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ABSTRACT

Continuum topology optimization considering the vibration response is of great value in the engineering structure
design. The aim of this study is to address the topological design optimization of harmonic excitation structures with
minimum length scale control to facilitate structural manufacturing. A structural topology design based on discrete
variables is proposed to avoid localized vibration modes, gray regions and fuzzy boundaries in harmonic excitation
topology optimization. The topological design model and sensitivity formulation are derived. The requirement of
minimum size control is transformed into a geometric constraint using the discrete variables. Consequently, thin
bars, small holes, and sharp corners, which are not conducive to the manufacturing process, can be eliminated
from the design results. The present optimization design can efficiently achieve a 0–1 topology configuration with
a significantly improved resonance frequency in a wide range of excitation frequencies. Additionally, the optimal
solution for harmonic excitation topology optimization is not necessarily symmetric when the load and support are
symmetric, which is a distinct difference from the static optimization design. Hence, one-half of the design domain
cannot be selected according to the load and support symmetry. Numerical examples are presented to demonstrate
the effectiveness of the discrete variable design for excitation frequency topology optimization, and to improve the
design manufacturability.

KEYWORDS
Discrete variable topology optimization; harmonic excitation; minimum length scale control; geometric constraint;
manufacturability

1 Introduction

Topology optimization can result in innovative structural designs via the determination of
the optimal material distribution under predefined constraints without prior knowledge. In recent
years, structural topology optimization has been developed rapidly and applied extensively. Various
optimization methods have become effective tools for engineering structure design [1,2], such as
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homogenization-based method [3], density-based SIMP (solid isotropic material with penalization)
method [4–6], evolutionary optimization method [7], independent continuous mapping method [8],
level-set method [9,10], component-based optimization method [11], and feature-driven optimization
method [12]. These approaches have been extensively used to solve various structural design problems.

Because engineering structures require an increasing level of dynamic performance, topology
optimization involving structural vibration characteristics is critical [13–16]. Currently, topology
optimization considering structural dynamic performance is garnering attention. The study includes
topology optimization under harmonic excitation [17–23], topological optimization with fundamental
frequency maximization [24–29], topological optimization considering high-order natural frequency
maximization or frequency bandwidth optimization [30,31], and the corresponding indicators for
measuring the structural vibration effect as constraints for modeling [32,33]. Zargham et al. [34]
provided a comprehensive review of structural dynamic topology optimization based on different
optimization methods.

Structural topology optimization that considers external harmonic excitation has received con-
siderable attention. Ma et al. [35] performed a study to minimize structural dynamic compliance
under volume constraints. When the excitation frequency exceeded the first resonance frequency, the
structural dynamic compliance minimization with volume constraints was investigated [36]. In this
case, invalid locally optimal solutions may be yielded, and static compliance constraints can be added
to avoid such a phenomenon. Meanwhile, Niu et al. [19] compared different objective functions, and
stress-constrained topology designs were achieved [37]. Notably, the density-based method is the most
widely applied method to topology design under harmonic excitation. However, the optimization
results contain unavoidable gray areas (intermediate densities), particularly when considering the
inertial effect of harmonic excitation. Intermediate densities may cause numerical problems in dynamic
topology optimization, i.e., typically localized vibration modes [38], which need to be addressed via
additional techniques [39]. By merely truncating the intermediate densities, the objective function
associated with the harmonic excitation may be degenerated significantly. Meanwhile, gray regions
and fuzzy boundaries are not conducive to the extraction and control of geometric information from
the optimization result; furthermore, they affect the structural manufacturing [40].

To improve manufacturability, topological design considering minimum length scale control is
crucial. Furthermore, it is an efficient technique for addressing numerical instabilities in design
optimization, such as mesh dependence and checkerboard patterns [41]. Although density filtering can
avoid mesh dependence and checkerboard patterns, the gray region formed at the structural boundary
expands as the filtering radius increases, which implies that the minimum length scale cannot be strictly
controlled. Additionally, three-field SIMP methods utilizing nonlinear projection techniques tend to
yield 0–1 designs, and the minimum size may not be strictly satisfied [42,43]. Based on the three-
field SIMP method, a robust formulation considering corrosion and expansion operations as well
as a geometric constraint method without additional finite element analysis were proposed [44,45].
Meanwhile, the minimum length scale control of the topology design can be imposed using a structural
skeleton [46] and an image morphology operator [47]. It is worth noting that the length scale control
was not applied to the topology optimization of harmonic excitation structures in previous studies.
Many thin bars, small holes, and sharp corners may appear in the optimization results of harmonic
excitation structures. Thus, clear and smooth topology designs with minimum length scale control are
desirable for the manufacturing process.

Symmetry is an important and appealing property for structural topology optimization, as it
significantly reduces the computational cost. The symmetry of optimal solutions in structural topology
optimization has received significant attention [48–50]. However, when the loading and support
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conditions are symmetric, the existence of the symmetric property in the harmonic excitation topology
design problem should be verified.

In the present work, a topological design method based on discrete variables [51] is employed
to resolve the topology optimization of harmonic excitation structures with length scale control.
The discrete variable method is based on SAIP (sequential approximate integer programming)
and CRA (canonical relaxation algorithm), which can avoid gray problems and achieve clear 0–1
solutions in topology optimization [52,53]. Compared with the branch-and-bound method [54], it
exhibits polynomial time complexity; thus, its computational efficiency is higher. In addition, unlike
the Lagrange relaxation method, it does not require the solving of non-smooth dual optimization
problems [55]. Compared with the well-known evolutionary structure optimization method [56], it
can manage multiple constraints via a unified mathematical programming framework, such as the size
control constraints discussed herein. In this study, an optimization model is established by considering
the structural dynamic compliance optimization under volume constraints, and the corresponding
sensitivity formulas are derived. Furthermore, results show that the topology design solution of the
harmonic excitation optimization problem may not necessarily be symmetric, even when the load and
support are symmetric, which is different from the static compliance problem.

2 Discrete Variable Topology Optimization under Harmonic Excitation
2.1 Objective Function of Design Optimization

The motion equation of the harmonic excitation problem can be expressed as [19]

Mü + Cu̇ + Ku = Feiωt (1)

where K and M denote stiffness and mass matrices, respectively; C denotes the damping matrix; ü and
u̇ represent acceleration and velocity, respectively; F is the prescribed amplitude; ω is the excitation
frequency. By setting u = Ueiωt, where U denotes the displacement amplitude, the governing equation
can be rewritten as(

K − ω2M + iωC
)

U = F (2)

Subsequently, the following equation can be obtained

UT
(
K − ω2M + iωC

)
U = UTF (3)

The structural dynamic compliance is defined as

c = FTU (4)

Here, c = cR + icS, where cR and cS are the real and imaginary components of c, respectively. When
the excitation frequency ω is zero, the dynamic compliance can be degenerated into static compliance.

In this study, the square of the dynamic compliance is employed as the objective function for
topology optimization [21], which can be expressed as

f = c2 = (
FTU

) (
FTU

)
(5)

where FTU is the complex conjugate of FTU .

2.2 Optimization Formulation of Discrete Variable Topology Design
In this study, minimization of the square of structural dynamic compliance with the volume

constraint is considered, and the corresponding optimization formulation based on discrete variables
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can be expressed as follows:

Find : ρ

Min : f (ρ) = c2 = (
FTU

) (
FTU

)

S.t. :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
K (ρ) − ω2M (ρ) + iωC (ρ)

)
U = F

1
N

N∑
e=1

veρe ≤ V

ρe ∈ {0, 1} , e = 1, 2, . . . , N

(6)

where ρ = [ρ1, ρ2, . . . , ρN] is a set of design variables; N is the number of elements; ve is the elemental
volume; V denotes the predefined volume fraction.

The design variable in Eq. (6) is maintained as either 0 or 1, which allows material interpolation to
be selected more flexibly because the intermediate densities need not necessarily be penalized. In fact,
the material interpolation scheme of the present design is only for performing an efficient sensitivity
analysis, which does not require an additional structural analysis. The global matrices K and M can
be expressed as follows:

K (ρ) =
N∑

e=1

[
Emin + (E0 − Emin) ρp

e K e

]
M (ρ) =

N∑
e=1

[
Emin + (E0 − Emin) ρq

e M e

] (7)

where K e and M e are elemental stiffness and mass matrices, respectively; Emin is an extremely low value
to avoid singularity in the computation process. As demonstrated in the numerical examples, when the
penalty coefficients are set as p = 1, q = 1 or p = 3, q = 1, 0–1 topology designs are achievable.

3 Discrete Variable Topology Optimization Based on SAIP
3.1 Subproblem of SAIP

The discrete variable optimization method transfers the large-scale implicit nonlinear integer
programming of Eq. (6) into the following explicit sequential approximate integer programming
subproblem (shown in Eq. (8)) based on the sensitivity of the discrete variable:

Find : ρ

Min :
N∑

e=1

beρe

S.t. :

⎧⎪⎨⎪⎩
1
N

N∑
e=1

veρe ≤ V

ρe ∈ {0, 1} , e = 1, 2, . . . , N

(8)

Here, be is the sensitivity of the discrete variable, which is defined as

be = δf
δρe

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (ρe = 1) − f

(
ρk

e = 0
)

1 − 0
, if ρk

e = 0

f (ρe = 0) − f
(
ρk

e = 1
)

0 − 1
, if ρk

e = 1

(9)
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where ρk
e denotes the design variable of the current iteration. The discrete requirement of ρe ∈ {0, 1} is

equivalently transferred to the equality constraint ρe (ρe − 1) = 0. The equality and volume constraints
are introduced into the Lagrange function, which is high-order differentiable and defined in Euclidean
space. Subsequently, a smooth and differentiable dual function is constructed using first-order stability
conditions [51]. Furthermore, an efficient CRA is employed to solve Eq. (8).

3.2 Sensitivity Analysis
Using the discrete variable sensitivity expressed in Eq. (9) incurs a significant amount of computa-

tional cost. To obtain the discrete variable sensitivity efficiently, the derivative of the objective function
pertaining to the design variable can be expressed as

δf
δρe

≈ ∂f
∂ρe

= be = −2
(

FTU
)(

UT ∂K d

∂ρe

U
)

(10)

where the equivalent stiffness matrix is

K d = K − ω2M + iωC (11)

The derivative of K d associated with the design variable can be calculated as follows:

∂K d

∂ρe

= ∂K
∂ρe

− ω2 ∂M
∂ρe

+ iω
∂C
∂ρe

(12)

where the derivative of K pertaining to the design variable can be calculated in the same manner as
that presented in [51], as follows:

∂K
∂ρe

=
⎧⎨⎩ρe (E0 − Emin) K e if p = 1

pρp−1
e (E0 − Emin) K e if p > 1

(13)

and the derivative of M regarding to the design variable can be calculated by

∂M
∂ρe

= (E0 − Emin) M e (14)

The proportional damping matrix C can be expressed as C = αM + βK , where α and β are the
constant damping coefficients. The derivative of the damping matrix with respect to the design variable
is expressed as

∂C
∂ρe

= α
∂M
∂ρe

+ β
∂K
∂ρe

(15)

When p > 1, the sensitivity of the discrete variable is equal to that of the continuous variable. The
sensitivity of the white element requires specific processing, as in Eq. (13), when p = 1 [52].

4 Geometrical Constraint for Minimum Length Scale Control

The optimization result of the topology design may contain thin bars, small holes, and sharp
corners; thus, a geometrical constraint is utilized for size control [53]. If the length scale control of
the material phase is satisfied, then it must be filled with the material (black), which is composed of a
series of black disks with a specified radius. Similarly, if the length scale control of the void phase is
satisfied, then the nonstructural zone must be filled with the void material (white), which is combined
with a series of white-disks with a specified radius. Because the discrete variable method can achieve
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a 0–1 topological design, the definition of the minimum length scale above can be directly utilized to
formulate a valid geometrical constraint.

4.1 Geometrical Constraint Function
The locally averaged element density within a specified radius R is defined as

ρ̃e =
∑

j∈Ne
vjρj∑

j∈Ne
vj

(16)

where ρ j is a discrete design variable. Meanwhile, Ne is a set of element e at the specified radius R,
which is defined as

Ne = {
j| ∣∣xe − xj

∣∣ < �R� and
∣∣ye − yj

∣∣ < �R�} (17)

where (xe, ye) and (xj, yj) are the coordinates of the corresponding elemental center points. �R�
represents an integer rounded up to a specified radius R. Based on Eq. (17), Ne is a rectangular
region. Because the finite element meshes used in this study are square meshes with unit size l = 1,
the relationship between the minimum size radius R̃ and the specified radius can be written as follows:

R̃ = �R� − 1
2

l = �R� − 1
2

(18)

Because the design variable is discrete, the density at the structural boundary must change
considerably such that the gradient value of the locally averaged density ||∇ρ̃e||2

2 can be utilized to
distinguish the interior, exterior, and boundary of the structure. The following expressions are defined
for the structural internal and external indicators:

II (ρe) = ρeθ
(||∇ρ̃e||2

2

)
IE (ρe) = (1 − ρe) θ

(||∇ρ̃e||2
2

) (19)

where θ (·) is defined as

θ
(||∇ρ̃e||2

2

) = exp
(−d||∇ρ̃e||2

2

)
(20)

Here, the minimum size of the material and void phases can be controlled by setting d = R2. The
central difference scheme is used to calculate the locally averaged density ||∇ρ̃e||2

2. If ρe = 1 and
||∇ρ̃e||2

2 = 0, then element e belongs to the interior of a structure, and II (ρe) = 1. By contrast, if
ρe = 0 and ||∇ρ̃e||2

2 = 0, then element e belongs to the outside of a structure, and IE (ρe) = 1.

To satisfy the requirement of minimum length scale control, the local average density inside the
structure is set to 1, whereas the local average density outside the structure is set to 0. Hence, the
following geometrical detection function can be constructed:

Gg (ρ) =
N∑

e=1

[
II (ρe) (1 − ρ̃e) + IE (ρe) ρ̃e

]
=

N∑
e=1

[ρe − 2ρeρ̃e + ρ̃e] θ
(||∇ρ̃e||2

2

)
(21)

However, the boundary elements are typically present in the structure. Even if the structure
satisfies the size-control constraint, the value obtained using Eq. (21) cannot be completely equal to
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zero; furthermore, it is significantly smaller than the corresponding value of the structure that violates
the minimum length scale. Therefore, the geometrical constraint function is expressed as follows:

Gg (ρ) =
N∑

e=1

[
II (ρe) (1 − ρ̃e) + IE (ρe) ρ̃e

]
=

N∑
e=1

[ρe − 2ρeρ̃e + ρ̃e] θ
(||∇ρ̃e||2

2

) ≤ G∗ (22)

The right-end term G∗ can be determined using the constraint relaxation strategy, as follows:

Ĝg (ρ) =
N∑

e=1

[ρe − 2ρeρ̃e + ρ̃e] θ
(||∇ρ̃e||2

2

)
≤ Gg

(
ρk

) − ζGg
(
ρ0

)
(23)

where ρk is the design variable of the current iteration, and ρ0 is the initial design. ζ is an extremely
small number and is set to 0.01. ζGg

(
ρ0

)
represents a reduction in the expected value of the geometrical

constraint function in each iteration.

The nonlinear constraint in Eq. (23) can be linearized using the discrete variable sensitivity via
a difference operation. The resulting integer programming problem with multiple constraints can be
efficiently solved using the CRA.

The material layout and contribution terms are presented in Fig. 1. For R = 4 and 8, the material
contribution terms in Eq. (21) are shown in Figs. 1a and 1b, respectively. As shown in the figures,
slender rods, pointed hinges, small holes, and sharp corners that do not satisfy the requirement of the
minimum size are identified. If the value of the geometric constraint function in Eq. (21) is reduced,
then the topological details of the structure that do not satisfy minimum size control can be successfully
eliminated.

Figure 1: Material layout and material contribution term

4.2 Optimization Formulation of Minimum Length Scale Control
A relaxed linear constraint is applied to the minimum length scale control using the discrete

variable sensitivity of the geometrical constraint function. Therefore, the SAIP subproblem of the
topology design for harmonic excitation structures is formulated as
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Find : ρ

Min :
N∑

e=1

beρe

S.t. :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
N

N∑
e=1

veρe ≤ V

G
g
(ρ) = Gg

(
ρk

) + ∑N

i=1

δGg

δρe

(
ρe − ρk

e

)
≤ Gg

(
ρk

) − ζGg
(
ρ0

)
ρe ∈ {0, 1} , e = 1, 2, . . . , N

(24)

The CRA is employed to solve the optimization problem expressed in Eq. (24) until the variations
of the adjacent objective function and constraint function are less than the specified tolerance, thus
resulting in design results that fulfill the minimum length scale requirement. Accordingly, the flowchart
of harmonic excitation topology optimization with minimum length scale control based on the discrete
variable method is shown in Fig. 2.

Initialization

Convergence criterion 1

Calculate objective function with Eq.(5) 
and sensitivity with Eq.(12) to construct 

the integer subproblem (8)

Use CRA to solve subproblem (8) to 
update the discrete design variables

Output design without minimum length 
scale control

No

Yes

Calculate objective function with Eq.(5) 
and  sensitivity with Eq.(12)

Use CRA to solve subproblem (24) to 
update the discrete design variables

Convergence criterion 2

No

Yes

Calculate geometrical constraint function
with Eq.(22) and sensitivity to construct 

the integer subproblem (24)

Output design with minimum length scale 
control and obtain  the post-smoothing design

Figure 2: The procedure flowchart

5 Symmetry of Optimal Design under Harmonic Excitation

The optimal solution of the static problem must be symmetric when the load and support
are symmetric. For frame topology optimization with the constraint of fundamental frequency, the
optimal solution can be asymmetric, even when the geometry, material distribution, and structure
are symmetric [48]. Guo et al. [49] employed group theory to investigate the symmetry problem
of structural optimization, including static compliance optimization and fundamental frequency
optimization. However, the symmetry results for harmonic excitation topology optimization were not
presented, and the specific reason for the asymmetric solution was not divulged. In this section, we
prove that the optimal solution of the harmonic excitation problem may be asymmetrical even when
the load and support are symmetric. In this regard, the three-bar truss problem, as illustrated in Fig. 3,
is investigated.
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Figure 3: The three-bar truss structure

The design variables are the cross-sectional areas of the members, namely A1 and A2. The members
are assumed to contribute only to the stiffness and not the mass, and a concentrated mass exists
at the degree-of-freedom position with a magnitude of 1, and the Young’s modulus is unity. The
corresponding stiffness and mass matrices are expressed as follows:

K (A1, A2) =
[

A1 + A2 + 1 A2 − A1

A2 − A1 A1 + A2

]
M (A1, A2) =

[
1 0
0 1

] (25)

This model was utilized to investigate the symmetry problem of fundamental frequency opti-
mization in [50]. In this study, the model is employed to discuss the symmetry problem of structural
topology optimization under harmonic excitation. The external harmonic vibration load is set as
follows:

F =
[

F1

F2

]
=

[
0
1

]
(26)

Assuming that damping is not considered tentatively, the optimization formulation for the
minimum dynamic compliance with a specified amount of material can be written as

Min : Cd (A1, A2, U) = (
FTU

) (
FTU

)
S.t. :

⎧⎪⎪⎨⎪⎪⎩
[

A1 + A2 + 1 − ω2 A2 − A1

A2 − A1 A1 + A2 − ω2

][
U1

U2

]
=

[
0
1

]
A1 + A2 = 1, A1 and A2 ∈ [0, 1]

(27)

The variable is specified as a continuous variable. Owing to the absence of damping, the objective
function is expressed as

Cd (A1, A2, U) = U2 · U2 (28)

Based on Eq. (27), it can be expressed as[
A1 + A2 + 1 − ω2 A2 − A1

A2 − A1 A1 + A2 − ω2

] [
U1

U2

]
=

[
0
1

]
⇒

[
U1

U2

]
=

[
A1 + A2 + 1 − ω2 A2 − A1

A2 − A1 A1 + A2 − ω2

]−1 [
0
1

]
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⇒
[

U1

U2

]
= 1

(A1 + A2 + 1 − ω2) (A1 + A2 − ω2) − (A1 − A2)
2

[
A1 − A2

A1 + A2 + 1 − ω2

]
(29)

The dynamic compliance can be written as

Cd (A1, A2, U) = U2 · U2

=
(

A1 + A2 + 1 − ω2

(A1 + A2 + 1 − ω2) (A1 + A2 − ω2) − (A1 − A2)
2

)2

(30)

Subsequently, it can be transformed into the following explicit quasi-unconstrained optimization
problem:

Min : Cd (A2) =
(

2 − ω2

(2 − ω2) (1 − ω2) − (2A2 − 1)
2

)2

S.t. : A1, A2 ∈ [0, 1]

(31)

The convexity of the explicit optimization problem under various external load frequencies is
analyzed herein. To facilitate the derivation, we set a = ω2. The first and second derivatives of the
dynamic compliance are expressed as follows:

dCd

dA2

= −2 (8A2 − 4) (a − 2)
2[

(2A2 − 1)
2 − (a − 1) (a − 2)

]3

d2Cd

d (A2)
2 = 6 (8A2 − 4)

2
(a − 2)

2[
(2A2 − 1)

2 − (a − 1) (a − 2)
]4 − 16 (a − 2)

2[
(2A2 − 1)

2 − (a − 1) (a − 2)
]3

(32)

Next, we explain that if the second derivative of the dynamic compliance is positive under the
condition a = ω2, then the original optimization problem is convex and a symmetric optimal solution
exists [50]. Otherwise, the optimal solution may be asymmetrical. Based on the convexity requirement,
the following nonlinear inequality equation is solved:

Find a = ω2, ∀A2 ∈ [0, 1] ,
d2Cd

d (A2)
2 ≥ 0 (33)

Eq. (33) can be described based on the following two conditions:

Condition I : ∀A2 ∈ [0, 1] ,[
(2A2 − 1)

2 − (a − 1) (a − 2)
] �= 0

(34a)

Condition II : ∀A2 ∈ [0, 1] ,[
6 (8A2 − 4)

2
] ≥ [

16 (2A2 − 1)
2 − 16 (a − 1) (a − 2)

] (34b)

According to Condition I, ∀A2 ∈ [0, 1] , a2 − 3a + 2 �= (2A2 − 1)
2. Thus, the range of (2A2 − 1)

2 is
[0, 1]. Subsequently, the following can be obtained:

a = ω2 <
3 − √

5
2

or a = ω2 >
3 + √

5
2

(35)

According to Condition II, ∀A2 ∈ [0, 1] , −a2 + 3a ≤ 20A2
2 − 20A2 + 7, namely ∀A2 ∈ [0, 1] , −a2 +

3a ≤ minA2∈[0,1]

[
20A2

2 − 20A2 + 7
]
. Therefore, the minimum value is obtained when A2 = 0.5, and
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Condition II can be further derived as

−a2 + 3a ≤ 2 ⇒ (a − 1) (a − 2) ≥ 0
⇒ ω2 ≤ 1 or ω2 ≥ 2 (36)

Based on Eqs. (35) and (36), the following conclusions can be inferred:

(1) When ω2 <
3 − √

5
2

, the present harmonic vibration optimization problem is convex, and the

symmetric design (A1, A2) = (0.5, 0.5) is a locally and globally optimal solution.

(2) When
3 − √

5
2

≤ ω2 < 1, the optimization problem is not convex, and the symmetric design

(A1, A2) = (0.5, 0.5) is a locally optimal solution (the first-order stability condition and second-
order positive definite conditions are satisfied).

(3) When 1 ≤ ω2 < 2, the optimization problem is not convex. Furthermore, the symmetric design
(A1, A2) = (0.5, 0.5) is not a locally optimal solution, and the maximum value of the dynamic
compliance may be achieved (the first-order stability condition is satisfied, whereas the second-
order positive definite condition is not satisfied).

(4) When 2 < ω2 <
3 + √

5
2

, the optimization problem is not convex. However, the symmetric

design (A1, A2) = (0.5, 0.5) is a locally optimal solution (the first-order stability condition and
second-order positive definite conditions are satisfied).

(5) When ω2 ≥ 3 + √
5

2
, the present harmonic vibration optimization problem is convex, and the

symmetric design (A1, A2) = (0.5, 0.5) is a locally and globally optimal solution.

To further illustrate the conclusions above, the curves of dynamic compliance change with the
design variable A2 under different external load frequencies are depicted.

(a) The corresponding relationship curve for an external load frequency ω2 of 0.3 is shown in
Fig. 4. Based on the curve, the optimization problem is a convex optimization problem, and
the symmetric solution is the globally optimal solution.

Figure 4: Relationship curve of ω2 = 0.3
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(b) When the external load frequency ω2 is 0.5, the corresponding relationship curve is as depicted
in Fig. 5. Because of the nonconvex nature of the optimization problem, two resonance peaks
emerged when the design variables are 0.07 and 0.93. The symmetric solution is the locally
optimal solution, and it remains the globally optimal solution in terms of dynamic compliance.

(c) When the external load frequency ω2 is 1.1, the corresponding relationship curve is as shown
in Fig. 6. In this case, the symmetric design is not a locally optimal solution but achieves the
maximum dynamic compliance. In this case, the globally optimal solution is (A1, A2) = (1, 0)
or (0, 1), which is an asymmetric design.

Figure 5: Relationship curve of ω2 = 0.5

Figure 6: Relationship curve of ω2 = 1.1

(d) When the external load frequency ω2 is 2.1, the corresponding relationship curve is as shown
in Fig. 7. In this case, two resonance peaks emerged. The optimization problem is nonconvex,
and the symmetric solution is a locally optimal solution.
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Figure 7: Relationship curve of ω2 = 2.1

(e) When the external load frequency ω2 is equals to 3, the corresponding relationship curve is as
shown in Fig. 8. In this case, the optimization problem is convex, and the symmetric solution
is a globally optimal solution.

Figure 8: Relationship curve of ω2 = 3

In conclusion, the optimal solution of structural topology optimization under harmonic excitation
may be asymmetric even when the load and support are symmetric. When the excitation frequency
exceeds a certain value, the symmetric design may achieve the maximum dynamic compliance, which
implies an inferior design. Therefore, unlike the static optimization problem, one-half of the design
area cannot be selected for calculation based on the load and support symmetry in harmonic excitation
topology optimization, which will be further discussed in the next section.

6 Numerical Examples

In this section, several numerical examples are presented to demonstrate the effectiveness of the
discrete variable topology design under harmonic excitation and the geometrical constraint method.
The load is F = 100eiωtN. The Young’s modulus (E), Poisson’s ratio (v), and mass density of the solid
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material are 2.1 × 105 MPa, 0.3, and 7800 kg/m3, respectively. The proportional damping coefficients
are set as α = 5.24 × 10−1 and β = 1.63 × 10−7. The limit of the structural volume is V = 0.5. A
sensitivity filtering technique is employed to suppress checkerboard instability [42]. The convergence
criterion of the discrete variable design is that the relative change of dynamic compliance is less than
5 × 10−3. Additionally, c2 and N step are the objective function value and total iteration number of the
optimized design, respectively. G represents the value of the geometric constraint function.

6.1 MBB Beam
First, the topological design of the MBB beam structure, as shown in Fig. 9, is considered. The first

resonant frequency is 1556 Hz, and the excitation frequencies are specified as 50, 500, and 1450 Hz.
The structure is discretized using 240 × 60 bilinear finite elements with four nodes. The filtering
radius is set as rmin = 2. For comparison, density-based SIMP designs are presented. Notably, many
gray regions and fuzzy boundaries appear in SIMP-based designs when the objective function value
converges. Therefore, a constant iteration number of 300 is used for the SIMP-based designs. For
an unbiased comparison, the initial designs for both the discrete variable and SIMP methods are
based on full materials. The typically used initial designs in the SIMP method are the targeted volume
fractions. However, the allowable excitation frequency must be decreased considerably because the first
resonance frequency of the initial design is relatively low. Additionally, the initial design of the SIMP
method based on a full material may incur additional numerical costs.

Figure 9: The MBB beam structure

The discrete variable and SIMP-based designs based on ω = 50 Hz are shown in Fig. 10. Evidently,
a 0–1 topology design is achieved when the discrete variable method is used, and the iterative number
(N step) is 90 when the convergence criterion is used. The statistical results for the non-integer variables
are shown in Table 1, where NNIV denotes the number of non-integer variables, and “rat” denotes the
ratio of the number of non-integer variables to the total number of design variables. The total number
of design variables is 14400. Additionally, non-integer variables are few; thus, the rounding operation
is employed to achieve an integer solution. This simple post-processing method does not significantly
affect the topology design.

Figure 10: Topology design of the MBB beam, ω = 50 Hz
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Table 1: Statistical results for the non-integer variables

Volume fraction 0.01 ≤ ρe ≤ 0.99 ρe ≥ 1.01 ρe ≤ −0.01

0.80 rat = 6.2500e−04 rat = 1.3889e−04 rat = 0
NNIV = 9 NNIV = 2 NNIV = 0

0.50 rat = 0 rat = 3.4722e−04 rat = 3.4722e−04
NNIV = 0 NNIV = 5 NNIV = 5

By contrast, gray regions and fuzzy boundaries appear in the SIMP-based design, even though
the iterative number is set to 300. The discrete variable design can avoid spurious vibration modes
naturally; however, it must be deliberately addressed for SIMP-based designs, as presented in [40]. In
addition, the discrete variable design shown in Fig. 10a is asymmetric, whereas the SIMP-based design
presented in Fig. 10b is symmetric. The optimal topology designs of the two methods (ω = 500 Hz) are
shown in Fig. 11. When the excitation frequency is increased, the asymmetry of the discrete variable
design is more evident, and the SIMP-based design becomes asymmetrical. Based on Figs. 10 and 11,
the discrete variable designs are improved by approximately 23% as compared with the SIMP-based
designs.

Figure 11: Topology design of the MBB beam, ω = 500 Hz

For the SIMP-based design, the measurement of the 0–1 level is expressed as [57]

GR =
∑Nm

i=1ρi

Nm

, ρi > ρmin (37)

where ρmin is set to 0.005, and Nm is the number of elemental densities exceeding ρmin. When GR = 1,
the structure exhibits an all-black design, whereas when GR = 0, it exhibits an all-white design.

The optimal designs of the discrete variable method based on ω = 1450 Hz are shown in Fig. 12.
The objective value is 12.29, and the design solution is asymmetrical. The optimal topology design
obtained using the symmetric boundary condition is shown in Fig. 13, and the objective value is
13.86. By considering the structural symmetry, only one-half of the structure is to be calculated for
topology optimization. It is evident that the objective value of the design result shown in Fig. 12 is
better than that presented in Fig. 13. The SIMP design based on ω = 1450 Hz is shown in Fig. 14,
which is significantly different from the optimized configuration of the SAIP method shown in Fig. 12.
The frequency-response curves are shown in Fig. 15. As shown, the first resonant frequencies of the
optimized results are improved, and the asymmetrical design performs better than the symmetric
design by 6%. Notably, if the initial SIMP design features intermediate densities, then structural
design optimization based on ω = 1450 Hz cannot be implemented. However, the initial SIMP design
of the full material will increase the number of computational iterations, as shown by the grayscale
index in Fig. 16; this implies that more iterations are required in the SIMP method to penalize the
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intermediate densities and achieve the 0–1 design after a fuzzy topology configuration is obtained.
Based on Figs. 15 and 16, when a relatively high excitation frequency is considered in the present
discrete variable optimization, the design iteration is stable within 100 steps, and a faster convergence
can be achieved. Furthermore, the first resonance frequency of the optimization result is improved
significantly; thus, the discrete variable design can avoid resonance over a wider range of excitation
frequencies. Meanwhile, the localized vibration modes can be avoided naturally. Therefore, the present
discrete variable method can efficiently achieve a 0–1 optimum design with an improved resonance
frequency over a wide range of excitation frequencies.

Figure 12: Discrete variable design with ω = 1450 Hz, Nstep = 103, c2 = 12.29

Figure 13: Discrete variable design utilizing the symmetric boundary condition, Nstep = 97, c2 = 13.86,
ω = 1450 Hz

Figure 14: SIMP design with ω = 1450 Hz, Nstep = 300, c2 = 18.47

Figure 15: Frequency response curves
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Figure 16: Iterative curves for the SAIP and the SIMP method

6.2 Clamped–Clamped Beam
A clamped–clamped beam, as shown in Fig. 17, is considered in this study. Its excitation frequency

ω and filtering radius rmin are 50 Hz and 2, respectively. Furthermore, it is discretized by using 240 × 40
bilinear finite elements with four nodes.

Figure 17: A clamped-clamped beam structure

In the optimal topology design of the clamped–clamped beam, as shown in Fig. 18, the penalty
coefficient is set as p = 3, and the objective value is 2.74. The topological design based on the discrete
variable method by setting the penalty coefficient to p = 1 is shown in Fig. 19. When the penalty
coefficient is set to 1, the discrete variable method can still achieve a black-and-white design with
distinct topology. As shown in Fig. 20, the discrete variable designs of the intermediate volume fraction
are also available designs, i.e., all the topology designs from the initial design to the predefined volume
ratio (Pareto frontier) can be achieved in one optimization solution. When the excitation frequency is
relatively high (approximately the first resonance frequency of the initial design) and the volume ratio
is equal to 0.7, more materials are concentrated at the fixed supports, which increase the stiffness
and weaken the inertia effect, as shown in Fig. 21, thus reflecting the dynamic effect of topology
optimization while considering harmonic excitation.

Figure 18: The discrete variable design of the clamped-clamped beam, Nstep = 93, p = 3, c2 = 2.74
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Figure 19: The discrete variable design of the clamped-clamped beam, Nstep = 93, p = 1, c2 = 2.82

Figure 20: Pareto frontier, where the average number of finite element analysis for each Pareto frontier
point is 93/35

Figure 21: The discrete variable design of the clamped-clamped beam with a relatively high excitation
frequency

6.3 Cantilever Beam
In this subsection, the topological design of the cantilever beam structure, as shown in Fig. 22, is

discussed. Its excitation frequency is ω = 50 Hz, and 120 × 60 bilinear finite elements with four nodes
are adopted.

Figure 22: A cantilever beam structure
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The optimal topology designs of the present discrete variable method are shown in Fig. 23, where
the sensitivity filtering radii are set as 2, 3, 4 and 5. As the filtering radius increases, finer structures are
gradually filtered out, and the objective value increases. The filtering radius size can affect the optimal
design configuration; additionally, it can be used to indirectly control the feature size to avoid mesh
dependence. As shown in Fig. 23a, the optimization result contains thin bars, small holes, and sharp
corners when the filter radius is small, whereas the optimization result still contains sharp corners when
the filter radius is relatively large, as shown in Fig. 23d. Thus, a geometrical constraint for size control
is employed, where the sensitivity filtering radius and specified radius R are set to 2 and 6, respectively.
The optimal design is shown in the third column of the first row of Table 2; it can eliminate thin bars,
small holes, and sharp corners, thus improving the manufacturability of the structural design.

Figure 23: The discrete variable designs of the cantilever beam

Subsequently, two different finite element meshes (120 × 60 and 180 × 90) are considered. The
corresponding filter radii are 2 and 3, and the radii R of the size control are set to 6 and 9, respectively.
The topology design results are presented in Table 2. For the two mesh refinements, the ratio of
the filter radius rmin to the number of meshes is the same, namely 2/120 = 3/180. The ratio of the
specified control radius R to the number of meshes is the same as well, i.e., 6/120 = 9/180. This implies
that the mesh-dependent designs are further optimized into mesh-independent designs that fulfill the
requirement of the minimum length scale. The post-smoothing design is shown in Table 2, which is able
to get the nodal density based on the elemental density, and the level set function is obtained via linear
interpolation within the element based on the nodal density. The threshold of the level set is determined
via dichotomy to ensure that the volume of the level set function (greater than zero) is equal to the
volume constraint. Because discrete variable designs feature a 0–1 topology configuration and clear
boundaries, post-smoothing will not significantly affect the objective function. Furthermore, the loss
of the objective value for the smooth design is less significant when additional size control is applied.
Thus, the smooth designs in Table 2 that satisfy the minimum size requirements are more convenient
for the manufacturing. For example, the design can be manufactured via a machining technique where
the minimum length scale is strictly restricted by the size of the machining drill [40].
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Table 2: Topology designs achieved by two different finite element meshes

Mesh Initial topology design Topology design with the minimum
length scale control

(120 × 60) c2 = 10.9687, G = 649.9486, rmin = 2 c2 = 12.0101, G = 312.9967, R = 2

c2 = 11.4234 c2 = 12.2952

(180 × 90) c2 = 11.3294, G = 1278.4, rmin = 3 c2 = 12.2962, G = 730.5809, R = 9

c2 = 11.5670 c2 = 12.4638

7 Conclusions

In this study, the discrete variable design method is employed to perform topology design
optimization under harmonic excitation. To satisfy the size control constraints in the manufactur-
ing process, minimum length scale control is transformed into geometrical constraints and solved
efficiently using the optimization framework presented herein. Subsequently, the topological design
model and sensitivity formulation are derived. Compared with the solution of the classical statics
problem, the optimal solution of the harmonic excitation structure is not necessarily symmetric
when the load and support are symmetric. Thus, one-half of the design domain cannot be selected
based on the load and support symmetry. The discrete variable method can efficiently achieve a 0–1
topology design with an improved resonance frequency over a wide range of excitation frequencies.
Using the geometrical constraint for the minimum length scale control, the mesh dependence of the
topology design optimization is effectively addressed, and thin bars, small holes, and sharp corners
are eliminated, which improves the manufacturability of the structural design.

The geometrical constraint for the minimum length scale control only requires a calculation of
the average density and average density gradient within a specified size range to be applied to the
complex structure. For complex meshes, Helmholtz filtering can be utilized to efficiently calculate
the local average density by solving partial differential equations, and the technique proposed by
Crispo et al. [58] can be used to calculate spatial gradients. Studies will be performed in the future to
identify a new method to address the minimum length scale control of engineering structure designs
with complex meshes. Furthermore, the sampling points in the frequency range yield numerous finite
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element equations of state with different coefficients, which incur high computational costs. This
issue shall be addressed in future studies. The results of this study can provide a basis for structural
optimization under harmonic excitation in the frequency range, since the potential of the present
algorithm for solving dynamic optimization problems is confirmed.
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