
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.024172

ARTICLE

An Improved Farmland Fertility Algorithm with Hyper-Heuristic Approach
for Solving Travelling Salesman Problem

Farhad Soleimanian Gharehchopogh1,*, Benyamin Abdollahzadeh1 and Bahman Arasteh2

1Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
2Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul, Turkey

*Corresponding Author: Farhad Soleimanian Gharehchopogh. Email: bonab.farhad@gmail.com

Received: 25 May 2022 Accepted: 16 August 2022

ABSTRACT

Travelling Salesman Problem (TSP) is a discrete hybrid optimization problem considered NP-hard. TSP aims to
discover the shortest Hamilton route that visits each city precisely once and then returns to the starting point,
making it the shortest route feasible. This paper employed a Farmland Fertility Algorithm (FFA) inspired by
agricultural land fertility and a hyper-heuristic technique based on the Modified Choice Function (MCF). The
neighborhood search operator can use this strategy to automatically select the best heuristic method for making the
best decision. Lin-Kernighan (LK) local search has been incorporated to increase the efficiency and performance of
this suggested approach. 71 TSPLIB datasets have been compared with different algorithms to prove the proposed
algorithm’s performance and efficiency. Simulation results indicated that the proposed algorithm outperforms
comparable methods of average mean computation time, average percentage deviation (PDav), and tour length.

KEYWORDS
Travelling salesman problem; optimization; farmland fertility optimization algorithm; Lin-Kernighan

1 Introduction

The TSP is one of the NP-hard problems and has been the subject of numerous investigations.
Despite this, none of them has been able to completely address the problem, which is a discrete hybrid
optimization problem. Its purpose is to determine the shortest Hamilton route that visits each city
precisely once before returning to the starting location, making the short route feasible. Even though
this problem has a basic mathematical model and is straightforward to understand, it is challenging to
solve. Therefore, it will require more computational time and resources. We cannot solve this problem
conclusively because it is NP-hard, and the solutions offered are relative and comparative. Thus, we
wish to propose a new method that is more efficient than prior ones. Consider a TSP case with n cities;
we can model TSP using the following formula. Assume a distance matrix D = (di, j)n ∗ n is used to
hold distances between all pairs of cities, with each entry di, j representing the distance between city
i and city j. To define a solution, we can utilize x, a permutation of cities, which means the visiting

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.024172
https://www.techscience.com/doi/10.32604/cmes.2023.024172
mailto:bonab.farhad@gmail.com

1982 CMES, 2023, vol.135, no.3

sequence of cities. TSP’s purpose is to find a solution x (as Eq. (1)) that is as small as possible.

f (x) =
∑n−1

i=1
dxixi+1

+ dxi ,x1
(1)

The primary goal of the TSP problem is to identify the shortest Hamiltonian path on a weighted
graph [1,2]. Because the computing time for solving large-scale problems is relatively high, various
approaches have been given to solve the TSP problem, which is exact and suitable for small and medium
optimization tasks. Cutting planes [3], branch and price [4], branch and bound [5], branch and cut [6],
and Lagrangian dual [7] are only a few examples of correct approaches. They must discover appropriate
(but not necessarily optimal) solutions to these problems in general, which has led to the invention
of numerous approximation methods, such as metaheuristic algorithms [8,9]. Multiple metaheuristic
algorithms provide advantages such as simplicity and versatility [10,11]. Researchers in [12] proposed
many techniques, including hybridization of Simulated Annealing (SA) with Symbiotic Organisms
Search (SOS) optimization algorithm to solve the TSP.

The goal is to test this hybrid approach’s convergence and scalability in large and small tasks [13].
For all TSPs in [14], the PSO method was paired with quantum-inspired behavior. TSPLIB instances
have been analyzed in three groups of scales using LK for local search in this technique (small, medium,
and large scale). A hybrid model, which combines an Ant Colony Optimization (ACO), remove-
sharp, local-opt, and genetic algorithm, was proposed to solve the TSP problem [15]. Its purpose
is to optimize the search space and present an efficient solution to complex issues by accelerating
convergence and positive feedback.

Heuristic crossover and an Expanding Neighbourhood Search (ENS) approach apply honey bees’
mating optimization to solve TSP [16]. A heuristic crossover extracts standard and unique traits
from parents and uses ENS to combine numerous local searches. Furthermore, this strategy has been
utilized to solve TSP using a master-slave system with several colonies [17]. This approach has been
integrated with 3-Opt to boost performance in a distributed computing environment where these
colonies communicate regularly. Each colony runs this algorithm independently, and the results are
shared with the other territories. This approach has been tested in 21 different scenarios. This algorithm
has also been merged with LK local search. It received a score of 64 TSPLIB. A hyper-heuristic is a
method for selecting or developing an automated set of heuristics [18].

Selection hyper-heuristics and generation hyper-heuristics are the two types of hyper-heuristics
[19–25]. It is categorized into two kinds: perturbative and constructive. The constructive hyper-
heuristic eventually generates a complete solution based on the nature of heuristics [26,27]. The
perturbative hyper-heuristic improves the resolution by continually applying disruptive procedures.
Low-level heuristics (LLHs) are developed or selected by hyper-heuristics. The evaluation function(s)
and issue representation are two general layers of an LLH. To manage LLH selection to produce new
solutions and make judgments in adopting new solutions, a collection of LLHs and the HLH are
used [28]. The diversity component chooses the LLHs. As a result, it’s critical to balance diversity and
intensity [29]. We should employ an LLH that performs well at one level of repetition to enhance the
answer in future phases. Also, even if an LLH performs poorly at one step of repetition, we should not
completely abandon its usage.

In this paper, we have improved the FFA [30] to use it to solve the TSP problem. It measures the
quality of every part of their farmland at their visit and improves soil quality by using fertilizers and
organic matter. Lower-quality parts of the land receive materials and the changes in this part of the
farmland are more significant than in other regions. A memory alongside each segment has the best
possible solution called local memory. Moreover, the memory with the best quality and resolution in all

CMES, 2023, vol.135, no.3 1983

sections is global. Finally, they combine each section’s soils with the soil and solution of global memory
& local memory to obtain high-quality soil and solution. This paper has presented and improved this
algorithm based on the previous paragraphs’ methods, and then we have compared the simulation
results with this method and other procedures. The findings reveal that our suggested technique is
superior to other methods, and LLH selection is based on the MCF selection function and merged
with the FFA. In particular, MCF has been used in soil improvement for the other two areas. MCF
has been used to control its weights in intensification and diversification during the search process’s
various steps. Moreover, the proposed algorithm has been integrated with LK local search to improve
performance [31]. The proposed algorithm was tested on the datasets available in TSPLIB [32].

The following are the paper’s most important advancements and contributions:

➢ The FFA algorithm has been presented for solving hybrid discrete optimization problems, and
to interrupt this algorithm, we used the ten neighborhood search operators.

➢ To increase the FFA algorithm’s performance, and since the FFA algorithm was designed to
solve an ongoing issue, the section of soil composition in permutation problems may be time-
consuming and difficult. As a result, we have selected the best answer in each part and then
done operations to enhance the solution to concentrate more on the chosen solutions.

➢ A hyper-heuristic approach based on MCF was applied intelligently and automatically,
choosing neighborhood search operators.

➢ A local search strategy known as LK was applied to boost the performance of the proposed
algorithm.

➢ Three improved versions of the FFA algorithm (MCF-FFA and (4 LLH) MCF-FFA and
Random-FFA) have been presented and evaluated. Finally, MCF-FFA outperformed the other
two approaches. Therefore, it was named MCF-FFA.

➢ With 71 cases and three criteria, the TSP evaluated the proposed algorithm. The new approach
was compared to 11 previously reported models, indicating acceptable.

➢ The Wilcoxon signed-rank test compared the proposed algorithm to other models.

We ordered the framework of this paper as follows: we reviewed the related works in Section 2,
explained the basic concepts in Section 3, and outlined the proposed algorithm in Section 4. In
Section 5, proposed algorithms were compared and then evaluated. Finally, we concluded in Section 6.

2 Related Works

Over the years, several researchers have developed several approaches and algorithms for solving
the TSP issue. It is difficult to propose a specific algorithm for the TSP problem since it is an NP-Hard
problem. As a result, academics have constantly attempted to find ways to make prior approaches more
efficient. We have mentioned some earlier works proposed to solve the TSP problem here. Finally, we
have presented and compared the algorithm with some of these methods and algorithms.

The ACO algorithm and the Max-Min approach [33] have been integrated. It is paired with the
Max-Min approach, which uses four vertices and three lines of inequality to find the best Hamiltonian
circuit. In [34], they utilize a wolf colony search algorithm to solve the TSP problem that uses a siege
strategy to achieve the following goals: improvement of the mining ability, reduction of the siege range,
and acceleration of the convergence time. Also, the immune-inspired self-organizing neural network
has been used to solve the TSP problem [35]. By comparing it to other artificial neural network
algorithms, they concluded that this method demands a more significant time for convergence in

1984 CMES, 2023, vol.135, no.3

many cases. Still, the quality of the solutions improves dramatically. The Kernel function has added
a threshold value to update antibodies, and the winners’ stabilization mechanism has been used to
improve the method. A discrete firework algorithm has been presented to solve the TSP problem [36]
that uses two local Edge-exchange heuristic algorithms (namely: 2-Opt and 3-Opt) to perform the
essential explosion operation of the firework algorithm. And in [37], a discrete tree-seed algorithm has
been used to solve the TSP problem, which uses three swap, shift, and symmetry operators to generate
seeds.

Furthermore, the 2-Opt approach enhanced the solutions and tested many TSP problems. The
discrete ABC algorithm has been improved using a hyper-heuristic method called MCF [38]. MCF can
intelligently and automatically select each of the LLHs algorithms during the algorithm’s execution.
Generally, 10 LLHs have been used, such as RI, RRIS, RIS, RS, RRSS, RRS, RSS, Random Shuffle
Swap of Subsequence (RSSS), Random Shuffle Insertion of Subsequences (RSIS)), and Shuffle
Subsequence (SS). The proposed algorithm is also integrated with LK and evaluated with other models
using 64 TSP Instances, which this algorithm obtains good results.

In [39], a cuckoo search algorithm with a random-key encoding method solved the TSP problem,
transferring the variables from continuous to discrete space. Then, this algorithm was integrated with
the 2-Opt move, and TSP Instances in the TSPLIB library were used to investigate this algorithm’s
performance. A new method has also been presented for solving the TSP problem using a bacterial
foraging optimization algorithm [40]. The critical step in the proposed work is the calculation of
chemotaxis, in which bacteria move around the prospect of looking for food to reach high-nutrient
areas.

The ABC algorithm for solving TSP has been updated and presented new ways. One of these
variants is the hybridization ABC (CABC) algorithm, a hybrid version of standard ABC. Another
model is the Quick CABC Algorithm, an enhanced version of the CABC Algorithm (QCABC) [41].
15 TSP benchmarks were used to compare the performance of these two versions of the ABC method.
Eight different factors were used to compare the performance of these two methods (GA variants).
Moreover, several analyses have been performed on setting the limit and CPU time parameters of the
QCABC and CABC algorithms.

In addition, a discrete comprehensive learning Particle Swarm Optimization (PSO) algorithm
with Metropolis acceptance criteria was introduced to address the TSP problem [42]. The Anglerfish
algorithm was proposed to solve the TSP problem in [43]. With the Randomized Incremental Con-
struction approach, this algorithm executes search operations randomly depending on the beginning
population. It facilitates a random sample search without the need for a time-consuming technique.

A Discrete SOS (DSOS) algorithm was introduced by employing excellent coefficients and a self-
escape strategy [44] for solving the TSP problem. It does not get stuck in local minima because of
the self-escape method. Shorter edges are chosen using the excellence coefficients to generate better
local pathways. Finally, the TSP problem has been solved using the approaches mentioned below.
Discrete Cuckoo Search [45], Discrete SOS [46], ACO [47], Efficient hybrid algorithm [48], parallel
ACO algorithm [49], Improved genetic algorithms [50], Hybrid Genetic Algorithm [51], Massively
Parallel Neural Network [52], Hybrid Discrete ABC with Threshold Acceptance Criterion [53], pre-
processing reduction method [54], Spider Monkey Optimization [55], etc.

CMES, 2023, vol.135, no.3 1985

3 Fundamental Research
3.1 Farmland Fertility Optimization Algorithm

FFA is a metaheuristic method based on agricultural fertility described in [30]. Farmers split their
farms into sections based on soil quality, enhancing the soil quality in each region by adding particular
materials. Due to their quality, these materials may have different types, and farmers add them to the
soil at each visit; this quality is stored in memory next to each section. As a result, the best material is
sent to the worst area of the farmland. In this approach, the best quality in each segment is termed local
memory, and the best soil quality in all portions is called global memory. In other words, local memory
saves the best solution in each segment, but global memory keeps the best solution across all search
areas. These memories are employed to enhance the solutions in the ensuing optimization process. As
a result, the component with the lowest quality is coupled with one of the global memory solutions.
All the solutions in the search space are integrated with the solutions from the other parts. Following
this step, each section’s answers are linked to one of the best global or local memory solutions. There
are six general steps in the algorithm. The following is the first step.

Step 1: Initializing parameters used in the algorithm

The total population is obtained using Eq. (2) in the FFA algorithm.

N = k ∗ n (2)

In Eq. (2), N is the total population in the problem space, and k represents the sections. Moreover,
the number of solutions in each section is described by n., and k must be an integer greater than zero.
Of course, k can be a number between 1 and N. However, the authors have stated [30] that if this value
is initialized equal to 1 or greater than 8, it decreases the algorithm’s performance. Therefore, this
number must be 2 ≤ k ≤ 8, and these results are obtained by trial and error. Eq. (3) is used to generate
the search space randomly.

xij = Li + rand (0, 1) × (
Uj − Lj

)
(3)

In Eq. (3), Lj is the lower bound and Uj is the upper bound of the variable x, and rand is by a
function generates random integers between 0 and 1, and j = [1, . . . , D] represents the dimensions of
x, and i equals the total population [1, . . . , N].

Step 2: Determination of soil quality in each part of the farm

After generating the initial population and evaluating each solution’s fitness, each section’s quality
is assessed using Eqs. (4) and (5).

Sectionss = x(aj), j = {1, 2, . . . , 4} , a = n ∗ (s − 1) : n ∗ s, s = {1, 2, . . . , k} (4)

In Eq. (4), x represents all solutions in the search space, s the number of parts, and j = [1, . . . , D]
the dimension of the variable x.

FitSectionss = Mean(all Fit(xji)in Section s), i = {1, 2, . . . , n} , s = {1, 2, . . . , k} (5)

In Eq. (5), for each section of farmland, Fit_Section display the worth and quality of the solutions.

Step 3: Updating the memory

Some of the best solutions in each section are stored in local memory. In all areas of global
memory, the optimal solution is stored. Eq. (6) provides the number of best local memories, whereas
Eq. (7) provides the best global memories.

1986 CMES, 2023, vol.135, no.3

Mlocal = round (t ∗ n) 0.1 < t < 1 (6)

MGlobal = round (t ∗ N) 0.1 < t < 1 (7)

Step 4: Alteration of the soil quality
The worst section is paired with one of the global memory solutions to produce the most

significant improvement at this step. It is expressed by Eqs. (8) and (9).

h = α ∗ rand (−1.1) (8)

Xnew = h ∗ (Xij − XMGlobal) + Xij (9)

where, α is a parameter between 0 and 1. h is a decimal number obtained by Eq. (8) and Xnew is the new
solution. XMGlobal is a random solution available in global memory, and Xij is the selected solution in
the worst section. After making changes to the explanations of the worst section, the other sections’
solutions are combined with the complete search space solutions using Eqs. (10) and (11).

h = β ∗ rand (0.1) (10)

Xnew = h ∗ (
Xij − Xuj

) + Xij (11)

where, β is a parameter between 0 and 1. Xuj is a random solution in the search space. Xij is a selective
solution among all sections, except for the worst section. h is a decimal and Xnew is a new solution.

Step 5: Integrating soil

All solutions are integrated with one of the best solutions in the local or global memory, as
illustrated by Eq. (12).

H =
{

Xnew = Xij + ω1 ∗ (
Xij − BestGlobal (b)

)
. Q > rand

Xnew = Xij + rand (0.1) ∗ (
Xij − BestLocal (b)

)
. else

(12)

In Eq. (12), the parameter Q determines which of the solutions should be combined with BestGlobal.
This parameter must be initialized between 0 and 1 before the start of the algorithm. The value of ω1

parameter must be an integer and must be set before the algorithm begins. This parameter’s value
rapidly lowers with each iteration of the method, as seen in Eq. (13).

ω1 = ω1 ∗ Rv . 0 < Rv < 1 (13)

Step 6: Termination conditions

The algorithm’s termination criteria are reviewed at the end of each step of the algorithm iteration.
The algorithm ends if the constraints are satisfied. Otherwise, the algorithm will keep working until
the termination constraints are satisfied.

3.2 Neighborhood Operators
These operators are applied to get the best results. These operators are also classified into two

categories: point-to-point and subsequence. One city is chosen to change in point-to-point operators,
but many cities are selected to vary in sequence operators. Point-to-point operators include RS and
RI; subsequence operators include RSS, RIS, RRS, RRIS, SS, RSIS, RSSS, and RRSS. The proposed
algorithm incorporates these ten operators as 10 LLHs composed of four primary operations-insert,
shuffle, swap, and reverse. RRS performs specifically a function to change the subsequence. RI and
RIS perform an insert operation. The swap and shuffle operations are performed by RS and RSS,
whereas SS. RRIS performs the shuffle operation; RRSS, RSIS, and RSSS are four of the ten LLHs

CMES, 2023, vol.135, no.3 1987

that are a hybridization of two operators. Note that RRS, RIS, RSS, SS, and the four LLHs with
combined operations consider a subsequence of a TSP solution in size range [2: dim], where dim
represents the TSP dimension. These operators have been listed in Table 1.

Table 1: Details of the ten integrated LLHs in the proposed algorithm

Operations LLHs Description

Reverse RRS Invert a subsequence chosen at random.

Insert RI Pick a city at random from a solution, delete it, and then re-insert it in a
solution’s unexpected place.

RIS Pick a subsequence at random from a solution, remove it, and re-insert it
at an arbitrary position in the solution.

Swap RS In a solution, swap the positions of two cities chosen at random.
RSS In a solution, swap the positions of two randomly selected subsequences.

Shuffle SS Reverse the order of a randomly picked subsequence.

Combined
operations

RRIS Invert a randomly chosen subsequence, remove it from the solution, and
then reintroduce it to the solution’s random location.

RRSS In a solution, swap the positions of two randomly selected subsequences.
Each subsequence has a 0.5 percent chance of being inverted.

RSIS Reorder a randomly chosen subsequence, delete the shuffled
subsequence from the solution, and then re-insert it in a random location
in the solution.

RSSS In a solution, swap the positions of two randomly selected subsequences.
The likelihood of each subsequence being shuffled is 0.5.

3.3 Modified Choice Function
A version of the choice function is MCF heuristic selection. Within the heuristic search process,

it promotes intensity above diversification. A choice-function-based hyper-heuristic with a score-
based method is provided in [56]. Each LLH’s rating model is evaluated based on the LLH’s prior
performance. Each LLH’s score is made up of three different criteria: f1, f2 & f3. In this model, the
criterion of first measurement is f1 and the recent performance of each LLH is calculated by Eq. (14).

f1

(
hj

) =
∑

n
αn−1

In

(
hj

)
Tn

(
hj

) (14)

In Eq. (14), α is a parameter between zero and one that prioritizes recent performance, hj is the
same LLHj, In

(
hj

)
shows the nth use of hj displays the value of the difference between the current and

new solutions. Tn

(
hj

)
expresses the amount of time spent by nth use of hj to propose a new solution.

f2

(
hk, hj

) =
∑

n
βn−1

In

(
hk, hj

)
Tn

(
hk, hj

) (15)

1988 CMES, 2023, vol.135, no.3

In Eq. (15), f2 shows the dependence between a successive pair of LLHs. In

(
hk, hj

)
shows the

value of the difference between the new solution using nth successive use of hk and hj and the current
solution. Tn

(
hk, hj

)
shows the amount of time spent by nth sequential use of hk and hj to propose a

new solution, β is a parameter between zero and one that prioritizes recent performance. Two criteria,
f1 and f2, increase the selection of LLHs with high performance are components of intensification in
the selection function. The third criterion, f3, records the time spent for the last implementation of a
particular LLH (Eq. (16)).

f3

(
hj

) = τ
(
hj

)
(16)

In Eq. (16), τ
(
hj

)
indicates the time spent for the last execution of hj (in seconds). Note that f3

performs its work as a component of diversification in the selection function. It prioritizes those LLHs
that have not been used for a long time. The score of each LLH is calculated using the sum of the
weights of three criteria (f1, f2 & f3), as in Eq. (17) is shown.

F
(
hj

) = αf1

(
hj

) + βf2

(
hk, hj

) + δf3

(
hj

)
(17)

In Eq. (17), the weight of the criteria is as follows (f1, f2 & f3) represented by the α, β, and δ

parameters. These parameters are constant values in the initial model. In [57], they have proposed an
improved version of the hyper-heuristic to increase performance. In this version, if an LLH makes
the solution better, the values of parameters β and α increase the new solution’s improvement rate
compared to the previous solution. However, if the selected LLH does not improve the solution,
the parameters α and β are reduced due to the difference between the new solution’s costs and the
previous solution. Therefore, it can earn many rewards. Moreover, improving solutions in subsequent
optimization phases may be reduced due to the convergence of one of the optimal solutions. As a
result, much fewer rewards will be gained. Improvements in the subsequent optimization steps are far
more essential than improvements in earlier ones. Therefore, the reward-penalty mechanism is not the
correct mechanism. In addition to these limitations, the LLH selection mechanism must be randomly
performed if solutions are not improved after several repetitions. Because the values of parameters α

and β are reduced due to the reward-penalty mechanism. Also, the criterion f3 that is, a diversification
component prevails over other criteria. Due to the limitations stated in [57] an improved version of the
selection function. In this selection function version, parameters α and β are combined into a single
parameter called μ. Finally, Eq. (18) computes each LLH’s score.

Ft

(
hj

) = μt[f1

(
hj

) + f2

(
hk, hj

)
] + δf3

(
hj

)
(18)

The intensification component is prioritized if an LLH improves the solution and the parameter
approaches its maximum static value around 1. The parameter δ is reduced to a minimum static value
close to zero at the exact moment. If LLH does not improve the solution, the μ parameter will be
penalized linearly and lower (0.01). This mechanism causes the parameter δ to grow with uniform
and low speed. The parameters μ and δ are calculated using Eqs. (19) and (20). Eq. (19) shows the
difference between its cost and the previous solution’s cost.

μt

(
hj

) =
{

0.99, d > 0
max

[
0.01, μt−1

(
hj

) − 0.01
]

, d ≤ 0
(19)

δt

(
hj

) = 1 − μt

(
hj

)
(20)

CMES, 2023, vol.135, no.3 1989

The proposed algorithm uses MCF to select the best automatic LLHs during optimization
implementation to increase the proposed algorithm’s performance and efficiency.

3.4 Local-Search-Based Strategies (LK Local Search)
Local search solves many hybrid optimization problems because it increases the ability to solve

them. Researchers have proposed various types of local search such as Opt-2, Opt-3, and local search
such as LK. Local search can find optimal solutions; therefore, local search capability is limited to
intensification. A method increases the probability of finding a global optimum that restarts the search
after exploiting a particular search area. This type of local search that uses a re-search mechanism is
called the Multi-start Local Search (MSLS) [58]. In MSLS, it is only possible to search for different
primary solutions. Finally, we can obtain a set of locally optimal solutions in a globally optimal
solution or find a solution close to the global optimum to collect locally optimal solutions. In [59,60],
Chained LK (CLK) heuristic has used the ILS mechanism to solve the TSP problem. It is followed
in CLK by a double-bridge motion to exchange the four arcs of the solution with the other four arcs,
and this operation is done repeatedly on the solution. According to the importance of the balance of
exploration and exploitation and the performance improvement in combining metaheuristic and local
search algorithms, the proposed MCF-FFA model has been integrated with LK local search. A local
search is carried out after each Neighborhood operator, performed on the solutions in bad and other
parts before applying the acceptance condition. Due to local search use in the proposed algorithm,
this model is very similar to the ILS and MSLS models. Based on the previous explanations, it has
many similarities to the ILS and MSLS models.

4 Proposed Algorithm

This paper has improved FFA and examined the results of the TSP problem. First, because the
FFA algorithm has been presented to solve the ongoing problem, and our case study is to find the
solution for discrete optimization problems such as TSP, this algorithm requires modifications and
adaptations.

In the proposed algorithm, considering that the problem space has changed from continuous
to discrete, the constant mechanisms of the FFA algorithm do not have the necessary efficiency in
searching in the discrete area. Therefore, neighborhood search operators have been used to modify
and search the created tours. Each neighbouring operator has a unique feature and applies different
changes in each tour. These behaviors make each operator perform better in various stages of the
search operation, and selecting the operator at the right time can result in an impressive performance.
According to our explanations, the Modified Choice Function (MCF) has been used for the intelligent
selection of neighborhood search operators. MCF is selected after using and applying changes from
neighborhood search operators, which applies rewards or penalties to each operator based on the
cost obtained. This approach is based on three general criteria. But this approach can only help
solve problems of medium dimensions. To solve problems with large sizes, after each selection of
neighborhood search, LK local search is called and performs search and optimization operations on
tour. The above procedure creates an ILS and MSLS model.

Some things need to be changed to adapt this algorithm because it is designed to solve ongoing
issues. The following cases can be described:

• We exchange Eq. (3) with a random permutation in the FFA algorithm. The solutions are
divided into the number of segments determined by the parameter K. Then, the cost of each

1990 CMES, 2023, vol.135, no.3

solution and each component is measured. Eventually, the section that costs more than other
parts is selected as the worst section.

• We replace Eqs. (8)–(11) with neighborhood search (i.e., LLHs) to improve solutions in
the process of soil improvement and search in a discrete optimization environment. These
LLHs are automatically and intelligently selected to solve the problem at every step of MCF’s
algorithm implementation. One of these LLHs has been listed in Table 1, and finally, they
improve the solutions. In the next step, any updated solution using MCF is improved using
local search, and finally, the selected LLH for improvement is updated using Eq. (18) related
to MCF. All these steps are performed on all solutions in the worst and others.

• The FFA algorithm’s soil composition section is replaced by another better method to solve the
TSP problem. In this section’s model, the best solutions in the worst part of the best solutions
in the other parts are that these parameters determine the number of parts of the search
space and are updated again according to the number of parameters K using MCF improved
by local search. The parameter Q value determines the best solution for the wrong parts in
each iteration, between 0 and 1. This parameter must be initialized before the optimization
operations. The best global solution is improved using this mechanism. The best global solution
is one of the best solutions in one of the sections. This section in the algorithm focuses more on
the selected solutions in the search space to improve the optimization operation. Our proposed
algorithm is described as pseudo-code in Algorithm 1 and the flowchart in Fig. 1.

Algorithm 1: Proposed algorithm
% FFA setting
Initialise: maxIteration, Pop size, number of section, llhx

%Generate initial solution: for each soil. (random permutation)
%% Main Loop
for It = 1 to maxIteration
% Second stage: determining soil quality in each part of farmland

for s = 1: number of section
Determining Soil Quality in Each of the Sections Based on Average Quality of Casting Soli in each

of the Sections
End for

% Third stage: update memories
to Update Global Memory and Local Memory Related to each of the Sections with Best and Bad
solutions
% Fourth stage: changing soil quality in each part of farmland

for s = 1 to number of section
if (s == index worst sections)%

for i = 1 to pop size
Select LLH Based On MCF
Update the position of soil in the worst section by applying a selectedLLH.
LK local search

(Continued)

CMES, 2023, vol.135, no.3 1991

Algorithm 1: (Continued)
evaluation of new solutions that, if they are better than other previous solutions, will be
replaced
updateChoiceFunction(selectedLLH)//Eq. (19)

End for
else % other sections
for i = 1 to pop size

Select LLH Based On MCF
Update the position of soil in other sections by applying a
selectedLLH.
LK local search
evaluation of new solutions that if they are better than others, previous solutions will be

replaced
updateChoiceFunction(selectedLLH)//Eq. (19)

End for
End if

end for% end Fourth stage
for i = 1 to number of section

if (Q > rand)
Select LLH Based On MCF
Choose one of the best solution in the other section and Update the position by applying a
selectedLLH.
LK local search
evaluation of new solutions that if they are better than others, previous solutions will be
replaced

updateChoiceFunction(selectedLLH)//Eq. (19)
else
Select LLH Based On MCF
Update the position of Best Soil in the Worst section by applying a selectedLLH.

LK local search
Evaluation of New Solutions that if They Are Better than Others Previous Solutions Will be
Replaced
updateChoiceFunction(selectedLLH)//Eq. (19)

End if
End for

End for % end Fifth stage

1992 CMES, 2023, vol.135, no.3

Start
Determining initial values of parameters of algorithm and

number of sections of agricultural land

Production of initial population based on number of
sections and amount of existing solution in each section

Determining soil quality in each sections based on average
quality of soil cost

Update global memory and local memory related to each
section

Select LLH based on MCF Select LLH based on MCF

Update position of soil in other
section by applying a selected LLH

Update position of soil in worst
section by applying a selected LLH

Local search Local search

Evaluation of new solution that if they are
better than others previous solutions will be

replaced

Update choice function(selected LLH)
eq18

Q � rand

Termination
criteria?

Finish

Worst sectionOther sections

Evaluation of new solution that if they are
better than others previous solutions will be

replaced

Update choice function(selected LLH)
eq18

Select LLH based on MCF Select LLH based on MCF

Update position of soil in other
section by applying a selected LLH

Update position of soil in worst
section by applying a selected LLH

Local search Local search

Evaluation of new solution that if they are
better than others previous solutions will be

replaced

Update choice function(selected LLH)
eq18

Evaluation of new solution that if they are
better than others previous solutions will be

replaced

Update choice function(selected LLH)
eq18

YesNo

YesNo

Figure 1: Flowchart of proposed algorithm

CMES, 2023, vol.135, no.3 1993

5 Result and Discussion

The experimental setting, comparison studies, and experimental results are presented in this
section.

5.1 Experimental Settings
A computer with an Intel Core i7-7700k processor 4.50 GHz (CPU) and 16 GB RAM has been

used to test the proposed algorithm. It is implemented using the C programming language, and the
Concorde [59] is used to implement the LK local search in the proposed algorithm. Seventy-one
instances from the TSPLIB [32] with dimensions of 100 to 85,900 cities were used to evaluate the
proposed algorithm’s performance. The number of instance names represents the number of cities in
an instance. For example, the number of cities equals 100 in the instance kroA100. Two criteria, such
as percentage deviation from optimal solution and computational time, were used to obtain the best
tour (measured in seconds) to evaluate the performance of the proposed algorithm.

Each of the TSP instances has been investigated for 30 iterations. It was placed the best tour per
implementation in the set X = {c1, c2, . . . , c30} and the computational time to obtain the best tour
was placed in another set called T = {t1, t2, . . . , t30}, where X is the set of best tours, and T is the
set of computational time to obtain the best tours, and finally, an average is obtained for these two
sets, which μT is used to represent the average of set T. Average represents the mean of the set X.
Finally, Eq. (21) is used to describe the percentage deviations of the average solution (PDav) (%). In
this equation, BKS is the optimal tour length.

PDav(%) = Average − BKS
BKS

× 100 (21)

5.2 Parameter Tuning
In the proposed algorithm, two main POP and K-Value parameters must be adjusted to obtain

optimal performance before starting optimization. POP is the population, and K-Value is the number
of segments. All the instances are grouped into four categories in terms of their dimensions: Instances
with dimensions [1: 500] in category X and instances with dimensions [501: 1000] in category Y, and
instances with dimensions [1001: 10000] in category Z and instances with dimensions larger than 10000
in category E. Then an instance is selected as representative of each class. Instances gr202, gr666,
rl5915, and rl11849 are chosen to represent the X, Y, Z, and E categories, respectively. Finally, we apply
settings related to representatives for all other instances about the best performance results. A decrease
in repeats occurs with the increasing population to make a fair comparison. For example, repetition
terminates testing the population (10 × 400). Moreover, the replay ends for testing the population size
(20 × 200). Table 2 shows the results of different settings for parameters.

Table 2: Influence of parameters such as POP and K-Value on the performance of the proposed
algorithm

K-Value POP PDav (%)

gr202 gr666 rl5915 rl11849

2 10 0.00 0.017 0.403 0.581
2 20 0.00 0.019 0.401 0.579

(Continued)

1994 CMES, 2023, vol.135, no.3

Table 2 (continued)

K-Value POP PDav (%)

gr202 gr666 rl5915 rl11849

2 30 0.00 0.021 0.412 0.587
2 40 0.00 0.033 0.418 0.593
3 10 0.00 0.016 0.396 0.576
3 20 0.00 0.021 0.418 0.578
3 30 0.00 0.026 0.429 0.588
3 40 0.00 0.034 0.428 0.595
4 10 0.00 0.031 0.437 0.587
4 20 0.00 0.043 0.442 0.602
4 30 0.00 0.047 0.451 0.600
4 40 0.00 0.061 0.465 0.613
5 10 0.00 0.029 0.440 0.599
5 20 0.00 0.041 0.453 0.614
5 30 0.00 0.068 0.466 0.627
5 40 0.00 0.081 0.478 0.646

The proposed algorithm in the instance gr202 achieved the optimum for all possible situations
in setting the parameters. However, the proposed algorithm’s best performance occurs with POP = 10
and K-Value = 3 in gr666, rl5915, and rl11849. Hence, POP values = ten and K = 3 are considered for
solving the other instances.

5.3 Experimental Results
To investigate the performance of LLHs and the effect of integrating LLHs with MCF in this

section, three modes of the proposed algorithm are presented below: Random selection of LLHs
and integration of the four main LLHs (SS, PRS, RIS, and SS) with MCF, and integration of
all LLHs with MCF have been compared to each other. Also, this comparison is performed to
evaluate MCF’s performance when integrated with the FFA. Termination condition (400 iterations)
is considered for all three modes (MCF-FFA, (LLH4) MCF-FFA and Random-FFA). In Table 3, to
evaluate the performance of thesethree algorithms, we show the average tour length, PDav, and average
computational time to obtain the best solution (μ_T).

Table 3: Comparison of the performance of MCF-FFA , MCF-FFA (LLH4), and Random-FFA based
on 71 TSP benchmark instances

Instance BKS MCF-FFA (LLH4) MCF-FFA Random-FFA

Average PDav (%) μT (s) Average PDav (%) μT (s) Average PDav (%) μT (s)

kroA100 21282 21282.0 0.00 0.0 21282.0 0.00 0.0 21282.0 0.00 0.0
kroB100 22141 22141.0 0.00 0.0 22141.0 0.00 0.0 22141.0 0.00 0.0

(Continued)

CMES, 2023, vol.135, no.3 1995

Table 3 (continued)

Instance BKS MCF-FFA (LLH4) MCF-FFA Random-FFA

Average PDav (%) μT (s) Average PDav (%) μT (s) Average PDav (%) μT (s)

eil101 629 629.0 0.00 0.0 629.0 0.00 0.0 629.0 0.00 0.0
lin105 14379 14379.0 0.00 0.0 14379.0 0.00 0.0 14379.0 0.00 0.0
pr107 44303 44303.0 0.00 0.0 44303.0 0.00 0.0 44303.0 0.00 0.0
gr120 6942 6942.0 0.00 0.1 6942.0 0.00 0.1 6942.0 0.00 0.1
pr124 59030 59030.0 0.00 0.1 59030.0 0.00 0.1 59030.0 0.00 0.1
bier127 118282 118282.0 0.00 0.1 118282.0 0.00 0.2 118282 0.00 0.1
ch130 6110 6110.0 0.00 0.0 6110.0 0.00 0.1 6110.0 0.00 0.0
pr136 96772 96772.0 0.00 0.2 96772.0 0.00 0.2 96772.0 0.00 0.2
gr137 69853 69853.0 0.00 0.1 69853.0 0.00 0.2 69853.0 0.00 0.2
pr144 58537 58537.0 0.00 2.1 58537.0 0.00 2.4 58537.0 0.00 1.9
ch150 6528 6528.0 0.00 0.0 6528.0 0.00 0.1 6528.0 0.00 0.2
kroA150 26524 26524.0 0.00 0.0 26524.0 0.00 0.1 26524.0 0.00 0.1
kroB150 26130 26130.0 0.00 0.1 26130.0 0.00 0.1 26130.0 0.00 0.1
pr152 73682 73682.0 0.00 2.2 73682.0 0.00 2.8 73682.0 0.00 2.0
u159 42080 42080.0 0.00 0.0 42080.0 0.00 0.1 42080.0 0.00 0.2
si175 21407 21407.0 0.00 0.4 21407.0 0.00 0.4 21407.0 0.00 0.3
brg180 1950 1950.0 0.00 0.1 1950.0 0.00 0.1 1950.0 0.00 0.1
rat195 2323 2323.0 0.00 0.3 2323.0 0.00 0.4 2323.0 0.00 0.3
d198 15780 15780.0 0.00 1.8 15780.0 0.00 1.6 15780.0 0.00 1.5
kroA200 29368 29368.0 0.00 0.1 29368.0 0.00 0.2 29368.0 0.00 0.1
kroB200 29437 29437.0 0.00 0.0 29437.0 0.00 0.2 29437.0 0.00 0.2
gr202 40160 40160.0 0.00 0.5 40160.0 0.00 1.2 40160.0 0.00 0.7
tsp225 3916 3916.0 0.00 0.0 3916.0 0.00 0.2 3916.0 0.00 0.1
ts225 126643 126643.0 0.00 0.0 126643.0 0.00 0.1 126643 0.00 0.1
pr226 80369 80369.0 0.00 1.7 80369.0 0.00 3.3 80369.0 0.00 2.6
gr229 134602 134602.0 0.00 0.7 134602.0 0.00 1.4 134602 0.00 1.2
gil262 2378 2378.0 0.00 0.2 2378.0 0.00 0.2 2378.0 0.00 0.1
pr264 49135 49135.0 0.00 0.1 49135.0 0.00 0.2 49135.0 0.00 0.2
a280 2579 2579.0 0.00 0.0 2579.0 0.00 0.1 2579.0 0.00 0.1
pr299 48191 48191.0 0.00 0.3 48191.0 0.00 0.2 48191.0 0.00 0.2
lin318 42029 42029.0 0.00 2.2 42029.0 0.00 4.5 42029.0 0.00 2.9
rd400 15281 15281.0 0.00 1.9 15281.0 0.00 3.8 15281.0 0.00 2.5
fl417 11861 11861.0 0.00 6.1 11861.0 0.00 6.2 11861.0 0.00 6.7
gr431 171414 171414.0 0.00 11.2 171414.0 0.00 16.4 171414 0.00 13.7
pr439 107217 107217.0 0.00 2.9 107217.0 0.00 3.2 107217 0.00 2.8
pcb442 50778 50778.0 0.00 1.1 50778.0 0.00 1.5 50778.0 0.00 1.4
d493 35002 35000.5 0.001 23.7 35003.2 0.003 27.2 35002.7 0.002 22.3
att532 27686 27686.6 0.002 10.1 27687.4 0.005 13.5 27686.6 0.002 14.1

(Continued)

1996 CMES, 2023, vol.135, no.3

Table 3 (continued)

Instance BKS MCF-FFA (LLH4) MCF-FFA Random-FFA

Average PDav (%) μT (s) Average PDav (%) μT (s) Average PDav (%) μT (s)

ali535 202339 202339.0 0.00 9.8 202339.0 0.00 9.3 202339 0.00 10.2
si535 48450 48492.5 0.087 38.2 48539.3 0.184 47.5 48499.8 0.102 44.8
pa561 2763 2763.0 0.00 6.9 2763.4 0.014 6.4 2763.2 0.007 7.2
u574 36905 36905.0 0.00 3.8 36905.0 0.00 4.2 36905.0 0.00 4.1
rat575 6773 6774.7 0.025 5.7 6773.9 0.013 5.3 6774.8 0.026 5.2
p654 34643 34643.0 0.00 22.5 34643.0 0.00 21.6 34643.0 0.00 23.4
d657 48912 48913.1 0.002 17.3 48914.2 0.004 16.2 48913.7 0.003 12.5
gr666 294358 294389.2 0.010 29.6 294416.5 0.019 38.7 294386 0.009 35.6
u724 41910 41915.3 0.012 15.4 41919.1 0.021 16.1 41915.7 0.013 16.3
rat783 8806 8806.0 0.00 3.9 8806.0 0.00 5.7 8806.0 0.00 4.9
dsj1000 18659688 18661444 0.009 61.5 18661227 0.008 52.4 18662643 0.015 41.7
pr1002 259045 259079.3 0.013 19.2 259251.8 0.079 25.2 259125.1 0.030 30.1
si1032 92650 92650.0 0.00 8.7 92654.1 0.004 10.3 92652.2 0.002 9.2
U1060 224094 224112.7 0.008 15.3 224129.3 0.015 17.7 224137.8 0.019 16.5
vm1084 239297 239310.2 0.005 31.1 239306.8 0.004 23.8 239324.4 0.011 34.9
pcb1173 56892 56898.9 0.012 17.6 56899.7 0.013 15.5 56897.3 0.009 18.4
d1291 50801 50832.5 0.062 23.8 51389.8 1.159 38.1 51231.1 0.846 59.3
d1655 62128 62221.1 0.149 30.5 62256.2 0.206 39.6 62209.2 0.130 55.6
u1817 57201 57349.2 0.259 32.4 57371.6 0.298 28.7 57353.4 0.266 45.8
rl1889 316536 317388.7 0.269 47.6 317439.4 0.285 52.3 317480.7 0.298 54.2
u2152 64253 64429.3 0.274 29.2 64442.1 0.294 28.9 64414.5 0.251 32.5
pr2392 378032 378419.1 0.102 31.7 378379.8 0.092 43.2 378568.1 0.141 42.7
pcb3038 137694 137938.5 0.177 63.9 138086.2 0.284 57.5 138001.6 0.223 53.4
fl3795 28772 28821.4 0.171 162.3 31948.3 11.039 240.4 31026.9 7.837 272.1
fnl4461 182566 182973.8 0.223 62.8 182946.4 0.208 49.8 182986.8 0.230 68.2
rl5915 565530 567784.3 0.398 101.4 573086.5 1.336 103.1 569704.3 0.738 104.4
pla7397 23260728 23322977.5 0.267 251.6 23332462.1 0.308 220.3 23323878 0.271 200.8
rl11849 923288 928610.7 0.576 324.5 935199.9 1.290 357.7 931091.7 0.845 368.9
Usa13509 19982859 20102852.1 0.600 1037.1 20245776.7 1.315 882.8 20193622 1.054 1192.2
Pla33810 66050535 66429782.2 0.574 4198.2 66785296.8 1.112 2562 66698675 0.981 3267.6
pla85900 142382641 143413502 0.724 8569.1 144058721 1.177 5745 143939177 1.093 6938.3

Average: 0.070 216.0 0.292 152.9 0.217 185.2

According to Table 3, MCF-FFA has the best performance in finding the best tour. MCF-FFA
achieved an average of 0.070 PDav (%), while (LLH4) MCF-FFA and Random-FFA models obtained
scores equal to 0.292 and 0.217, respectively, performed worse than the MCF-FFA. The MCF-FFA
model solved 44 of 71 instances in 30 iterations. Moreover, in most cases, the model MCF-FFA had a
better performance than other models. Of course, in some cases, the two models (LLH4), MCF-FFA
and Random-FFA, performed better than others, some of which are shown in Fig. 2.

CMES, 2023, vol.135, no.3 1997

0

0.005

0.01

0.015

0.02

0.025

0.03

rat575 dsj1000 pcb1173
P

D
av

(%
)

instances

MCF-FFA MCF-FFA(4)

Figure 2: Exhibition of better performance of the two models (LLH4), MCF-FFA and Random-FFA

The most notable instance performed convergence analysis in a TSPLIB (pla85900). The best-
so-far was calculated using Eq. (21), and its value in each iteration of three modes (Random-FFA
and MCF-FFA and (LLH4) MCF-FFA) has been shown in Fig. 3. (LLH4) MCF-FFA has a fast
convergence in the analysis of this chart. However, after a few iterations, it falls into the trap of local
optima, but the MCF-FFA and Random-FFA modes are more capable of escaping local optimality.
Finally, MCF-FFA has more potential to improve the solution.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 100 199 298 397

P
D

av
(%

)

Iteration

FFA-MCF FFA-MCF(4) FFA-RANDOM

Figure 3: Convergence graph of MCF-FFA and (LLH4) MCF-FFA and random-FFA in solving
pla85900

Wilcoxon signed-rank test [61] with 95% confidence interval was used for statistical comparison
of the performance of three models (MCF-FFA, (LLH4) MCF-FFA, and Random-FFA). Wilcoxon
signed-rank test has used the difference between the value of PDav (%) in two algorithms for
comparison and ranking. Instances with similar values in the two algorithms are not used, regardless
of similar cases. N denotes the number of sufficient cases, and R+ represents the scores for the cases
with the best performance in the proposed algorithm. Whereas R− represents the sum of scores for
the instances that the proposed algorithm performs worse than the comparative algorithm, and the
value of W is compared with a critical value WCri,N in the Wilcoxon signed-rank test. If W ≤ WCri,N, it
indicates a significant difference in the performance of the two algorithms. But if W > WCri,N then there
is no significant difference in the performance of the two algorithms. Table 4 presents the Wilcoxon

1998 CMES, 2023, vol.135, no.3

signed-rank test for comparison of three models (MCF-FFA, (LLH4), MCF-FFA and Random-FFA)
and the results of the Table show the remarkable performance of the MCF-FFA model.

Table 4: Wilcoxon signed-rank test to compare three models (MCF-FFA (LLH4), MCF-FFA, and
random-FFA)

Comparisons (MCF-FFA vs. . . .) N R+ R− W WCri,N Significant difference

(LLH4) MCF-FFA 29 394 41 41 126 Yes
Random-FFA 28 361 45 45 116 Yes

For further evaluation and investigation of the MCF-FFA model, the average distribution of the
implementation of each LLH selected by the MCF is recorded in each model’s performance. The 71
TSP instances used to evaluate these are classified into four categories according to their dimensions.
Table 5 shows the average distribution of each LLH implementation by MCF when the cases are solved
in each class.

Table 5: Average distribution of implementation (units to percentage) of each LLH in MCF-FFA using
local search

Operations Reverse Insert Swap Shuffle Combined operations PDav
(%)

LLHs RRS RI RIS RS RSS SS RRIS RRSS RSIS RSSS
Category X
[100: 500]

10.874 10.341 10.414 10.761 11.920 10.088 8.114 9.952 9.407 8.129 0.000

Category Y
[501: 1000]

15.531 14.342 15.596 14.234 11.459 5.900 7.878 5.637 4.103 5.320 0.012

Category Z
[1001: 10000]

17.141 16.708 16.854 16.111 9.920 4.203 6.650 4.632 3.314 4.467 0.149

Category E
[dim > 10000]

19.674 17.495 17.497 17.356 16.352 2.120 2.892 2.234 2.176 2.204 0.618

Overall
average

13.569 12.855 13.140 12.926 11.641 7.605 7.450 7.589 6.730 6.495 0.070

According to the results shown in Table 5, LH (RSS) is selected by MCF over other LLHs in
Category X, and MCF prefers LLH (RIS) in comparison with other LLHs in Category Y. Moreover,
LLH (RRS) is chosen by MCF in contrast with other LLHs in Category Z. Finally, MCF selects LLH
(RRS) in comparison with other LLHs in Category E. In the proposed algorithm, LLHs (such as RRS,
RI, RIS, RS, and RSS) are frequently selected by MCF for obtaining good scores from the criteria
f1, f2. Because these LLHs create more improvements than other LLHs in a shorter computational
time. If the control mechanism in the MCF causes the parameter δ to obtain more value and grow
faster in the event of lousy movement, in this case, the diversification component f3 will be prioritized,
and LLHs will most likely be selected that were not previously selected. This section has tested the
proposed algorithm for further investigation without using LK local search. The results are shown in
Table 6 indicate that if the LK local search is deleted, the MCF will select LLHs (RI and RRS) more
than other LLHs.

CMES, 2023, vol.135, no.3 1999

Table 6: Average distribution of implementation (in percent) of each LLH in MCF-FFA without using
local search

Operations Reverse Insert Swap Shuffle Combined operations PDav
(%)

LLHs RRS RI RIS RS RSS SS RRIS RRSS RSIS RSSS

Category X
[100: 500]

75.542 22.314 0.819 0.148 0.131 0.104 0.631 0.151 0.087 0.073 4.291

Category Y
[501: 1000]

73.287 24.010 1.125 0.169 0.106 0.084 0.992 0.143 0.044 0.040 9.724

Category Z
[1001: 10000]

71.401 27.963 0.239 0.034 0.023 0.014 0.287 0.019 0.011 0.009 16.019

Category E
[dim > 10000]

63.107 35.919 0.429 0.029 0.017 0.010 0.468 0.011 0.006 0.004 22.148

Overall
average

73.527 24.640 0.718 0.119 0.096 0.075 0.606 0.112 0.058 0.049 8.858

5.4 Competitiveness MCF-FFA
In this subsection, we have compared the MCF-FFA model’s performance with other models.

Due to the comparative models’ lack of sources, the published articles’ results were directly extracted
and compared. The PDav (%) was used for comparison. In total, ten different models were used
for this comparison. Finally, the proposed algorithm has been compared with CLK to evaluate the
performance. The selected models for comparison include ESACO [62], written by C++ programming
language and executed using an Intel CPU 2.0 GHz processor and 1.0G RAM. These models end with
tenants and 300 reps. The SOS-SA model [12] was programmed using Matlab R2014b and run on a
computer with a 2.83 GHz CPU Desktop with 2 GB of RAM. MCF-ABC [38] model has been written
in C programming language and runs on a system with an Intel i7-3930K 3.20 GHz processor and
15.6 GB of memory. The pop-Size parameter is set to 10, the limit parameter is set to 200, and these
parameters are terminated in 1000 iterations. The ECSDSOS model [44] has been implemented using
a computer with Intel (R) Core (TM) CPU 2.6 GHz CPU and 4G RAM, and the size of the ecosystem
equals 50, and it is terminated in 1,000 reps. The HDABC model [53] is written using Java programming
language and is implemented on a computer with Intel Core i7-5600 2.60 GHz CPU and 8 GB RAM
and is completed in 500 iterations. The SOM model [52] is implemented on the GPU using the CUDA
platform and 1280 MBytes of memory. The PACO-3Opt [17] is written by Java programming language
and is implemented on PC with Pentium i5 3.10 GHz processor, and 2 GB RAM and migration interval
is set to 5, finished in 1000 iterations. The D-CLPSO [42] is finished in 1000 iterations, and the length
of the temperature list and the swarm size are 140 and 20, respectively. The DSCA model [63] has been
coded using MATLAB R2014a and implemented using a the computer with a CORE i3 CPU with
2.27 GHz.

Moreover, the population has been considered equal to 15, and the number of generations equals
200. Java programming language is used for coding the DPIO model [64] and is implemented on a
computer with Intel Core i5-3470 CPU, with 3.2 GHz and a RAM of 4 GB, and is finished in 1000
iterations. The source of CLK [59] model code available in the Concorde TSP solver software is used
to compare the proposed algorithm with CLK. Instances Z and E were used for comparison. CLK is a
single solution-based model, and the number population is equal to 1 in this model; a pre-determined
number of repetitions are equivalent to 10,000. Default settings in Concorde are maintained for

2000 CMES, 2023, vol.135, no.3

execution, which are: initialization method (i.e., Quick-Boruvka), choice of the kick (i.e., 50-step
random-walk kick) and the level of backtracking (i.e., (4, 3, 3, 2)-breadth).

Table 7 has compared the proposed algorithm’s performance with the other models. The proposed
algorithm has shown the best performance compared to the different models and has been able to
find the optimal tour in most cases. HDABC and MCF-ABC performed better than the proposed
algorithm in some instances. MCF-ABC had similar performance in small-scale cases and was able
to find optimal tours, and in some cases with different scales, it was able to find better tours than
the proposed algorithm. Because the MCF-ABC model employs a strategy similar to the proposed
algorithm, the HDABC model only performs well in small-scale instances. To further evaluate the
proposed algorithm, a comparison with CLK [59] has been made in Table 8.

Table 7: Comparison of the proposed algorithm with other models

Instance Method

Proposed
algorithm

MCF-
ABC
[38]

ESACO
[62]

ECSDSOS
[44]

DSCA
[63]

HDABC
[53]

SOS-SA
[12]

PACO-3Opt
[17]

DPIO
[64]

SOM
[52]

D-CLPSO
[42]

kroA100 0.000 - 0.000 0.048 0.000 0.00 - 0.211 - - -
kroB100 0.000 - - 0.050 0.000 0.13 - - - - -
eil101 0.000 0.000 - 0.095 0.032 0.05 - 0.246 - - -
lin105 0.000 0.000 0.000 - 0.000 - - 0.097 - - -
pr107 0.000 0.000 - 0.221 0.000 0.1 - - - - -
gr120 0.000 0.000 - - - - - - - - -
pr124 0.000 0.000 - 0.202 0.000 0.00 - - - - -
bier127 0.000 0.000 - - 0.000 - - - - - -
ch130 0.000 0.000 - - 0.229 - - - - - -
pr136 0.000 0.000 - 0.528 0.406 0.00 - - - - -
gr137 0.000 0.000 - - - - - - - - -
pr144 0.000 0.000 - 0.241 0.000 0.00 - - - - -
ch150 0.000 0.000 - 0.454 0.000 0.31 0.028 1.124 - - -
kroA150 0.000 0.000 - - 0.005 0.05 0.000 - - - -
kroB150 0.000 0.000 - - 0.018 0.01 0.007 - - - -
pr152 0.000 0.000 - 0.255 0.000 0.00 0.000 - - - -
u159 0.000 0.000 - - - 0.01 0.002 - - - -
si175 0.000 0.000 - - - - - - - - -
brg180 0.000 0.000 - - - - - - - - -
rat195 0.000 0.000 - - 0.181 0.61 0.155 - - - -
d198 0.000 0.000 0.000 - 0.125 0.27 0.013 - - - -
kroA200 0.000 0.000 0.000 - 0.000 0.05 0.009 0.942 - - -
kroB200 0.000 0.000 - - 0.103 0.02 0.044 - - - -
gr202 0.000 0.000 - - - - - - - - -
tsp225 0.000 0.000 - - 0.026 - - - - - -
ts225 0.000 0.000 - - 0.053 0.00 0.046 - - - -
pr226 0.000 0.000 - 0.302 0.014 0.00 0.000 - - - -
gr229 0.000 0.000 - - - - - - - - -
gil262 0.000 0.000 - - 0.362 0.38 0.165 - - - -
pr264 0.000 0.000 - 0.109 0.000 0.00 0.001 - - - -
a280 0.000 0.000 0.004 - 0.217 - - - - - -
pr299 0.000 0.000 - 1.321 0.240 0.11 0.077 - - - -
lin318 0.000 0.000 0.059 0.899 0.458 0.26 0.358 - - - -
rd400 0.000 0.000 - 1.178 0.927 0.26 1.118 2.179 - - -

(Continued)

CMES, 2023, vol.135, no.3 2001

Table 7 (continued)
Instance Method

Proposed
algorithm

MCF-
ABC
[38]

ESACO
[62]

ECSDSOS
[44]

DSCA
[63]

HDABC
[53]

SOS-SA
[12]

PACO-3Opt
[17]

DPIO
[64]

SOM
[52]

D-CLPSO
[42]

fl417 0.000 0.000 - 1.947 0.610 1.01 0.139 1.066 - - -
gr431 0.000 0.000 - - - - - - - - -
pr439 0.000 0.000 - 2.288 0.346 0.22 0.321 1.385 - - -
pcb442 0.000 0.000 0.050 - - 0.15 0.185 2.805 - - -
d493 0.001 0.002 - - - - - 2.397 - - -
att532 0.002 0.002 0.055 - - - - - - - -
ali535 0.000 0.000 - - - - - - - - -
si535 0.087 0.100 - - - - - - - - -
pa561 0.000 0.004 - - - - - - - - -
u574 0.000 0.000 - 1.732 - 0.37 0.703 3.050 - - -
rat575 0.025 0.020 - 0.772 1.854 0.75 0.982 3.535 - - -
p654 0.000 0.000 - - - - - 1.247 - - -
d657 0.002 0.006 - 1.691 - - - 2.792 - - -
gr666 0.010 0.016 - - - - - - - - -
u724 0.012 0.016 - 1.052 - 0.33 0.840 2.893 - - -
rat783 0.000 0.000 0.043 - 6.773 0.91 1.062 3.649 - - -
dsj1000 0.009 0.010 - - - - - - 0.388 6.46 -
pr1002 0.013 0.011 0.179 2.133 5.287 0.71 1.064 - 0.51 4.78 0.76
si1032 0.000 0.000 - - - - - - - - -
U1060 0.008 - - - - - - - 0.374 5.12 -
vm1084 0.005 0.011 - - - - - - 0.327 5.86 -
pcb1173 0.012 0.010 - - - 0.77 1.192 - 0.392 7.50 0.737
d1291 0.062 0.084 - 2.079 - 1.64 0.965 - 0.668 9.66 0.645
d1655 0.149 0.151 - 2.582 - 1.28 3.193 - 0.369 9.60 0.819
u1817 0.259 0.268 - 2.969 - - - - 0.561 9.68 -
rl1889 0.269 - - 2.123 - - - - 0.688 9.54 0.716
u2152 0.274 0.270 - 3.305 - - - - 0.838 10.43 -
pr2392 0.102 0.137 - - - - - - 0.612 7.04 1.042
pcb3038 0.177 - - 2.650 1.03 1.458 - 0.624 7.88 0.998
fl3795 0.171 0.184 0.388 - - - - - 1.52 16.13 -
fnl4461 0.223 0.239 0.482 2.599 - 1.30 1.632 - 0.961 5.62 1.222
rl5915 0.398 0.435 0.602 - - - - - 1.005 12.94 -
pla7397 0.267 0.273 0.553 - - 1.47 2.318 - 1.441 10.19 1.427
rl11849 0.576 0.512 0.764 - - - - - 1.062 11.49 -
Usa13509 0.600 - 1.062 - - 1.57 7.092 - 1.168 7.62 1.466
Pla33810 0.574 - - - - 1.81 3.069 - 1.726 13.23 2.10
pla85900 0.724 0.774 - - - 2.23 2.842 - 1.378 10.94 1.64

Table 8 compares the proposed algorithm with CLK. Both models use an LK local search strategy.
By examining this comparison, it can be concluded that the proposed algorithm performs well in
small-scale instances, while the CLK model performs better in large-scale cases. Wilcoxon signed-
rank statistic test with a 95% confidence interval to evaluate the proposed algorithm’s performance
compared to other algorithms.

2002 CMES, 2023, vol.135, no.3

Table 8: Comparison of the proposed algorithm with the CLK model

Method
Instance

pr1002 si1032 vm1084 pcb1173 d1291 d1655 u1817

CLK [59] 0.117 0.004 0.032 0.038 0.205 0.167 0.352

Proposed algorithm 0.013 0.000 0.005 0.012 0.062 0.149 0.259

pr2392 fl3795 fnl4461 rl5915 pla7397 rl11849 pla85900

CLK [59] 0.280 0.734 0.139 0.271 0.269 0.405 0.677

Proposed algorithm 0.102 0.171 0.223 0.398 0.267 0.576 0.724

The results of this test are shown in Table 9 based on the 95% confidence interval. These results
show that the proposed algorithm performs well and significantly against the other 11 models: R+ >

R− and W ≤ WCri, N. Whereas we compared it with CLK, the result is as follows: W > WCri, N.

Table 9: Wilcoxon signed-rank test to compare the proposed algorithm with other models

Comparisons (MCF-FFA vs. . . .) N R+ R− W WCri,N Significant difference

MCF-ABC [38] 22 205.5 47.5 47.5 65 Yes
ESACO [62] 12 78 0 0 13 Yes
ECSDSOS [44] 28 406 0 0 116 Yes
DSCA [63] 21 231 0 0 58 Yes
HDABC [53] 32 525 3 3 159 Yes
SOS-SA [12] 30 465 0 0 137 Yes
PACO-3Opt [17] 16 136 0 0 29 Yes
DPIO [64] 20 210 0 0 52 Yes
SOM [52] 20 210 0 0 52 Yes
D-CLPSO [42] 12 78 0 0 13 Yes
CLK [59] 15 85 35 35 25 No

6 Conclusion and Future Works

This paper used the FFA algorithm to solve discrete problems such as the TSP problem. 10
LLHs were used to discretize this algorithm, which has generally led to the intelligent and automatic
selection of LLHs using a hyper-heuristic mechanism based on MCF. Moreover, the following cases
were performed: choosing the best solution in each sector and improving these solutions to focus more
on the selected solutions. LK’s local search strategy improved the proposed algorithm’s performance.
This paper presented and evaluated three models (MCF-FFA and (LLH4), MCF-FFA and Random-
FFA). The MCF-FFA model showed better performance in most of the tested instances.

Due to the complex process of the proposed algorithm, it has been able to obtain quality solutions
quickly. Achieving acceptable or quality results with simple procedures is no longer possible in the

CMES, 2023, vol.135, no.3 2003

face of quality issues. We have tried to create a Multi-Start Local Search (MSLS) and Iterated Local
Search (ILS) approach in the proposed algorithm. The proposed algorithm was tested with 71 cases
with two criteria and compared with the 11 previously presented models, and the results indicated that
the proposed algorithm is acceptable and appropriate. The proposed algorithm can be investigated and
evaluated in the future to solve more advanced discrete problems such as travelling thief and vehicle
routing problems (VRP). In addition, it is possible to design a version of the proposed algorithm
to solve generic combinatorial optimization problems, which provides the ability to solve some well-
known problems in the discrete problem space. Finally, the proposed algorithm can be generalized to
solve discrete problems. To have the ability to solve multi-objective discrete problems and be evaluated.

Data Availability Statement (DAS): We use the available TSPLIB dataset for evaluation: http://comopt.
ifi.uni-heidelberg.de/software/TSPLIB95/, 1991.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Benyamin, A., Farhad, S. G., Saeid, B. (2021). Discrete farmland fertility optimization algorithm with

metropolis acceptance criterion for traveling salesman problems. International Journal of Intelligent Systems,
36(3), 1270–1303. DOI 10.1002/int.22342.

2. Gharehchopogh, F. S., Abdollahzadeh, B. (2022). An efficient Harris Hawk optimization algorithm for
solving the travelling salesman problem. Cluster Computing, 25(3), 1981–2005.

3. Laporte, G., Nobert, Y. (1980). A cutting planes algorithm for the M-salesmen problem. Journal of the
Operational Research Society, 31(11), 1017–1023. DOI 10.1057/jors.1980.188.

4. Barnhart, C., Johnson, L. E., George, L. N., Martin, W. P. S., Pamela, H. V. (1998). Branch-and-
price: Column generation for solving huge integer programs. Operations Research, 46(3), 316–329. DOI
10.1287/opre.46.3.316.

5. Lawler, E. L., Wood, D. E. (1966). Branch-and-bound methods: A survey. Operations Research, 14(4),
699–719. DOI 10.1287/opre.14.4.699.

6. Padberg, M., Rinaldi, G. (1987). Optimization of a 532-city symmetric traveling salesman problem by
branch and cut. Operations Research Letters, 6(1), 1–7. DOI 10.1016/0167-6377(87)90002-2.

7. Laporte, G. (1992). The traveling salesman problem: An overview of exact and approximate algorithms.
European Journal of Operational Research, 59(2), 231–247. DOI 10.1016/0377-2217(92)90138-Y.

8. Chakraborty, S., Saha, A. K., Chakraborty, R., Saha, M. (2021). An enhanced whale optimiza-
tion algorithm for large scale optimization problems. Knowledge-Based Systems, 233, 107543. DOI
10.1016/j.knosys.2021.107543.

9. Nama, S., Saha, A. K. (2019). A novel hybrid backtracking search optimization algorithm for continuous
function optimization. Decision Science Letters, 8(2), 163–174. DOI 10.5267/j.dsl.2018.7.002.

10. Zamani, H., Nadimi-Shahraki, M. H., Gandomi, A. H. (2021). QANA: Quantum-based avian nav-
igation optimizer algorithm. Engineering Applications of Artificial Intelligence, 104, 104314. DOI
10.1016/j.engappai.2021.104314.

11. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Zamani, H., Bahreininejad, A. (2022). GGWO: Gaze
cues learning-based grey wolf optimizer and its applications for solving engineering problems. Journal of
Computational Science, 61, 101636. DOI 10.1016/j.jocs.2022.101636.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://doi.org/10.1002/int.22342
https://doi.org/10.1057/jors.1980.188
https://doi.org/10.1287/opre.46.3.316
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.1016/0167-6377(87)90002-2
https://doi.org/10.1016/0377-2217(92)90138-Y
https://doi.org/10.1016/j.knosys.2021.107543
https://doi.org/10.5267/j.dsl.2018.7.002
https://doi.org/10.1016/j.engappai.2021.104314
https://doi.org/10.1016/j.jocs.2022.101636

2004 CMES, 2023, vol.135, no.3

12. Ezugwu, A. E. S., Adewumi, A. O., Fraoncu, M. E. (2017). Simulated annealing based symbiotic organisms
search optimization algorithm for traveling salesman problem. Expert Systems with Applications, 77, 189–
210. DOI 10.1016/j.eswa.2017.01.053.

13. Saha, A. K. (2022). Multi-population-based adaptive sine cosine algorithm with modified mutualism
strategy for global optimization. Knowledge-Based Systems, 109326. DOI 10.1016/j.knosys.2022.109326.

14. Herrera, B. A. L. D. M., Coelho, L. D. S., Steiner, M. T. A. (2015). Quantum inspired particle swarm
combined with Lin-Kernighan-Helsgaun method to the traveling salesman problem. Pesquisa Operacional,
35(3), 465–488. DOI 10.1590/0101-7438.2015.035.03.0465.

15. Sahana, S. K. (2019). Hybrid optimizer for the travelling salesman problem. Evolutionary Intelligence, 12(2),
179–188. DOI 10.1007/s12065-019-00208-7.

16. Marinakis, Y., Marinaki, M., Dounias, G. (2011). Honey bees mating optimization algorithm
for the Euclidean traveling salesman problem. Information Sciences, 181(20), 4684–4698. DOI
10.1016/j.ins.2010.06.032.

17. Gulcu, S., Mahi, M., Baykan, O. K., Kodaz, H. (2018). A parallel cooperative hybrid method based on ant
colony optimization and 3-Opt algorithm for solving traveling salesman problem. Soft Computing, 22(5),
1669–1685. DOI 10.1007/s00500-016-2432-3.

18. Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G. et al. (2013). Hyper-heuristics: A
survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695–1724. DOI
10.1057/jors.2013.71.

19. Gharehchopogh, F. S. (2022). An improved tunicate swarm algorithm with best-random mutation strategy
for global optimization problems. Journal of Bionic Engineering, 1–26. DOI 10.1007/s42235-022-00185-1.

20. Gharehchopogh, F. S. (2022). Advances in tree seed algorithm: A comprehensive survey. Archives of
Computational Methods in Engineering, 29, 3281–3330. DOI 10.1007/s11831-021-09698-0.

21. Nadimi-Shahraki, M. H., Zamani, H. (2022). DMDE: Diversity-maintained multi-trial vector differential
evolution algorithm for non-decomposition large-scale global optimization. Expert Systems with Applica-
tions, 198, 116895. DOI 10.1016/j.eswa.2022.116895.

22. Zamani, H., Nadimi-Shahraki, M. H., Taghian, S., Dezfouli, M. B. (2020). Enhancement of bernstain-
search differential evolution algorithm to solve constrained engineering problems. International Journal of
Computer Science Engineering, 9, 386–396.

23. Zamani, H., Nadimi-Shahraki, M. H., Gandomi, A. H. (2019). CCSA: Conscious neighborhood-based
crow search algorithm for solving global optimization problems. Applied Soft Computing, 85, 105583. DOI
10.1016/j.asoc.2019.105583.

24. Nama, S., Sharma, S., Saha, A. K., Gandomi, A. H. (2022). A quantum mutation-based backtracking search
algorithm. Artificial Intelligence Review, 55(4), 3019–3073. DOI 10.1007/s10462-021-10078-0.

25. Chakraborty, S., Saha, A. K., Sharma, S., Chakraborty, R., Debnath, S. (2021). A hybrid whale optimiza-
tion algorithm for global optimization. Journal of Ambient Intelligence and Humanized Computing. DOI
10.1007/s12652-021-03304-8.

26. Nama, S., Saha, A. K. (2022). A bio-inspired multi-population-based adaptive backtracking search algo-
rithm. Cognitive Computation, 14(2), 900–925. DOI 10.1007/s12559-021-09984-w.

27. Nama, S., Saha, A. K., Sharma, S. (2022). A novel improved symbiotic organisms search algorithm.
Computational Intelligence, 38(3), 947–977. DOI 10.1111/coin.12290.

28. Azcan, E., Bilgin, B., Korkmaz, E. E. (2008). A comprehensive analysis of hyper-heuristics. Intelligent Data
Analysis, 12(1), 3–23. DOI 10.3233/IDA-2008-12102.

29. Lin, J., Wang, Z. J., Li, X. (2017). A backtracking search hyper-heuristic for the distributed
assembly flow-shop scheduling problem. Swarm and Evolutionary Computation, 36, 124–135. DOI
10.1016/j.swevo.2017.04.007.

https://doi.org/10.1016/j.eswa.2017.01.053
https://doi.org/10.1016/j.knosys.2022.109326
https://doi.org/10.1590/0101-7438.2015.035.03.0465
https://doi.org/10.1007/s12065-019-00208-7
https://doi.org/10.1016/j.ins.2010.06.032
https://doi.org/10.1007/s00500-016-2432-3
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1007/s42235-022-00185-1
https://doi.org/10.1007/s11831-021-09698-0
https://doi.org/10.1016/j.eswa.2022.116895
https://doi.org/10.1016/j.asoc.2019.105583
https://doi.org/10.1007/s10462-021-10078-0
https://doi.org/10.1007/s12652-021-03304-8
https://doi.org/10.1007/s12559-021-09984-w
https://doi.org/10.1111/coin.12290
https://doi.org/10.3233/IDA-2008-12102
https://doi.org/10.1016/j.swevo.2017.04.007

CMES, 2023, vol.135, no.3 2005

30. Shayanfar, H., Gharehchopogh, F. S. (2018). Farmland fertility: A new metaheuristic algorithm for solving
continuous optimization problems. Applied Soft Computing, 71, 728–746. DOI 10.1016/j.asoc.2018.07.033.

31. Lin, S., Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem.
Operations Research, 21(2), 498–516. DOI 10.1287/opre.21.2.498.

32. Reinelt, G. (1991). TSPLIB. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
33. Yong, W. (2015). Hybrid max–min ant system with four vertices and three lines inequality for traveling

salesman problem. Soft Computing, 19(3), 585–596. DOI 10.1007/s00500-014-1279-8.
34. Teng, L., Yin, S., Li, H. (2019). A new wolf colony search algorithm based on search strategy for solving

travelling salesman problem. International Journal of Computational Science and Engineering, 18(1), 1–11.
DOI 10.1504/IJCSE.2019.096970.

35. Masutti, T. A., Decastro, L. N. (2009). A self-organizing neural network using ideas from the immune
system to solve the traveling salesman problem. Information Sciences, 179(10), 1454–1468. DOI
10.1016/j.ins.2008.12.016.

36. Luo, H., Xu, W., Tan, Y. (2018). A discrete fireworks algorithm for solving large-scale travel salesman
problem. Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7. Rio de
Janeiro, Brazil, IEEE.

37. Cinar, A. C., Korkmaz, S., Kiran, M. S. (2019). A discrete tree-seed algorithm for solving symmetric
traveling salesman problem. Engineering Science and Technology, An International Journal, 23(4), 879–890.
DOI 10.1016/j.jestch.2019.11.005.

38. Choong, S. S., Wong, L. P., Lim, C. P. (2019). An artificial bee colony algorithm with a modified choice
function for the traveling salesman problem. Swarm and Evolutionary Computation, 44, 622–635. DOI
10.1016/j.swevo.2018.08.004.

39. Ouaarab, A., Ahiod, B. D., Yang, X. S. (2015). Random-key cuckoo search for the travelling salesman
problem. Soft Computing, 19(4), 1099–1106. DOI 10.1007/s00500-014-1322-9.

40. Verma, O. P., Jain, R., Chhabra, V. (2014). Solution of travelling salesman problem using bacte-
rial foraging optimisation algorithm. International Journal of Swarm Intelligence, 1(2), 179–192. DOI
10.1504/IJSI.2014.060243.

41. Karaboga, D., Gorkemli, B. (2019). Solving traveling salesman problem by using combinatorial artifi-
cial Bee colony algorithms. International Journal on Artificial Intelligence Tools, 28(1), 1950004. DOI
10.1142/S0218213019500040.

42. Zhong, Y., Lin, J., Wang, L., Zhang, H. (2018). Discrete comprehensive learning particle swarm optimization
algorithm with metropolis acceptance criterion for traveling salesman problem. Swarm and Evolutionary
Computation, 42, 77–88. DOI 10.1016/j.swevo.2018.02.017.

43. Pook, M. F., Ramlan, E. I. (2019). The Anglerfish algorithm: A derivation of randomized incremental
construction technique for solving the traveling salesman problem. Evolutionary Intelligence, 12(1), 11–20.
DOI 10.1007/s12065-018-0169-x.

44. Wang, Y., Wu, Y., Xu, N. (2019). Discrete symbiotic organism search with excellence coefficients and
self-escape for traveling salesman problem. Computers & Industrial Engineering, 131, 269–281. DOI
10.1016/j.cie.2019.04.008.

45. Ouaarab, A., Ahiod, B., Yang, X. S. (2014). Improved and discrete Cuckoo search for solving the travelling
salesman problem. In: Cuckoo search and firefly algorithm, pp. 63–84. Springer, Cham.

46. Ezugwu, A. E. S., Adewumi, A. O. (2017). Discrete symbiotic organisms search algorithm for travelling
salesman problem. Expert Systems with Applications, 87, 70–78. DOI 10.1016/j.eswa.2017.06.007.

47. Yan, Y., Sohn, H. S., Reyes, G. (2017). A modified ant system to achieve better balance between intensifi-
cation and diversification for the traveling salesman problem. Applied Soft Computing, 60, 256–267. DOI
10.1016/j.asoc.2017.06.049.

https://doi.org/10.1016/j.asoc.2018.07.033
https://doi.org/10.1287/opre.21.2.498
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://doi.org/10.1007/s00500-014-1279-8
https://doi.org/10.1504/IJCSE.2019.096970
https://doi.org/10.1016/j.ins.2008.12.016
https://doi.org/10.1016/j.jestch.2019.11.005
https://doi.org/10.1016/j.swevo.2018.08.004
https://doi.org/10.1007/s00500-014-1322-9
https://doi.org/10.1504/IJSI.2014.060243
https://doi.org/10.1142/S0218213019500040
https://doi.org/10.1016/j.swevo.2018.02.017
https://doi.org/10.1007/s12065-018-0169-x
https://doi.org/10.1016/j.cie.2019.04.008
https://doi.org/10.1016/j.eswa.2017.06.007
https://doi.org/10.1016/j.asoc.2017.06.049

2006 CMES, 2023, vol.135, no.3

48. Jiang, C., Wan, Z., Peng, Z. (2020). A new efficient hybrid algorithm for large scale multiple traveling
salesman problems. Expert Systems with Applications, 139, 112867. DOI 10.1016/j.eswa.2019.112867.

49. Chen, L., Sun, H. Y., Wang, S. (2012). A parallel ant colony algorithm on massively parallel processors
and its convergence analysis for the travelling salesman problem. Information Sciences, 199, 31–42. DOI
10.1016/j.ins.2012.02.055.

50. Ahmed, Z. H. (2014). Improved genetic algorithms for the travelling salesman problem. International
Journal of Process Management and Benchmarking, 4(1), 109–124. DOI 10.1504/IJPMB.2014.059449.

51. Lin, B. L., Sun, X., Salous, S. (2016). Solving travelling salesman problem with an improved hybrid genetic
algorithm. Journal of Computer and Communications, 4(15), 98–106. DOI 10.4236/jcc.2016.415009.

52. Wang, H., Zhang, N., Craoput, J. A. (2017). A massively parallel neural network approach
to large-scale Euclidean traveling salesman problems. Neurocomputing, 240, 137–151. DOI
10.1016/j.neucom.2017.02.041.

53. Zhong, Y., Lin, J., Wang, L., Zhang, H. (2017). Hybrid discrete artificial bee colony algorithm with
threshold acceptance criterion for traveling salesman problem. Information Sciences, 421, 70–84. DOI
10.1016/j.ins.2017.08.067.

54. Elkrari, M., Ahiod, B., Benani, E., Bouazza, Y. (2021). A pre-processing reduction method for the
generalized travelling salesman problem. Operational Research, 21(4), 2543–2591.

55. Ayon; S. I., Akhand, M. A. H., Shahriyar, S. A., Siddique, N. (2019). Spider Monkey optimization to solve
traveling salesman problem. 2019 International Conference on Electrical, Computer and Communication
Engineering (ECCE), pp. 1–5. Cox’sBazar, Bangladesh, IEEE.

56. Cowling, P., Kendall, G., Soubeiga, E. (2000). A hyperheuristic approach to scheduling a sales summit.
International Conference on the Practice and Theory of Automated Timetabling, pp. 176–190. Berlin,
Heidelberg.

57. Cowling, P., Kendall, G., Soubeiga, E. (2001). A parameter-free hyperheuristic for scheduling a sales
summit. Proceedings of the 4th Metaheuristic International Conference, pp. 127–131. Citeseer.

58. Marti, R. (2003). Multi-start methods. In: Handbook of metaheuristics, pp. 355–368. Boston, MA: Springer.
59. Applegate, D., Cook, W., Rohe, A. (2003). Chained Lin-kernighan for large traveling salesman problems.

INFORMS Journal on Computing, 15(1), 82–92. DOI 10.1287/ijoc.15.1.82.15157.
60. Martin, O., Otto, S. W., Felten, E. W. (1991). Large-step markov chains for the traveling salesman problem.

Complex Systems, 5(3), 299–326.
61. Wilcoxon, F., Katti, S., Wilcox, R. A. (1970). Critical values and probability levels for the Wilcoxon rank

sum test and the Wilcoxon signed rank test. Selected Tables in Mathematical Statistics, 1, 171–259.
62. Ismkhan, H. (2017). Effective heuristics for ant colony optimization to handle large-scale problems. Swarm

and Evolutionary Computation, 32, 140–149. DOI 10.1016/j.swevo.2016.06.006.
63. Tawhid, M. A., Savsani, P. (2019). Discrete sine-cosine algorithm (DSCA) with local search for solv-

ing traveling salesman problem. Arabian Journal for Science and Engineering, 44(4), 3669–3679. DOI
10.1007/s13369-018-3617-0.

64. Zhong, Y., Wang, Y., Lin, M., Zhang, H. (2019). Discrete pigeon-inspired optimization algorithm with
metropolis acceptance criterion for large-scale traveling salesman problem. Swarm and Evolutionary Com-
putation, 48, 134–144. DOI 10.1016/j.swevo.2019.04.002.

https://doi.org/10.1016/j.eswa.2019.112867
https://doi.org/10.1016/j.ins.2012.02.055
https://doi.org/10.1504/IJPMB.2014.059449
https://doi.org/10.4236/jcc.2016.415009
https://doi.org/10.1016/j.neucom.2017.02.041
https://doi.org/10.1016/j.ins.2017.08.067
https://doi.org/10.1287/ijoc.15.1.82.15157
https://doi.org/10.1016/j.swevo.2016.06.006
https://doi.org/10.1007/s13369-018-3617-0
https://doi.org/10.1016/j.swevo.2019.04.002

	An Improved Farmland Fertility Algorithm with Hyper-Heuristic Approach for Solving Travelling Salesman Problem
	1 Introduction
	2 Related Works
	3 Fundamental Research
	4 Proposed Algorithm
	5 Result and Discussion
	6 Conclusion and Future Works

