.41 93.50 97.18 97.04 97.67 95.67 93.73 94.36
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Table 7: Value of hyperparameters of BEVGGC (10-2, 3, 4)

C1 M1 C2 M2 C3 M3 C4 M4 C5 M5

Kernel 5 2 3 2 3 2 3 2 3 2
Stride 1 2 1 2 1 2 1 2 1 2
Channels 3/16 16/32 32/64 64/128 128/256
BEVGGC (10-2) FL1 FL2
Neurons 120 3
BEVGGC (10-3) FL1 FL2 FL3
Neurons 120 60 3
BEVGGC (10-4) FL1 FL2 FL3 FL4
Neurons 120 80 40 3

Table 8: Confusion matrix of BEVGGC (10-2, 3, 4)

Confusion matrix Predicted class
(2 layers of FL)

Predicted class
(3 layers of FL)

Predicted class
(4 layers of FL)

COV Nor Pne COV Nor Pne COV Nor Pne

Actual class COV 4502 70 58 4433 144 53 4523 75 32
Nor 208 4319 103 93 4456 81 141 4383 106
Pne 84 176 4370 75 72 4483 54 203 4373

Table 9: Five confusion matrix metrics of three BEVGGC structures (10-2, 3, 4) (unit: %)

Accuracy Precision Sensitivity Specificity F1 scores

COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne

10-2 96.98 95.99 96.97 93.91 94.61 96.45 97.24 93.28 94.38 96.85 97.34 98.26 95.54 93.94 95.40
10-3 97.37 97.19 97.98 96.35 95.38 97.10 95.75 96.24 96.83 98.19 97.67 98.55 96.05 95.81 96.96
10-4 97.83 96.22 97.16 95.87 94.04 96.94 97.69 94.67 94.45 97.89 97.00 98.51 96.77 94.35 95.68

Table 10: Value of hyperparameters of BEVGGC (12-2, 3, 4)

C1 M1 C2 M2 C3 M3 C4 M4 C5 M5 C6 M6

Kernel 5 2 3 2 3 2 3 2 3 2 3 2
Stride 1 2 1 2 1 2 1 2 1 2 1 2
Channels 3/16 16/32 32/64 64/128 128/256 256/512
BEVGGC (12-2) FL1 FL2
Neurons 120 3
BEVGGC (12-3) FL1 FL2 FL3
Neurons 120 60 3
BEVGGC (12-4) FL1 FL2 FL3 FL4
Neurons 120 80 40 3
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Table 11: Confusion matrix of BEVGGC (12-2, 3, 4)

Confusion matrix Predicted class
(2 layers of FL)

Predicted class
(3 layers of FL)

Predicted class
(4 layers of FL)

COV Nor Pne COV Nor Pne COV Nor Pne

Actual class COV 4530 47 53 4488 87 55 4547 32 51
Nor 198 4341 91 131 4364 135 198 4329 103
Pne 67 116 4447 34 112 4484 90 109 4431

As can be seen from Tab. 9, BEVGGC (10-2) and BEVGGC (10-4) have the highest accu-
racy for COV. BEVGGC (10-3) has the highest accuracy for Pne. All three have the highest
precision for Pne. BEVGGC (10-2) and BEVGGC (10-4) have the highest sensitivity for COV.
BEVGGC (10-3) has the highest sensitivity to Pne. And all three have the highest specificity
to Pne. BEVGGC-I and BEVGGC-III have the highest F1 score to COV, BEVGGC-II has the
highest F1 score to Pne. Here, the data of BEVGGC (10-3) in Tabs. 8 and 9 are the data of
BEVGGC-I.

As can be seen from Tab. 12, BEVGGC (12-2) and BEVGGC (12-4) have the highest accuracy
for Pne. BEVGGC (12-3) has the highest accuracy for COV. BEVGGC (12-2) has the highest
precision for Pne. BEVGGC (12-3) has the highest precision for COV. BEVGGC (12-4) has the
highest precision for Nor. All three have the highest sensitivity to COV. BEVGGC (12-2) has the
highest specificity for Pne. BEVGGC (12-3) has the highest specificity for COV. And BEVGGC
(12-4) has the highest specificity for Nor. BEVGGC-I and BEVGGC-III have the highest F1 score
to Pne. BEVGGC-II has the highest F1 score to COV. From the above contents, it can be seen that
the model performance of BEVGGC (10-3) is the best. Therefore, we define BEVGGC represents
the structure of BEVGGC (10-3) in the following content.

Table 12: Five confusion matrix metrics of three BEVGGC structures (12-2, 3, 4) (unit: %)

Accuracy Precision Sensitivity Specificity F1 scores

COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne

12-2 97.37 96.75 97.65 94.47 96.38 96.86 97.84 93.76 96.05 97.14 98.24 98.44 96.13 95.05 96.45
12-3 97.79 96.65 97.58 96.45 95.64 95.93 96.93 94.25 96.85 98.22 97.85 97.95 96.70 94.94 96.39
12-4 97.33 96.82 97.46 94.04 96.85 96.64 98.21 93.50 95.70 96.89 98.48 98.34 96.08 95.14 96.17

As can be seen from Tab. 13, the value of hyperparameters in the C1 and C2 are changed
when BEVGGC-I optimized by BBO. As can be seen from Tab. 15, the BEVGGC with BBO has
the highest accuracy for Pne. The BEVGGC without BBO has the highest accuracy for COV. Both
methods have the highest precision for COV. BEVGGC with BBO has the highest sensitivity to
Pne and BEVGGC without BBO has the highest sensitivity to COV. Besides, two methods have
the highest specificity for COV. BEVGGC with BBO has the highest F1 score to Pne. BEVGGC
without BBO has the highest F1 score to COV. Therefore, Tab. 15 shows the effectiveness of BBO
to optimize the values of hyperparameters of CNN. Therefore, we define BEVGGC-I represents
BEVGGC-I (with BBO), BEVGGC-II represents the BEVGGC-II (with BBO), and BEVGGC-
III represents BEVGGC-III (with BBO) in the following content. Tab. 16 shows the value of
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hyperparameters of BEVGGC-II. Tab. 17 shows the value of hyperparameters of BEVGGC-III.
And Tab. 18 shows the confusion matrix of BEVGGC-II and BEVGGC-III.

Table 13: Value of hyperparameters of BEVGGC-I

C1 M1 C2 M2 C3 M3 C4 M4 C5 M5

Not optimized by BBO

Kernel 5 2 3 2 3 2 3 2 3 2
Stride 1 2 1 2 1 2 1 2 1 2

Optimized by BBO

Kernel 3 2 1 2 3 2 3 2 3 2
Stride 2 2 1 2 1 2 1 2 1 2

Table 14: Confusion matrix of BEVGGC with BBO and without BBO

Confusion matrix Predicted class (with BBO) Predicted class (without BBO)

COV Nor Pne COV Nor Pne

Actual class COV 4498 98 34 4483 72 75
Nor 63 4475 92 81 4456 93
Pne 25 28 4577 53 144 4433

Table 15: Five confusion matrix metrics of BEVGGC with and without BBO (unit: %)

Accuracy Precision Sensitivity Specificity F1 scores

COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne

With BBO 98.42 97.98 98.71 98.08 97.26 97.32 97.15 96.65 98.86 99.05 98.64 98.64 97.61 96.96 98.08
Without BBO 97.98 97.19 97.37 97.10 95.38 96.35 96.83 96.24 95.75 98.55 97.67 98.19 96.96 95.81 96.05

Table 16: Value of hyperparameters of BEVGGC-II

C1 M1 C2 M2 C3 M3 C4 M4 C5 M5

Not optimized by BBO

Kernel 5 2 3 2 3 2 3 2 3 2
Stride 1 2 1 2 1 2 1 2 1 2

Optimized by BBO

Kernel 5 2 3 2 1 2 3 2 3 2
Stride 2 2 2 2 1 2 1 2 1 2
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Table 17: Value of hyperparameters of BEVGGC-III

C1 M1 C2 M2 C3 M3 C4 M4 C5 M5

Not optimized by BBO

Kernel 5 2 3 2 3 2 3 2 3 2
Stride 1 2 1 2 1 2 1 2 1 2
Dilated rate 1 2 4

Optimized by BBO

Kernel 3 2 3 2 3 2 3 2 3 2
Stride 1 2 1 2 1 2 1 2 1 2
Dilated rate 1 2 4

Table 18: Confusion matrix of BEVGGC-II and BEVGGC-III

Confusion matrix BEVGGC-II predicted class BEVGGC-III predicted class

COV Nor Pne COV Nor Pne

Actual class COV 4352 219 59 4312 213 105
Nor 206 4294 130 116 4312 202
Pne 52 102 4476 42 39 4549

As seen from Tab. 19, both methods have the highest accuracy for Pne. BEVGGC-II has the
highest precision for Pne. BEVGGC-III has the highest precision for COV. Both of them have the
highest sensitivity to Pne. BEVGGC-II has the highest specificity for Pne. And BEVGGC-III has
the highest specificity for COV. Both of them have the highest F1 score to Pne.

Table 19: Five confusion matrix metrics of BEVGGC-II and BEVGGC-III (unit: %)

Accuracy Precision Sensitivity Specificity F1 scores

COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne COV Nor Pne

BEVG GC-II 96.14 95.27 97.53 94.40 93.04 95.95 94.00 92.74 96.67 97.21 96.53 97.96 94.20 92.89 96.31
BEVG GC-III 96.57 95.90 97.21 96.57 94.48 93.68 93.13 93.13 98.25 98.29 97.27 96.69 94.77 93.80 95.91

It can be seen from Tab. 15 that the accuracy of BEVGGC-I for COV is 98.42%, 2.28%
higher than that of BEVGGC-II, and 1.85% higher than that of BEVGGC-III. The accuracy
of BEVGGC-I for Nor is 97.98%, 2.17% higher than that of BEVGGC-II, and 2.08% higher
than that of BEVGGC-III. The accuracy of BEVGGC-I for Pne is 98.71%, 1.18% higher than
that of BEVGGC-II, and 1.5% higher than that of BEVGGC-III. The precision for COV of
BEVGGC-I is 98.08%, which is 3.68% higher than that of BEVGGC-II and 1.51% higher than
that of BEVGGC-III. The sensitivity to COV of BEVGGC-I is 97.15%, which is 3.15% higher
than that of BEVGGC-II and 4.02% higher than that of BEVGGC-III. The specificity for COV
of BEVGGC-I is 99.05%, which is 1.84% higher than that of BEVGGC-II and 0.76% higher
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than that of BEVGGC-III. Therefore, BEVGGC-I has the best detection performance in accuracy,
precision, sensitivity and specificity of all methods.

It can be seen from Tab. 20 that the OA of BEVGGC (8-2) is 0.15% ± 0.1% lower than that
of BEVGGC (8-3), and BEVGGC (8-4) is 0.11% ± 0.05% lower than that of BEVGGC (8-3).
Which shows that the 8 layers of the feature extract structure and 3 fully connected layers of
BEVGGC have the best performance is 94.76% ± 0.44%.

Table 20: Overall accuracy (OA) of three BEVGGC structures (8-2, 3, 4) (unit: %)

Run The number of fully
connected layer is 2

The number of fully
connected layer is 3

The number of fully
connected layer is 4

OA OA OA

1 95.72 94.90 94.40
2 94.88 93.79 94.53
3 96.15 93.98 95.10
4 93.89 94.71 93.69
5 94.84 94.65 94.59
6 93.91 95.04 93.83
7 94.01 95.26 94.69
8 95.13 94.87 95.61
9 94.21 94.95 94.97
10 93.72 94.56 95.07
Average 94.61 ± 0.54 94.76 ± 0.44 94.65 ± 0.49

It can be seen from Tab. 21 that the OA of BEVGGC (10-2) is 1.18% ± 0.36% lower than
that of BEVGGC (10-3), and BEVGGC (10-4) is 0.69% ± 0.39% lower than that of BEVGGC
(10-3). Which shows that the 10 layers of the feature extract structure and 3 fully connected layers
of BEVGGC have the best performance is 96.27% ± 0.67%.

Table 21: Overall accuracy of three BEVGGC structures (10-2, 3, 4) (unit: %)

Run The number of fully
connected layer is 2

The number of fully
connected layer is 3

The number of fully
connected layer is 4

OA OA OA

1 95.45 96.04 95.23
2 94.77 95.10 95.62
3 95.31 97.48 95.49
4 94.97 96.76 95.39
5 94.96 95.46 96.23
6 95.61 96.62 95.77
7 95.44 95.90 95.28
8 94.89 96.62 95.38
9 94.76 95.97 95.60
10 94.74 96.76 95.82
Average 95.09 ± 0.31 96.27 ± 0.67 95.58 ± 0.28
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It can be seen from Tab. 22 that the OA of BEVGGC (12-2) is 0.15% ± 0.12% lower than
that of BEVGGC (12-3), and BEVGGC (12-4) is 0.17% ± 0.27% lower than that of BEVGGC
(12-3). Which shows that the 12 layers of the feature extract structure and 3 fully connected layers
of BEVGGC have the best performance is 95.95% ± 0.71%.

Table 22: Overall accuracy of three BEVGGC structures (12-2, 3, 4) (unit: %)

Run The number of fully
connected layer is 2

The number of fully
connected layer is 3

The number of fully
connected layer is 4

OA OA OA

1 95.26 95.37 95.61
2 95.21 96.24 96.31
3 95.88 95.65 95.77
4 96.43 95.66 95.46
5 96.60 96.98 96.01
6 94.59 94.74 95.41
7 95.93 96.87 96.26
8 96.27 96.59 94.98
9 96.18 96.22 95.57
10 95.66 95.19 96.45
Average 95.80 ± 0.59 95.95 ± 0.71 95.78 ± 0.44

It can be seen from Tab. 23 that the OA of BEVGGC with BBO is 1.38% ± 0.02% higher
than that of BEVGGC without BBO. Which shows that BBO can optimize the hyperparameters
of convolutional neural network. In conclusion, BEVGGC (with BBO) has the best detection
performance to diagnose COVID-19 based on chest X-ray images.

Table 23: Overall accuracy of two BEVGGC methods (with BBO, without BBO) (unit: %)

Run With BBO Without BBO

OA OA

1 98.10 96.04
2 96.82 95.10
3 97.26 97.48
4 98.04 96.76
5 98.29 95.46
6 96.31 96.62
7 97.40 95.90
8 98.12 96.62
9 97.88 95.97
10 98.31 96.76
Average 97.65 ± 0.65 96.27 ± 0.67
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4.2 Statistical Results
In this section we listed the OA of three methods (BEVGGC-I, BEVGGC-II, and BEVGGC-

III). Detailed data is shown in Tab. 24.

Table 24: Overall accuracy of our methods (unit: %)

Run BEVGGC-I BEVGGC-II BEVGGC-III

OA OA OA

1 98.10 94.86 94.84
2 96.82 94.61 95.10
3 97.26 94.43 95.30
4 98.04 94.16 94.74
5 98.29 94.47 94.95
6 96.31 94.39 93.44
7 97.40 94.41 95.28
8 98.12 94.74 94.76
9 97.88 94.16 95.18
10 98.31 94.64 94.45
Average 97.65 ± 0.65 94.49 ± 0.22 94.81 ± 0.52

It can be seen from Tab. 24, BEVGGC-I has the highest OA, which is 97.65% ± 0.65%.
The OA of BEVGGC-I is 3.16% ± 0.43% higher than that of BEVGGC-II, 2.84% ± 0.13%
higher than that of BEVGGC-III. Our team believes that the reasons for this result are: (i) all
convolutional layers of BEVGGC-II are depthwise separable convolutional layers. According
to the property of depthwise separable convolution, we can see that BEVGGC-II has fewer
parameters than BEVGGC-I, but it reduces OA. (ii) depthwise separable convolution and dilated
convolution are both used in BEVGGC-III. Since the first three convolutional layers of BEVGGC-
III are dilated convolutional layer. Based on setting the rational dilated rate of dilated convolu-
tion, the receptive field of convolution kernels can be expanded and the advantages of dilated
convolution can be fully displayed. Besides, the remaining convolutional layers of BEVGGC-
III are depthwise separable convolutional layers. Therefore, BEVGGC-III has higher OA than
BEVGGC-II and lower OA than BEVGGC-I. In conclusion, using the standard convolutional
layer methods—BEVGGC-I has the best diagnosis performance. And this is consistent with the
conclusion in Section 4.1, which proves the reliability and efficiency of BEVGGC-I.

4.3 Grad-CAM
In this section, we analyzed the Grad-CAM result of our methods, which can help us

understand the performance of different methods more intuitively.

Fig. 13 shows the Grad-CAM results of our methods. The high brightness color areas in
the Gram-CAM result of BEVGGC-I are concentrated on the chest. The high brightness color
areas in the Gram-CAM result of BEVGGC-II are most concentrated on the chest, but some
of them are also in the abdomen. And the high brightness color area in the Gram-CAM result
of BEVGGC-III are almost concentrated on the chest, and some of them are distributed outside
the human body. Therefore, the Grad-CAM results are consistent with the OA ranking of our
methods.
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BEVGGC-I BEVGGC-II BEVGGC-III

(a) (b) (c)

(d) (e) (f)

Figure 13: Grad-CAM results of our methods. (a) A sample of the original chest X-ray images.
(b) A sample of the original chest X-ray images. (c) A sample of the original chest X-ray images.
(d) The Grad-CAM result of (a). (e) The Grad-CAM result of (b). (f) The Grad-CAM result
of (c)

4.4 Comparison to State-of-the-Art Approaches
In this section, we compared our three methods with two state-of-the-art methods

(VGG-16 [30], ResNet-18 [31]). Tab. 25 lists the comparison result of all methods.

Table 25: Comparison with state-of-the-art methods (unit: %)

Approach OA

VGG-16 88.06 ± 1.69
ResNet-18 90.81 ± 0.72
BEVGGC-I 97.65 ± 0.65
BEVGGC-II 94.49 ± 0.22
BEVGGC-III 94.81 ± 0.52
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Table A1: Variable definition table

Variable name Variable meaning

BS Probability of the habitat has the species number is S.
Bmax Maximum probability of species.
DC Output size of convolution operation.
DP Output size of pooling operation.
EC Input size of convolution operation.
EP Input size of pooling operation.
FC Convolution kernel size.
FCC Size of conventional convolution kernel.
FDC Size of convolution kernel in step 1 of DSC.
FP Pooling kernel size.
GC Number of convolution kernels.
HI Number of channels of input images.
IS Rate of immigration when the species number is S.
Imax Maximum rate of immigration.
J Receptive filed size of dilated convolution.
K Size of dilation rate.
LC Padding size.
NS Rate of mutation when the species number is S.
Nmax Maximum rate of mutation.
OS Rate of emigration when the species number is S.
Omax Maximum rate of emigration.
RC Number of parameters in convolution operation.
RCC Number of parameters in standard convolution operation.
RDC Number of parameters in DSC operation.
S Number of species.
TC Stride size of the convolution kernel.
TP Stride size of pooling kernel.

As can be seen from Tab. 25, compared with the state-of-the-art methods, the OA of
BEVGGC-I is 9.59% ± 1.04% higher than that of VGG-16, 6.84% ± 0.07% higher than that of
ResNet-18. The OA of BEVGGC-II is 6.43% ± 1.47% higher than that of VGG-16, 3.68% ±
0.5% higher than that of ResNet-18. The OA of BEVGGC-III is 6.75% ± 1.17% higher than
that of VGG-16, 4.0% ± 0.2% higher than that of ResNet-18. And the OA of BEVGGC-I is
3.16% ± 0.43% higher than that of BEVGGC-II, 2.84% ± 0.13% higher than that of BEVGGC-
III. Therefore, BEVGGC-I has the best performance and the validity of our study is verified by
Tab. 25.
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Table A2: Abbreviation table

Abbreviation Full definition

BBO Biogeography-Based Optimization.
BEVGG Biogeography-Based Optimization Expert-VGG.
BEVGGC Biogeography-Based Optimization Expert-VGG for diagnosis COVID-19.
CNN Convolutional Neural Network.
CCT Chest Computed Tomography.
DSC Depthwise Separable Convolution.
FL Fully Connected Layer.
FN False Negative.
FP False Positive.
Grad-CAM Gradient-weighted Class Activation Mapping.
Nor The chest X-ray images of Normal.
OA Overall accuracy.
ReLU Rectified Linear Unit.
TN True Negative.
TP True Positive.
Pne The chest X-ray images of Pneumonia.

5 Conclusion

In this paper, we proposed three methods (BEVGGC-I, BEVGGC-II, and BEVGGC-III)
to diagnose COVID-19 based on chest X-ray images and used BBO to optimize the values
of hyperparameters of the methods. Among them, BEVGGC-I (97.65% ± 0.65%) has the best
detection performance, followed by BEVGGC-III (94.81% ± 0.52%), and the last is BEVGGC-II
(94.49% ± 0.22%). The experimental result shows that all of our methods are superior to the
state-of-the-art methods in the OA of model.

In the next study, we will continue to work on the artificial intelligence medical image aided
diagnosis system by using deep learning technology. Our main research directions are: (i) we
will try to use more optimization methods [32–35] to optimize the values of hyperparameters of
CNN. (ii) we will propose a more rationally convolutional neural network to diagnose the medical
images.
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