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ABSTRACT

Survival data with a multi-state structure are frequently observed in follow-up studies. An analytic approach based
on a multi-state model (MSM) should be used in longitudinal health studies in which a patient experiences a
sequence of clinical progression events. One main objective in the MSM framework is variable selection, where
attempts are made to identify the risk factors associated with the transition hazard rates or probabilities of disease
progression. The usual variable selection methods, including stepwise and penalized methods, do not provide
information about the importance of variables. In this context, we present a two-step algorithm to evaluate the
importance of variables for multi-state data. Three different machine learning approaches (random forest, gradient
boosting, and neural network) as the most widely used methods are considered to estimate the variable importance
in order to identify the factors affecting disease progression and rank these factors according to their importance.
The performance of our proposed methods is validated by simulation and applied to the COVID-19 data set.
The results revealed that the proposed two-stage method has promising performance for estimating variable
importance.
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1 Introduction

In longitudinal health studies, a patient may experience a sequence of clinical progression events.
For instance, the local recurrence may be followed by a distant recurrence and then death [1]. Also,
in the renal transplantation process of patients with end-stage kidney disease, renal allograft failure
is considered an intermediate event that can affect the whole survival of the patient [2]. For another
instance, the state of the COVID-19 patients who are admitted to the intensive care unit (ICU) at the
time of admission can influence their survival time. A patient may need invasive or non-invasive ICU
ventilation and extracorporeal membrane oxygenation and may be discharged from the hospital or die
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eventually [3]. Moreover, the need for ICU before death or discharge from the hospital among COVID-
19 patients who are admitted to the ward could be another state. In such studies, the progression of
the disease is considered as a multi-state process, and multi-state models (MSM) are used to assess the
impact of different covariates on the transition between different health states [1,4]. Ferrer et al. [1]
developed a multi-state model for the analysis of prostate cancer. Beesley et al. [4] also applied the
multi-state approach for modeling the progression of prostate cancer.

One main objective in the MSM framework is variable selection, where attempts are made to
identify the risk factors associated with the transition hazard rates or probabilities of the disease
progression. The classic approach is to use stepwise methods, where steps are taken by sequentially
adding (forward) or removing (backward) variables at each step. However, the stepwise method
suffers from some drawbacks, such as instability of the selected variables. In the context of MSMs,
few attempts have been made at the variable selection. For example, Dang et al. [5] suggested L1-
Regularized multi-state models using a Least Absolute Shrinkage and Selection Operator (LASSO)
penalty for parameter estimation and variable selection, simultaneously. The LASSO method has
several advantages for variable selection, including sparseness avoiding overfitting and a lower burden
of computations. It is also applicable in the presence of a large number of covariates. Nevertheless,
the selected model by the LASSO is unstable in terms of selected features. Moreover, for a set of
highly correlated features, the LASSO selects one of them randomly. Penalized methods neglect the
interaction between variables and their complex relationships or their unknown functional form. Most
importantly, these techniques were unable to provide a quantitative assessment of their significance [6].
While some of the features measured in a study may be associated with the sojourn times in the entry
states of each transition, they may have different degrees of importance, and some of them may be
more important for some transitions than others [7]. The variable importance can be estimated as a
real-valued parameter using an optimal estimating function [8].

In the context of COVID-19, several studies have investigated factors associated with various
outcomes using machine learning models through variable importance. For example, Stachel et al. uti-
lized machine learning methods for variables associated with mortality among COVID-19 patients
[9]. Also, Snider et al. investigated variables affecting mortality in COVID-19 patients using artificial
intelligence methods [10]. However, most of these studies considered binary outcomes such as survival
or death. In various studies, random survival forest has been used to predict mortality in hospitalized
COVID-19 patients. They considered time to hospital discharge and mortality as the outcomes of
interest and competing risks, respectively. More complex structures were also considered by some
authors. Hazard et al. [11] considered a multistate structure for joint analysis of the duration of
ventilation, length of intensive care, and mortality of COVID-19 patients. To our knowledge, no study
has dealt with estimating variable importance in multi-state data structures such as COVID-19 data.

Breiman [12] introduced the random forest technique for classification and regression problems,
where it has been widely used for variable selection. Gradient boosting [13] is also a commonly used
method for variable selection, showing satisfactory performance in many problems. Negassa et al. [14]
investigated model selection in tree-structured subgroup analysis using the RECursive Partition
and Amalgamation algorithm. They found that there is no single model selection criterion with
uniformly superior performance, and they proposed a two-stage approach for model selection with
promising performance in variable selection. Recently, Duan et al. [6] proposed a machine learning-
based approach to estimate variable importance using martingale and deviance residuals and their
standardized counterparts which resulted in promising performances based on simulation studies. In
the present study, we proposed a two-step algorithm to estimate the importance of variables for multi-
state data based on three different machine learning approaches: random forest, gradient boosting,
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and neural network as the most widely used method. Our main contribution to this study is to extend
the proposed approach to multi-state data to estimate the variable importance. The remaining sections
of this paper are organized as follows: In Section 2, we describe the multi-state model and its related
residuals. In Section 3, we define three risk indices based on the residuals mentioned in Section 2. In
Section 4, we describe our proposed two-step algorithm to evaluate the variable’s importance for multi-
state data and introduce the loss function criteria to compare the performance of different methods.
In Section 5, the performance of our algorithm is evaluated via simulation studies, and we apply our
method to the COVID-19 data set through an illness-death multi-state model, and a brief discussion
is finally given in Section 5.

2 Methods
2.1 Multi-State Model

A multi-state model is a stochastic process ({X(t), t ∈ ς}) with a finite state space S = {0, 1, . . . , p},
where ς = [0, τ ] for τ ≤ +∞. The multi-state process is assumed to be continuous-time with the right-
continuous sample paths, X(t+) = X(t). The transition probabilities are given as follows:

Phk(s, t) = P(X(t) = k|X(s) = h, χs−),

for h, k ∈ S, s, t ∈ ς , s ≤ t, and χs be a σ -algebra that stands for everything that happened up to time
s. Then, the transition intensities are defined as follows:

λhk (t) = lim
�t→0

Phk(t, t + �t|χs−)

�t
.

Suppose, there are n subjects and let Ti = (Ti1, . . . , Timi) represents the vector of the mi ≥ 1
observed transition times for the ith subject, with Tir < Ti(r+1), r ∈ {1, . . . , mi}. When the last observed
state is an absorbing state (i.e., a state that once entered cannot be never left; e.g., death), then the
ith subject will experience mi direct transitions. Otherwise, Timi is equal to right censoring time Ci and
there are mi − 1 direct transitions.

The counting process for the subject i (i = 1, . . . , n) can be defined as (a multivariate counting
process) by {Nhki (t) , h, k ∈ S, h �= k, t ≤ Ci} counting the number of direct transitions from the state h
to the state k for the subject i over the interval [0, t] and Ci(≤ τ). The intensity function for the subject
i based on the Cox regression model, by using counting process formulation of the model, is given as
follows:

λhki (t) = lim
�t→0

P{Nhki(t, t + �t) = 1|χs−}
�t

(1)

= Yhi (t) λhk0 (t) exp
{
βhk

TZhki (t)
}

.

Here, Yhi(t) = I(Xi(t−) = h) is an indicator specifying whether Xi(.) is in the state h at time t− (some
h and k combinations may not be possible). Specifically, Yhi(t) = 1 means that the individual i is at
risk for transition from h to k immediately before time t. The Nhki(t) only jumps when Yhi(t) = 1. Also,
in the above equation λhk0(.) is the baseline intensity function, and Zhki(t) is the vector of predictors
associated with the vector of coefficients βhk for the transition from h to k.

Note that, under the Markov assumption, future evolution of the process only depends on the
current state and, therefore, χs− has been omitted from the formulas.
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2.2 Risk Indices
2.2.1 Martingale Residuals

Using the Doob–Meyer decomposition [15], in multi-state models, the martingale residual for the
subject i on the time interval of [0, t] is defined as follows:

Mhki(t) = Nhki(t) − 	hki(t)

= Nhki(t) −
∫ t

0

Yhi(u) exp{βhk
TZhki(u)}d	hk0(u).

In the above equation, 	hki(t) represents the cumulative intensity function and is a predictable
process called the compensator of Nhki(t). Also, 	hk0(t) = ∫ t

0
λhk0(u)du indicates the cumulative baseline

intensity function. The βhk and 	hk0(t) are unknown parameters that should be estimated. Let Ûβhk and
Ù	hk0 (t) represent the maximum likelihood estimator of βhk [16,17] and the Breslow estimator of 	hk0(t)
[17,18], respectively. Then, the martingale residual for the transition h → k is defined as follows:

ıMhki (t) = Nhki (t) −
∫ t

0

Yhi (u) exp
{
ÛβT

hkZhki (u)
}

dÙ	hk0 (u) .

In the multi-state data, suppose that the last observed time of transition from the state h to the
state k (h → k) for the subject i is called τki, (the minimum of the administrative censoring time Ca,
the individual censoring time (loss to follow-up) Ci and the time of transition to the state k, ∀k ∈
{2, . . . , mi}). Therefore, the martingale residual for the subject i at time τki has the following form:

ıMhki (τki) = Nhki (τki) − exp
{
ÛβT

hkZhki

}
Ù	hk0 (τki) . (2)

Note that, we use ıMhki to represent ıMhki (τki).

2.2.2 Deviance

The deviance defined in Therneau et al. [19] is as follows:

D = 2{log likelihood (saturated model)-log likelihood ( Ûβ)}.
The saturated model is a model with a parameter for every observation. Here, we extend the

definition of the deviance for univariate survival data to the multi-state data. Under mild regularity
conditions, the log-likelihood contribution for each individual can be obtained using counting process
theory as follows:

Li =
mi∑

r=1

[∫ Tir

0

log(λXi(Tir),Xi(Tir),i(t))dNhki(t) −
∫ Tir

Ti(r−1)

λXi(Ti(r−1)),Xi(Tir),i(t)Yhi (t) dt

]
.

Note that λhhi(t) = −
kλhki(t) for k �= h, and δir is a transition indicator (for the subject i) which
equals one if a direct transition is observed at time Tir and zero otherwise.

Then, the definition of deviance for multi-state data with the intensity function in Eq. (1), which
is an extension of the deviance provided by Therneau et al. [19] for survival data, is as follows:

Dhk = 2sup
γhk

n∑
i=1

[∫
Yhi(t)

{
γhki

TZi − ÛβT
hkZi

}
dNhki (t)

−
∫

Yhi (t)
{

exp
(
γhki

TZi

) − exp
(
ÛβT

hkZi

)}
d	hk0 (t)

]
. (3)
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Let γhki be the per-subject estimates of βhk. By taking the first derivation of the above summation
part with respect to γhki and setting it equal to 0, we have:∫

Yhi(t) exp(γhki
TZi)d	hk0(t) =

∫
dNhki(t). (4)

By subtracting Eqs. (3) and (4), Dhki has the following form:

Dhki = −2
[

Mhki + Nhki (t) log
(

Nhki(t) − Mhki

Nhki(t)

)]
.

As mentioned before, we supposed τki is the observed time of transition to the state k (for the
transition from state h to state k). Therefore, the deviance at time τki has the following form:

Dhki = −2

[
ıMhki + Nhki (τki) log

(
Nhki (τki) − ıMhki

Nhki (τki)

)]
. (5)

Note that Nhki(τki) �= 0, and Dhki = −2ıMhki when Nhki(τki) = 0.

2.2.3 Deviance Residuals

The deviance residuals are defined as follows:

Dres
hki = sign

(
ıMhki

)
× √

Dhki. (6)

The deviance residual Dres
hki is equal to zero if the martingale residual is zero (Mhki = 0). The

variables are considered to be fixed over time (not time-dependent). In this paper, the martingale
residuals, the deviances, and the deviance residuals are called risk indices.

2.3 Variable Importance for Multi-State Data
In this section, we introduce an algorithm to evaluate the variable’s importance for multi-state

data. Therneau et al. [19] mentioned that using martingale residuals from a null Cox model as the input
of classification and regression trees worked well for survival data. Then, Duan et al. [6] extended their
proposed algorithm to recurrent event data. Here, we extend their approach to multi-state data.

2.3.1 Two-Step Variable Selection Algorithm

The proposed algorithm has two steps. In the first step, a null multi-state model is fitted as follows:

λhki(t) = Yhi(t)λhk0(t).

This model does not include any variables, and only the baseline intensity functions should be
estimated, which can be estimated using the Breslow estimator [17,18]. Then, the martingale residuals,
the deviances, and the deviance residuals are obtained as three risk indices for each subject. For a
multi-state model with three states (depicted in Fig. 1) (mi = 3), the martingale residuals are defined
as follows:
ıM12i (τ2i) = N12i (τ2i) − Ù	120 (τ2i) ,

ıM13i (τ3i) = N13i (τ3i) − Ù	130 (τ3i) ,

ıM23i

(
τ ∗

3i

) = N23i

(
τ ∗

3i

) − Ù	230

(
τ ∗

3i

)
,
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where τ2i = Ti2 is the observed time of the transition from the state 1 to the state 2, τ3i = Ti3 is the
observed time of the transition from the state 1 to the state 3, and τ ∗

3i = Ti3 − Ti2 is the observed time
of the transition from the state 2 to the state 3. Then, the deviances are as follows:

D12i = −2

[
ıM12i + N12i (τ2i) log

(
N12i (τ2i) − ıM12i

N12i (τ2i)

)]
,

D13i = −2

[
ıM13i + N13i (τ3i) log

(
N13i (τ3i) − ıM13i

N13i (τ3i)

)]
,

D23i = −2

[
ıM23i + N23i

(
τ ∗

3i

)
log

(
N23i

(
τ ∗

3i

) − ıM23i

N23i (τ
∗
3i)

)]
,

and the deviance residuals are defined as follows:

Dres
12i = sign

(
ıM12i

)
× √

D12i,

Dres
13i = sign

(
ıM13i

)
× √

D13i,

Dres
23i = sign

(
ıM23i

)
× √

D23i.

1. Admission in 
ward

2. ICU

3.Death

Figure 1: The multi-state representation of the disease progression of COVID-19 hospitalized patients

In the second step, the random forest, the gradient boosting, and the neural network methods are
applied to the risk indices generated in the first step to evaluate the importance of each variable in
different transitions.

2.4 Machine Learning Models
2.4.1 Random Forest

The random forest method is a supervised ensemble learning algorithm developed by Brieman in
2001. It is constructed by combining several decision tree algorithms to create solutions for complex
problems. In this method, a series of simple unpruned regression trees are constructed by using random
bootstrapped samples that are obtained from the original data sample. The results of the simple trees
are then accumulated to produce a final prediction of the response for the subjects in regression
problems, which is the average of the predictions given by all trees. In the random forest algorithm, in
the first step, for b = 1 to B, a bootstrapped sample K∗ of size N (the original sample size) is drawn
from the training data. Each tree (Tb), in the random forest, is grown for the bootstrapped data by
repeating the following recursive steps for each of the terminal nodes in the tree: a) A set of m variables
is randomly selected from a set of p original variables; b) the best variable/split-point is selected from
the set of m variables chosen in Step (a); and c) the node is split into two daughter nodes. These three
steps are repeated until the minimum predefined node size is achieved (nmin). In the second step, the
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output of all trees (B) is aggregated. A prediction for a new observation is obtained by calculating
1
B

∑B

1 Tb(x).

2.4.2 Gradient Boosting Machine

Gradient boosting machines (GBMs) consist of a group of powerful machine-learning methods
with substantial accomplishments in many practical applications. GBMs can be very adaptable to
the needs of the application. The boosting works based on sequentially adding new models to the
ensemble, so that in each particular iteration, “a new weak, base-learner model is trained with respect
to the error of the whole ensemble learnt so far” [20]. A GBM has been established to connect boosting
with a statistical framework [21–23], which provides the required justification for the hyperparameters
in the model and the methodological foundation for developing further gradient boosting models [20].

In GBMs, successive new models are fitted based on the chosen learning technique; so that
more accurate estimates of the outcome are produced. The main idea underlying this algorithm is
to create “the new base-learners to be maximally correlated with the negative gradient of the loss
function, associated with the whole ensemble” [20]. The loss functions used can be researcher-defined
or standard loss functions derived through trial and error in the past.

2.4.3 Neural Network

Artificial neural networks (ANNs) are machine learning methods that consist of an input layer
of neurons (or nodes, units), at least one hidden layer of neurons, and a layer of output neurons.
Connections between layers are illustrated by numeric values (e.g., weights) through activation
functions. The most widely used form of ANN is the multi-layer perceptron, where the data flows in
a forward direction from the input layer to the output layer. So, the neurons are trained with the back
propagation learning algorithm. In this study, the regression weights were estimated using a tangent
hyperbolic activation function and an identity activation function, which provided better results than
other settings [24].

2.5 Performance Measurement
Here, the loss function (introduced by Cox [17,18]) was considered to assess the performance of

the different variable importance evaluation methods for multi-state data. Suppose that there are q
standardized covariates xhk1, . . . , xhkq for the transition from state h to state k that are associated with
the coefficients ηhk1, . . . , ηhkq, respectively. The absolute values of the coefficients are related to their
importance, such that, for the transition h → k, if the ranks of the absolute value of the coefficients are
1, 2, . . . , q (|ηhk1| has the maximum value), the rank of their corresponding variable importance values
should be 1, 2, . . . , q (from the most to the least important). However, the estimated rank may not be
absolutely correct. In such a situation, if bhk1, . . . , bhkq represent the estimated rank of the covariates for
the transition h → k, at least one pair of parameters satisfies the bhkj > bhki for j < i. The loss function
of the ranking results for the transition h → k is defined as follows:

Loss
(
bhk1, . . . , bhkq; ηhk1, . . . , ηhkq

) =
q∑

i=1

∑
j<i

I
(
bhkj > bhki

) |ηhkj − ηhki|.

Here, I(bhkj > bhki) indicates whether there is an incorrect ranking in the transition h → k,
and |ηhkj − ηhki| is a weighted function that takes into account the severity of the ranking mistake
as mentioned by Cox et al. [17,18].
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3 Simulation Study and Application
3.1 Simulation Study

Simulation studies are presented in this section to evaluate the model performance and to compare
different proposed algorithms.

3.1.1 Data Generation

Mimicking the structure of the real data (depicted in Fig. 1), we consider a three-state process
(h, k ∈ {1, 2, 3}) with three possible transitions. The vector of the observed times of transitions of Ti =
(Ti,12, Ti,13, Ti,23), was generated according to similar studies [25,26]. For the ith subject, the censoring
time was generated according to a uniform distribution, Ci∼Uniform(0, T), where T is the largest
time-point in the study (here, two different values of 3 and 12 months were assumed).

The vector of T ∗
i = (T ∗

i,12, T ∗
i,13, T ∗

i,23) (indicating true transition times) was generated as follows:

I. Three random numbers of ui,12, ui,13, ui,23 were generated from standard uniform distribution.

II. The values of T ∗
i,12 and T ∗

i,13 were generated by solving the following equations:
∫ T∗

i,1k
0 λi,1k(υ1k)dυ1k

+ log(ui,1k) = 0, for k = 2, 3. The Brent’s root funding method [27] was employed.

III. Finally, the value of T ∗
i,23 was generated by solving

∫ T∗
i,23

T∗
i,12

λi,23(υ23)dυ23 + log(ui,23) = 0.

Eventually, the observed transition times Ti were considered by the following relationships:

• Ti,12 = min(T ∗
i,12, Ci),

• Ti,13 = min(T ∗
i,13, Ci),

• Ti,23 =
{

T ∗
i,23 if

(
T ∗

i,12 + T ∗
i,23 ≤ Ci

)
Ci if

(
T ∗

i,12 + T ∗
i,23 > Ci

) .

The transition probability from the first state to the kth (k = {2, 3}) state was calculated using

Pi,1k (T) = λi,1k(T)

λi,12(T) + λi,13(T)
, and patients were eventually transferred to each of these states with a

greater probability.

Software Source codes of this paper are available on Github:

https://github.com/BehnazAlafchi/Variable-importance-for-multi-state-data.

3.1.2 Simulation Result

The performance of our proposed two-step algorithm was evaluated via simulation studies
utilizing the combination of different risk indices with the gradient boosting and random forest
algorithms. We also used the original generated transition times at the first step and then applied
the neural network, gradient boosting, and random forest algorithms at the second step to evaluate
whether it could be useful to use the original survival times instead of risk indices for the variable
selection. We considered 10 covariates in each possible transition, but only three of them were effective.
All of the effective covariates were generated from an uniform distribution U [0, 1]. We simulated multi-
state data with (λ012, λ013, λ023) = (0.15, 0.1, 0.1). The maximum time of follow-up was 3 and 12 months
in different simulation studies. The results were based on two sample sizes, n = 500 and n = 1000, and
each simulation run was based on 1000 iterations.

https://github.com/BehnazAlafchi/ Variable-importance-for-multi-state-data
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Tables 1 and 2 show the values of the loss function provided by different methods. Table 1 provides
the results for a 1-year study, and Table 2 provides the results for a 3-month study. In these tables, the
first column indicates the type of transition, the second column gives the values of the three effective
parameters, and the subsequent columns give the mean value of the loss function provided by different
methods. Columns 3 and 5 give the results for D, columns 6 and 8 show the results for DR, and
columns 9 and 11 show the results for MR. As the simulation results show, the gradient boosting
method on MR and DR provided the smallest loss values in almost all simulations for all transitions,
respectively. The results also revealed that the proposed two-stage method has better performance for
larger sample sizes. However, its performance was almost similar across different lengths of studies.
The last column also shows the performance of the traditional multi-state model fitted to the generated
data in simulations. According to the results, machine learning models outperformed the traditional
model based on the Cox proportional hazards model.

Table 1: The values of loss function for different classification methods and different residuals/time-
to-event with follow-up time 365 days

Parameters D.
ANN

D. RF D.
GBM

DR.
ANN

DR.
RF

DR.
GBM

MR.
ANN

MR.
RF

MR.
GBM

SMSM

n = 500
Transition 1
→ 2

2/1.7/0.8 10.54 11.15 12.04 27.72 3.18 0.34 28.26 2.19 0.18 29.33

Transition 1
→ 3

2/1.9/0.1 9.50 10.49 12.12 7.41 4.07 0.48 24.91 1.87 0.26 27.45

Transition 2
→ 3

1/0.9/0.1 6.28 5.87 6.54 3.75 2.26 0.52 12.42 2.89 0.39 13.50

Transition 1
→ 2

2/1/0.1 9.09 8.63 9.05 20.90 2.54 0.67 21.18 1.61 0.30 22.14

Transition 1
→ 3

2/0.8/0.2 9.46 8.29 8.56 6.11 4.06 2.19 18.62 3.06 1.13 20.97

Transition 2
→ 3

1.5/0.5/0.3 7.88 7.15 8.17 5.71 3.32 2.07 15.79 3.54 1.60 15.45

Transition 1
→ 2

1/0.9/0.1 6.31 6.34 3.37 12.37 0.74 3.12 12.34 2.60 0.36 13.47

Transition 1
→ 3

1/0.6/0.1 6.13 5.77 5.65 2.79 4.45 3.09 8.80 3.43 1.20 11.21

Transition 2
→ 3

1/0.9/0.3 6.30 6.57 7.10 3.52 3.08 0.82 12.92 3.39 0.67 14.16

n = 1000
Transition 1
→ 2

2/1.7/0.8 8.51 9.01 10.14 27.08 1.05 0.08 28.79 0.74 0.03 29.38

Transition 1
→ 3

2/1.9/0.1 8.57 8.12 9.23 6.46 1.62 0.26 25.54 0.65 0.08 27.44

Transition 2
→ 3

1/0.9/0.1 6.04 5.63 5.49 3.31 1.03 0.32 13.22 1.31 0.16 13.52

Transition 1
→ 2

2/1/0.1 6.99 7.94 8.30 21.26 1.52 0.35 21.74 1.02 0.04 22.13

Transition 1
→ 3

2/0.8/0.2 8.23 6.74 7.62 6.65 2.52 1.28 19.74 0.41 1.66 21.18

(Continued)
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Table 1 (continued)

Parameters D.
ANN

D. RF D.
GBM

DR.
ANN

DR.
RF

DR.
GBM

MR.
ANN

MR.
RF

MR.
GBM

SMSM

Transition 2
→ 3

1.5/0.5/0.3 6.07 6.34 6.13 5.07 0.72 1.86 15.14 1.88 0.43 15.89

Transition 1
→ 2

1/0.9/0.1 6.56 6.03 5.89 13.05 1.48 0.41 12.85 0.99 0.18 13.52

Transition 1
→ 3

1/0.6/0.1 6.19 5.21 5.41 2.97 3.35 1.93 10.05 2.18 0.55 11.58

Transition 2
→ 3

1/0.9/0.3 5.64 6.37 6.43 3.74 1.47 0.55 13.69 1.63 0.38 14.36

Note: MR.ANN: Artificial neural network based on martingale residual MR.RF: Random forest based on martingale residual MR.GBM:
Gradient boosting machine based on martingale residual D.ANN: Artificial neural network based on deviance D.RF: Random forest based
on deviance D.GBM: Gradient boosting machine based on deviance DR.ANN: Artificial neural network based on deviance residual DR.RF:
Random forest based on deviance residual DR.GBM: Gradient boosting machine based on deviance residual SMSM: Stepwise transition-
specific proportional intensities multi-state model For each row, two least values are indicated in bold.

Table 2: The values of loss function for different classification methods and different residuals/time-
to-event with follow-up time 90 days

Parameters D.
ANN

D. RF D.
GBM

DR.
ANN

DR.
RF

DR.
GBM

MR.
ANN

MR.
RF

MR.
GBM

SMSM

n = 500
Transition 1
→ 2

2/1.7/0.8 9.62 11.02 1.77 26.47 3.02 0.41 27.73 2.46 0.24 29.37

Transition 1
→ 3

2/1.9/0.1 10.28 9.37 10.92 7.87 4.14 0.42 24.67 1.78 0.25 27.49

Transition 2
→ 3

1/0.9/0.1 6.07 6.10 6.78 3.96 2.72 0.61 12.44 3.09 0.50 13.51

Transition 1
→ 2

2/1/0.1 8.77 8.44 9.59 20.51 2.04 0.62 20.99 1.76 0.19 22.11

Transition 1
→ 3

2/0.8/0.2 9.09 8.38 9.44 5.33 4.17 2.09 18.58 2.79 1.12 21.01

Transition 2
→ 3

1.5/0.5/0.3 7.32 6.30 6.82 4.05 2.76 1.16 14.37 2.95 1.10 15.56

Transition 1
→ 2

1/0.9/0.1 6.15 5.88 6.53 12.50 3.06 0.87 12.25 2.63 0.36 13.49

Transition 1
→ 3

1/0.6/0.1 6.36 5.43 5.77 3.49 4.15 2.61 8.78 3.04 1.26 11.02

Transition 2
→ 3

1/0.9/0.3 6.85 6.36 6.38 4.39 3.36 1.01 12.75 3.80 0.72 14.02

n = 1000
Transition 1
→ 2

2/1.7/0.8 8.06 10.45 10.42 27.97 1.07 0.06 28.83 1.01 0.02 29.38

Transition 1
→ 3

2/1.9/0.1 7.89 8.61 10.24 9.72 1.08 0.32 26.37 0.51 0.08 27.45

Transition 2
→ 3

1/0.9/0.1 6.26 5.93 6.54 4.85 1.24 0.33 13.15 1.57 0.19 13.53

(Continued)
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Table 2 (continued)

Parameters D.
ANN

D. RF D.
GBM

DR.
ANN

DR.
RF

DR.
GBM

MR.
ANN

MR.
RF

MR.
GBM

SMSM

Transition 1
→ 2

2/1/0.1 6.02 7.45 8.42 21.32 1.35 0.28 21.75 0.87 0.03 22.17

Transition 1
→ 3

2/0.8/0.2 8.74 6.99 8.21 6.27 2.77 1.28 19.97 1.95 0.47 21.18

Transition 2
→ 3

1.5/0.5/0.3 6.10 6.31 6.32 4.72 1.68 0.85 14.98 1.94 0.58 15.89

Transition 1
→ 2

1/0.9/0.1 6.31 5.84 6.29 12.97 1.36 0.44 12.97 1.14 0.19 13.49

Transition 1
→ 3

1/0.6/0.1 6.32 5.51 5.70 3.84 3.72 1.48 10.12 2.49 0.56 11.58

Transition 2
→ 3

1/0.9/0.3 5.81 6.22 6.41 4.87 1.85 0.60 13.96 2.25 0.43 14.31

Note: MR.ANN: Artificial neural network based on martingale residual MR.RF: Random forest based on martingale residual MR.GBM:
Gradient boosting machine based on martingale residual D.ANN: Artificial neural network based on deviance D.RF: Random forest based
on deviance D.GBM: Gradient boosting machine based on deviance DR.ANN: Artificial neural network based on deviance residual DR.RF:
Random forest based on deviance residual DR.GBM: Gradient boosting machine based on deviance residual SMSM: Stepwise transition-
specific proportional intensities multi-state model For each row, two least values are indicated in bold.

4 Application

We apply our proposed two-step variable selection algorithm to a dataset of COVID-19 hospital-
ized patients. Each run took 30 s using an HP i5-laptop, RAM 8. The information of 2943 hospitalized
patients with COVID-19 from February 20, 2020, to June 02, 2021 in Farshchian Medical Center and
Shahid Beheshti Medical Center in Hamadan province, the west of Iran, was enrolled (Table A in the
Appendix A). All of the patients were admitted to the ward (state 1). Then a patient may be transferred
to the ICU (state 2) or die (state 3). The outcomes of interest were time to transfer to the ICU, time
to death, and time to death after admission to the ICU. All patients who were alive at the end of the
study were censored for death, and those who did not need to transfer to the ICU during the study
were censored for admission to the ICU. The multi-state structure of the data is depicted in Fig. 1. The
matrix below shows the number of observed transitions between different health states:

� =

1 2 3
1
2
3

⎛
⎝2016 852 75

0 438 414
0 0 489

⎞
⎠

This matrix gives the number of direct transitions between health states. In total, 852 patients were
transferred to the ICU. A total of 489 patients died during the follow-up; among them, 414 patients
died in the ICU and 75 patients died in the ward. In addition, 2454 patients were recovered and were
considered as censored. Among them, a number of 2016 patients were censored for both transfer to
ICU and death events, and a number of 438 patients were censored for death.

The mean (SD) and median age of patients were 60.2 (17.11) and 61.0 years, respectively. The
clinical and demographic information of the patients are given in Appendix A. Here, we applied
our proposed two-step algorithm to detect associated covariates with the risk of transition between
different health states. We have used MR at the first step and gradient boosting at the second step.
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Figs. 2a–2c depicts the variable importance associated with Admission in ward → ICU, Admission
in ward → Death, and ICU → Death, respectively. In this figure, the variables are ranked according
to their importance. Based on Fig. 2a, the most important variables for the time from admission in
the ward to transfer to the ICU were saturation of peripheral oxygen (SPO2), age, lymphocyte count
(LYM), lactate dehydrogenase (LDH), hemoglobin (Hb), blood sugar (BS), initial heart rate, body
mass index (BMI), erythrocyte sedimentation rate (ESR), and Oseltamivire, respectively. The most
important variables for the transition from ward to death were age, SPO2, LYM, LDH, Hb, initial
heart rate, ESR, heart disease, BMI, and cancer, respectively (Fig. 2b). Moreover, as given in Fig. 2c,
SPO2, age, Hb, hydroxychloroquine, LDH, LYM, BS, ESR, initial heart rate, BMI, and Koltra were
the most important variables at the time of transition from ICU to death. Among many others, these
variables were chosen as the most important (presented in Appendix A ).

(a) (b)

(c)
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Hb
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Figure 2: The results of variable importance based on martingale residual and gradient boosting
algorithm for transitions from (a) Admission in ward to ICU, (b) Admission in ward to death, and (c)
ICU to death, in hospitalized COVID-19 patients

Our case study revealed that SPO2 was an important predictor of the time of transition to the ICU
and the time of death (among patients who were transferred to the ICU or not). Other studies have
revealed that SPO2 affects the survival time and the length of hospital stay in COVID-19 patients [28].
According to Zhao et al. [29] a lower level of oxygen saturation at the time of admission is associated
with a longer length of stay in the hospital.

Consistent with other studies, age was one of the most important predictors of the time of
transition to ICU and the time of death among patients who were either transferred to ICU or not
[28–31]. Several studies revealed that older patients were more likely to be transferred to the ICU and
die [28,29]. Moreover, it has been shown that the age of the patients can influence the effects of other
risk factors such as LYM on COVID-19 outcomes [32], which is an important risk factor for the disease
progression [31,33]. These findings are consistent with the results of previous studies proposing that
have shown that lower levels of LYM are related to the higher risk of admission to the ICU [32,34],
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such that ICU admitted patients had a decreased fraction of LYM compared to the other patients
who were admitted to the ward [29]. Moreover, lower levels of LYM in peripheral blood were observed
among patients who died [29].

The results also showed that the level of Hb is another important predictor for all three transitions,
especially for mortality among ICU admitted patients. Other researchers have conducted different
studies to evaluate the association between the severity of the disease or mortality and anemia among
COVID-19 patients and they have received controversial results [30,35–39]. A meta-analysis study has
shown that the levels of Hb were considerably lower than the normal level in patients with severe
disease [40]. Several studies, mostly conducted in China, have shown an association between anemia
and poor outcomes in hospitalized patients, and this may be because of its impact on immunity [38,39].

5 Discussions and Conclusions

Estimating variable importance in a multi-state process can be a challenging issue due to the
complex relationships between variables. Classic variable selection methods like stepwise proportional
hazards regression or penalized methods fail to provide an estimation of variable importance or
considering complex/non-linear relationships between the inputs and outputs as well as the interaction
between covariates. Therneau et al. [19] suggested that the martingale residual obtained from a null
Cox model can be used as the outcome variable, so that usual regression analysis or classification
methods like machine learning techniques can be applied to the new outcome variable (martingale
residuals), and they provide very good results for survival data. This approach has also been applied
for analyzing multivariate survival data like recurrent events. Nevertheless, few attempts have been
made in relation to the multi-state data. In this paper, we proposed a two-step algorithm to evaluate the
variable’s importance for MSMs. We applied neural network, random forest, and gradient boosting
algorithms to the martingale residuals, deviance, and deviance residuals made from an MSM and
compared their results. The simulation studies revealed that using gradient boosting on the martingale
residuals and deviance residuals outperforms other algorithms. This may be due to the fact that the
gradient boosting is trained sequentially, so that in the training process the errors in the previous steps
are corrected. This is in contrast to methods like random forest, where the trees are parallel and are
made independently. Gradient boosting is also able to capture complex patterns in the data. Moreover,
the individual predictions, obtained from several independent trees (that are determined in any order)
in the random forest, are aggregated (by the principal of the majority vote or the average value), while
the sequence of gradient boosting does not change (it runs in a fixed order). Boosted trees are prone to
overfitting and begin modeling the noise in the presence of noisy data, despite the benefits of gradient
boosting.

In this study, we assumed a continuous and Markov multi-state process. Nevertheless, in other
contexts, a semi-Markov or non-Markov process could be defined as well. In addition to considering
ensemble methods, other model selection methods like support vector machines and deep learning
methods can be introduced into the proposed residuals, which can be considered as a future work.
Also, optimization of tuning parameters using heuristic algorithms like genetic algorithms or Bayesian
optimization methods is worth investigating in future studies.

Here, we used our proposed method to identify the important variables at the time of transition
from the ward to the ICU and death among COVID-19 patients who were admitted to the hospital.
It should be noted that our goal in this case was simply to identify the most important variables
influencing the risk of transitioning between different health states. To assess the direction and impact
of the selected variables on the risk of different transitions, the use of classical multi-state models can
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be used as a complementary method. It is noteworthy that while there are too many studies that have
utilized machine learning methods in COVID-19 data sets, no study has hybridized machine learning
and multi-state methods, especially in analyzing COVID-19 data sets. This highlights the novelty aspect
of this study.

Limitations

There were some limitations to the present study. In the data used in this study, information on
only three states was available, including admission to the ward, ICU, and death. Although, there
were patients who were retransferred to the ward from the ICU, their information was not available.
So, our example had the illness-death multi-state structure. It is suggested to analyze more complex
multi-state data sets with the provided model in this study. Another limitation was that dealing with
time-dependent covariates is only possible by using martingale residual and adjusting martingale
residual. Despite these limitations, the proposed method can be easily applied to the context of high-
dimensional data like genome-wide association studies and medical image data to detect the most
important genes or brain regions associated with survival outcomes more accurately than classic
statistical methods.
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Appendix A. Characteristics of COVID-19 patients

Table A: Characteristics of the study population infected with COVID-19 (n = 2943)

Variable Category Number Percent

Sex Male 1565 53.2
Female 1378 46.8

Marital status Married 2560 87.4
Single 368 12.6
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Table A (continued)

Variable Category Number Percent

Resident Urban 2452 83.3
Ruler 490 16.7

Smoking No 2727 92.7
Yes 216 7.3

Substance abuse No 2740 93.1
Yes 203 6.9

Lung disease No 2641 89.7
Yes 302 10.3

Heart disease No 2487 84.5
Yes 456 15.5

Diabetes No 2384 81.0
Yes 559 19.0

Kidney disease No 2821 95.9
Yes 122 4.1

Hypertension No 1942 66.0
Yes 1001 34.0

Liver disease No 2919 99.2
Yes 24 0.80

Cancer No 2884 98.0
Yes 59 2.0

Weakness, lethargy, and
fatigue

No 2620 89.0
Yes 323 11.0

Lack of smell No 2884 98.0
Yes 59 2.0

Vomiting No 2219 75.4
Yes 724 24.6

Diarrhea No 2654 90.2
Yes 289 9.8

Fever No 1417 48.1
Yes 1526 51.9

Shortness of breath No 1220 41.5
Yes 1723 58.5

Muscle pain No 1610 54.7
Yes 1333 45.3

Stomachache No 2926 99.4
Yes 17 0.6

Chest pain No 2881 97.9
Yes 62 2.1

Loss of consciousness No 2919 99.2
Yes 24 0.8

Sore throat No 2837 96.4

(Continued)
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Table A (continued)

Variable Category Number Percent

Yes 106 3.6
Cough No 1173 39.9

Yes 1770 60.1
Headache No 2425 82.4

Yes 518 17.6
Blood pressure Normal 2776 94.9

Abnormal 149 5.1
Oxygen therapy No 123 4.2

Yes 2820 95.8
Mechanical ventilation No 2365 80.4

Yes 578 19.6
Oseltamivir No 2680 91.1

Yes 263 8.9
Azithromycin No 1725 58.6

Yes 1218 41.4
Kaltura No 1217 41.4

Yes 1726 58.6
Hydroxychloroquine No 1490 50.6

Yes 1453 49.4

Variable Mean SD

Age 60.2 17.11
BMI 26.64 4.49
Initial body temperature 36.91 1.72
Initial heart beat 92.17 15.44
SPO2 84.41 10.89
ESR 43.17 29.20
LDH 597.00 276.13
BS 146.87 74.10
Hb 13.86 2.13
LYM 22.52 11.68

Note: BMI: body mass index; SPO2: saturation of peripheral oxygen; ESR: erythrocyte sedimenta-
tion rate; LDH: lactate dehydrogenase; BS: blood sugar; Hb: hemoglobin; LYM: lymphocyte count.
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