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ABSTRACT

3D human pose estimation is a major focus area in the field of computer vision, which plays an important role
in practical applications. This article summarizes the framework and research progress related to the estimation of
monocular RGB images and videos. An overall perspective of methods integrated with deep learning is introduced.
Novel image-based and video-based inputs are proposed as the analysis framework. From this viewpoint, common
problems are discussed. The diversity of human postures usually leads to problems such as occlusion and ambiguity,
and the lack of training datasets often results in poor generalization ability of the model. Regression methods are
crucial for solving such problems. Considering image-based input, the multi-view method is commonly used to
solve occlusion problems. Here, the multi-view method is analyzed comprehensively. By referring to video-based
input, the human prior knowledge of restricted motion is used to predict human postures. In addition, structural
constraints are widely used as prior knowledge. Furthermore, weakly supervised learning methods are studied and
discussed for these two types of inputs to improve the model generalization ability. The problem of insufficient
training datasets must also be considered, especially because 3D datasets are usually biased and limited. Finally,
emerging and popular datasets and evaluation indicators are discussed. The characteristics of the datasets and the
relationships of the indicators are explained and highlighted. Thus, this article can be useful and instructive for
researchers who are lacking in experience and find this field confusing. In addition, by providing an overview of
3D human pose estimation, this article sorts and refines recent studies on 3D human pose estimation. It describes
kernel problems and common useful methods, and discusses the scope for further research.
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1 Introduction

Human pose estimation is a research hotspot in the field of computer vision, similar to face
recognition [1–4]. It is useful for estimating human pose information from images or videos, and it
can be integrated with other tasks such as target recognition [5–7], segmentation [8], regression [9],
classification [10] and detection [11]. Human pose estimation can be categorized into two types, namely
2D human pose estimation and 3D human pose estimation, using image channels. Common RGB
images are usually referred to as 2D images, whereas a channel with greater depth is added to obtain a
3D RGB-D image, as shown in Fig. 1. In recent years, human pose estimation has attracted increasing
attention for applications such as driver condition monitoring [12] and pedestrian recognition [13–15].

Figure 1: (a) Human body image; (b) 2D human pose estimation; (c) 3D human pose estimation

In particular, 3D pose estimation has witnessed rapid development. It involves estimating the 3D
joint positions of the human body from a single view. Compared with 2D detection, 3D detection
includes depth information, which is used to calculate the 3D coordinates of the human joint
positions. Therefore, the precision of 3D human pose estimation is higher than that of 2D human
pose estimation [16]. Moreover, its application scope and research value are also greater. In real
scenarios, depth information can usually be obtained in two ways. One is to collect the depth data using
special hardware equipment, such as 3D lidar and RGB-D [17] cameras; this approach usually has
considerable hardware requirements and involves high costs. The other is to estimate the depth using
single or multiple visible-light image sequences from the same scene [18–20], this approach requires
correct device calibration and uses specific information for the scenario or device [21].

Currently, many breakthroughs have been achieved in studies on 2D human pose estimation
[22–24]. By contrast, 3D human pose estimation has encountered several bottlenecks owing to the
inherent depth ambiguity in mapping a single view from 2D to 3D, self-occlusion in a 3D space, and a
lack of 3D data for specific scenarios. The main area of concern is single-view 3D pose estimation [25].
As it only uses a monocular camera, it involves issues such as uncertain depth and person-to-camera
proportion. Nevertheless, the demand for human pose estimation from a single view has increased.
Therefore, how to analyze and calculate the 3D human pose effectively and correctly using various
algorithms has long been the focus of research in this field.
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2 Research Overview

As deep neural networks have good feature extraction capabilities, many methods [26–31] directly
employ deep convolutional neural networks (CNNs) to estimate 3D images from 2D images or
other sources (such as point clouds [32,33]). Existing 3D estimation methods are based on two main
methods. One method is to directly predict the 3D pose from an image. To avoid the acquisition of
2D–3D matching data, many studies [34–40] have decomposed the task of 3D pose estimation into
two independent stages: First, existing 2D pose estimation methods are used to predict joint positions
in the image space; then, a mapping is learned to extend them to a 3D space. The other method is
to reduce the complexity of the entire task. This approach extracts features from images and directly
outputs the information of 3D human joint positions. It is easy for a network to learn 2D-to-3D
mapping. Meanwhile, 2D pose estimation is more mature than 3D estimation; hence, this method can
easily use reprojection to perform semi-supervised learning, which makes it more mainstream than the
first method. Many previous studies have investigated 3D human pose estimation. Inspired by [41],
this article classifies the input methods mainly as image-based input and video-based input. These
two input methods have an inherent logical relationship. Image-based input methods mainly adopt
mainstream estimation techniques. The problems that need to be solved are the self-occlusion of joints
in single-person photos and interpersonal occlusion in multi-person photos. The key is to use multi-
view images [9], which yields excellent results. Moreover, owing to the lack of datasets, how to improve
the generalization ability of the model has emerged as a research hotspot. Researchers are committed
to creating new datasets or pre-processing data. Another effective method is to use weakly supervised
learning for training. Video-based 3D human pose estimation focuses on how to use the temporal and
spatial information of video sequences. Compared with image-based estimation, the advantages of
video-based estimation are as follows: (1) The depth information contained in a single image is limited;
however, a network can learn additional depth information from a video sequence. (2) Allowing the
model to “see” additional images of people at different times from the same perspective reduces the
depth ambiguity and narrows the spatial range of 3D poses; in fact, a 2D image can correspond to
an infinite number of 3D poses. In this regard, our analysis focuses on the video-based method of
using prior knowledge to improve the accuracy of the network as well as the use of weakly supervised
learning for training. Considering that multi-view classification is similar to image-based estimation,
a detailed description is not provided here.

3 Image-Based Input

Existing studies on 3D pose estimation with image-based input are mainly conducted from two
aspects. One is to solve the problem of human occlusion, and the other is to improve the generalization
ability of the model [42–61]. Most existing methods are based on regression. The self-occlusion of
human joints and interpersonal occlusion contribute toward ambiguity in 3D human pose estimation.
As image-based estimation cannot consider sequence information to solve the occlusion problem,
it is necessary to consider multiple perspectives or further investigate the image information. It is
extremely difficult to manually annotate 3D human poses in 2D images. Compared with 2D pose
datasets, existing 3D pose datasets have low diversity in terms of poses and environments. This severely
limits the use of supervised 3D pose estimation models. Many methods have attempted to train the
models in a weakly supervised manner. Dataset bias is an important challenge. To address this problem,
weakly supervised learning methods and new datasets are usually employed in order to improve the
generalization ability of the model. This section also discusses some solutions to the problem of
identification ambiguity caused by human diversity.
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3.1 Obtaining the 3D Coordinates Based on the Violent Regression Method
The detection-based model directly returns the key points of the human body via 2D joint

detection, and the performance of this method has been verified. In a 3D space, owing to its high degree
of nonlinearity, the output space is large, which leads to challenges in the detection of human joints. At
present, the regression-based model is highly popular. The regression task is to estimate the position of
a joint relative to the root joint. It makes the relative position relationship between the parent and child
joints easier to obtain. This method usually employs a multi-task training framework by combining
detection and regression. For example, in reference [62], a multi-task framework was employed and
a pre-training strategy was adopted to address the dependencies between various parts of the body,
and the correlation between them was learned subsequently. Because the traditional regression method
does not obtain the structure information effectively, the author proposed a structure-aware regression
method that returns not the root-related joint but the parent-related joint. As the data variance of the
parent-related joint is smaller than that of the root-related joint, the network regression becomes easier.
Besides the mean square error of each bone, the author constrained some long-distance joint pairs to
effectively mitigate the cumulative error [63].

3.2 Solving the Problem of Occlusion
The occlusion problem is essentially a problem of missing human key points. Because the pose

estimation information of a monocular image is not perfect, the estimation algorithm can usually
obtain only the relative coordinates of the human body key points (not the absolute coordinates). To
address this problem, related studies have adopted a multi-view method in order to obtain the absolute
position of the 3D pose of the human body. The multi-view method uses monocular cameras to capture
the same object from different viewpoints at the same time. This process uses a 2D detector to locate the
2D joints in each view and then performs robust triangulation for 2D detection in each view to obtain
the 3D joint positions. Some researchers have adopted multi-view modeling to overcome the problem
of relying on single-view RGB images to train the network [64]. Although the multi-view method is
effective, its acquisition cost is relatively high. Furthermore, researchers have used specific image data,
i.e., mirror data, which comprise monocular images with multi-view information. In addition, the
ground-truth values have been converted into the Mirrored-Human dataset by using an optimization
method [65]. For a small number of cameras, in reference [66], a differentiable epipolar transformer was
proposed to improve the multi-view pose estimation so that the 2D detector can use the 3D perception
features to improve the 2D pose estimation. When a 2D position p in the current view is given, the
corresponding point p0 is first found in the adjacent view. Then, the feature at p0 is combined with the
feature at p to generate a 3D perceptual feature at p. An epipolar transformer uses epipolar constraints
and feature matching to approximate the feature at p0. However, this method has some limitations.
When the perspective of adjacent camera views is too large, a certain 3D key point might be blocked,
which makes feature matching more difficult. The method proposed in reference [67] can overcome
this limitation to some extent. Microsoft Research Asia has proposed a 3D human pose estimation
method based on cross-view information fusion [68]. This method first establishes a CNN with multi-
view images as input, which can fuse the information from other viewpoints with that from the current
viewpoint to obtain a more accurate 2D posture. A recursive pictorial structure model (RPSM) has
been proposed to iteratively optimize the 3D pose obtained by the current PSM. The quantization
error is reduced step by step from coarse to fine in order to obtain a more accurate 3D pose.

In contrast to the traditional multi-view method, it has been assumed in reference [67] that the
video frames of different cameras are independent, although this method is based on video input. The
video frames are obtained in chronological order and input by iteration. Given a certain frame in the
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camera, the detected 2D key points are matched with the 3D pose predicted using the historical frames.
If the matching is successful, the 3D joint positions of the target are updated according to the latest
2D key points. If the result is unmatched, the detected 2D key points will be retained and updated to
a new 3D pose after the threshold is reached. Using its self-made dataset, this approach can achieve
154 fps with 12 cameras and 34 fps with 28 cameras.

Other excellent methods [69] have also been proposed to use part of the UV map to describe
humans occluded by objects. High-latitude features are extracted by the UV map recovery branch to
supervise the training of the color image encoder. The estimation of the complete human body shape is
converted into a UV map restoration problem. In reference [70], the bottom-top method was adopted
to detect the 3D human pose. It directly uses an absolute root map to sort each person’s distance and
performs calculations for the nearby human first in order to avoid overlap. This method can overcome
the problem of inaccurate calculation of PAFs caused by human occlusion and overlap (commonly
encountered in the case of dense crowds). The swoop network in reference [71] uses multi-person pose
estimation, which can effectively deal with human occlusion and interaction caused by detection errors.
The introduced discriminator enhances the effectiveness of human poses by closely interacting with
the camera center coordinates.

In the case of severe occlusion, researchers have proposed an innovative multi-view method to
construct a voxel-based expression of the scene (including people), as shown in Fig. 2. First, the
detection network is used to calculate the approximate position of the human in 3D. Second, the pose
estimation network is used to detect the fine 3D human pose around each detected position. This
method can make direct inferences in a 3D space without making any hard decisions on 2D images.
The process is divided into two steps: (1) The key points in each perspective are clustered into multiple
instances; (2) the key points of the same person in different perspectives are associated. The limitation
of this method is that the anchor size must be set in advance for different objects. This prolongs the
calculation process and thus makes it difficult to use the method in practical applications [72].

Figure 2: Network structure of CPN

3.3 Improving the Model Generalization Ability
Supervised learning models are strongly dependent on labeled samples and suffer from dataset

bias. To improve their generalization ability, some recent studies [73,74] have used weakly supervised
learning techniques in order to reduce the need for 3D-pose-GT annotations. Most of these studies
involve auxiliary tasks, such as multi-view 2D pose estimation to train the 3D pose estimator [75,76].
Instead of using 3D-pose-GT for monitoring, the loss function is employed to monitor the 3D-pose
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network based on the 2D pose of the multi-view projection. Therefore, some of these methods still
require many annotations in terms of paired 2D-pose-GT [77–79], multi-view images [80], and known
camera parameters [3].

In general, the representative datasets of existing machine vision techniques are uniformly
distributed; however, there is usually a large amount of long-tailed data in actual training. This
disagreement in the distribution results in data imbalance. Previous studies have adopted a rebalancing
strategy to adjust the network training. Thus, they can make expectations closer to the distribution
of tests by resampling samples in small batches or by using reweighted sample losses. However, this
method affects the learning of deep features to a certain extent, such as by increasing the risk of
over-fitting and under-fitting [81]. For the 3D human pose estimation task, the “local” human pose
does not suffer from severe long-tail problems statistically, because each local pose may have been
learned from the training data even if the overall pose may not have occurred in the data. The structure
decomposes all the key points of the human body into several groups initially, because each key point
in the group has a strong correlation, whereas the correlation between groups is relatively weak. First,
the key points in each group pass through an independent sub-network to strengthen the calculation
of local relationships (features). Second, the “low-dimensional global information” is calculated from
the remaining key points of other groups and added back to this group in order to express the weak
correlation between the key points inside and outside the group. The intra-group key point learning
process reduces the dependence on weakly correlated key points outside the group without loss of
global consistency by controlling the “global information” dimension. As the dependence on the
weakly correlated key points is reduced, the model can reflect the distribution of “local” poses more
effectively. Thus, it can achieve better generalization to new combined poses [82]. The flowchart of the
algorithm is shown in Fig. 3.

Figure 3: SRNet structure diagram: (a) Fully connected layer; (b) Group connected layer; (c) Split-
recombine layer; (d) Convolution layer for temporal models

In existing methods [82], the parameters of the fusion model depend on a specific camera, and it
is difficult to generalize them to a new environment. To solve this problem, in reference [83], a method
was proposed to decompose the original fusion model into two parts: (1) A common model shared
by all the cameras and (2) a lightweight transformation matrix for specific cameras. Moreover, the
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meta-learning algorithm is used to pre-train large-scale multi-camera data in order to maximize the
generalization ability of the model.

3.3.1 Weakly Supervised Learning

In reference [84], a network structure called RepNet was proposed on the basis of reprojection
adversarial training in a weakly supervised manner, as shown in Fig. 4. It does not require the
corresponding 3D pose as a supervision signal; however, it has good generalization ability for unknown
data. This model consists of three parts. The first part involves pose and camera estimation. The
network employs a dual-branch structure; one branch performs the network estimation of poses, and
the other branch performs the network estimation of the camera parameters. The second part is the
reprojection layer. Its main function is to map the generated 3D pose to a 2D pose. Thus, the input
and output can be linked to facilitate model training. The third part is the critic network. It employs a
dual-branch structure, where the first branch introduces the KCS condition (specifically, the input is a
3n 3D pose structure), while the second branch is a fully connected layer with the input 3n-dimensional
matrix.

Figure 4: Network structure of RepNet. (1) A pose and camera estimation network; (2) A critic
network; (3) A reprojection network

3.3.2 Solving the Problem of Insufficient Data

Although 3D human pose estimation has achieved considerable success, the 3D annotation for
RGB images is a labor-intensive, time-consuming, and expensive process. Existing datasets are biased,
and most of them are indoor datasets. Moreover, the actions included only cover a few selected
daily behaviors. In reference [85], a new dataset called AMASS was proposed. This dataset is biased
and can only deal with problems involving limited datasets. In reference [86], a dataset evolution
framework was proposed for data enhancement operations (crossover, transformation, etc.), and new
3D skeletons were generated in a 3D space. For enhanced data, a cascade network (TAGNet) was
proposed to predict the final 3D skeleton. Pavlakos et al. used the weakly ordered deep relationship
between key points for supervision [87]. Hemlets used a heat map triplet loss as the ground truth to
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encode the explicit depth ordering of adjacent key points. In reference [84], a generative adversarial
training method was proposed; it uses a discriminator for weak supervision to overcome the problem
of insufficient 3D annotation datasets.

3.4 Solving the Problem of Human Posture Diversity
One of the problems in the process of 3D human pose estimation is that different 3D poses

may exhibit similar 2D projections. Human motion in the real world follows the laws of kinematics,
including static/dynamic structures. Many studies [88–90] have employed simple structural constraints,
such as symmetrical bone length [90] and limited joint angles [91], to promote 3D joint prediction.
Most methods directly express this task as a coordinate regression problem without fully considering
the inherent kinematic structure of the human body. However, this approach often leads to ineffective
results. Therefore, it is of great significance to integrate the prior knowledge of kinematics into the
deep model. Regarding the prior knowledge of human structure, Luvizon et al. [92] proposed a gradual
method that clearly explains the different degrees of freedom between the various parts of the body.
Sharma et al. [37] synthesized different reasonable 3D posture samples under the estimated 2D posture
by generating the model of the automatic encoder based on the depth condition. Fang et al. [35]
designed a deep grammatical network to explicitly encode the human dependencies in order to enhance
the spatial consistency of the estimated 3D human poses by combining the geometric dependencies
between different body parts. In reference [84], the motion chain characterization was encoded through
the network layer, where the bone length and motion angle information was introduced. A generic
combination of GCN and FCN [69] can also improve the representation ability. However, most of the
aforementioned methods have ignored the kinematic structure and view correspondence. The intrinsic
effectiveness of 3D poses has not been studied from a systematic and comprehensive perspective. In
reference [93], optimization of the kinematic structure of 2D input with noise was proposed as the key
to obtaining accurate 3D estimation. This process is shown in Fig. 5.

Figure 5: Overview of the framework
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Initially, perspective projection is used to correct the 2D input containing noise (represented as red
dots) and the 2D joints. Then, the joint motion and the human topology are explicitly decomposed.
Finally, the unreliable 3D poses (represented by red crosses) are eliminated to complete the entire task.
The three aforementioned steps are seamlessly integrated into the deep neural model to form a deep
kinematics analysis pipeline that considers the static/dynamic structures of the 2D input and 3D output
simultaneously. This experiment pioneered the use of perspective projection to refine 2D joints.

Table 1: Quantitative comparison of MPJPE

Protocol 1: MPJPE Dir. Disc. Eat Greet Phone Photo Pose Purch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez et al.
ICCV’17 (T = 1) [88]

51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 63.4 59.1 65.1 49.5 52.4 62.9

Luvizon et al. CVPR’18
[92]

49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2

Hossain et al.
ECCV’18(T = 5) [94]

48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3

Lee et al. ECCV’18
(T = 5) [95]

40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8

Pavllo et al. CVPR’19
(T = 1) [90]

47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8

Pavllo et al. CVPR’19
(T = 9) [90]

- - - - - - - - - - - - - - - 49.8

Protocol 2: PA-MPJPE Dir. Disc. Eat Greet Phone Photo Pose Purch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Sun et al. ICCV’17
(T = 1) [63]

42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3

Fang et al. AAAI’18
(T = 1) [35]

38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Pavlakos et al. CVPR’18
(T = 1) [87]

34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1. 36.5 41.8

Hossain et al.
ECCV’18(T = 5) [96]

35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1

Pavllo et al. CVPR’19
(T = 1) [90]

36.0 38.7 38.0 41.7 40.1 45.9 37.1 35.4 46.8 53.4 41.4 36.9 43.1 30.3 34.8 40.0

As shown in Table 1, the mean per-joint position error (MPJPE) between the estimated pose and
the ground truth is quantitatively compared on the Human3.6 M dataset with millimeter as the unit,
where T represents the number of input frames used in each method. When T = 1, it is better than
existing methods in terms of the evaluation of P1 and P2 [97]. When T = 9 and T = 7, the estimation
accuracy is improved and it is higher than that of Pavllo et al. [90], who considered the time smoothness
but did not consider the reliability.

The latest study [98] has achieved improvements by reviewing existing methods for 3D human pose
estimation and using limb-joint context information from a macro perspective. By combining deep
neural networks with prior knowledge of human limbs, a general 3D human pose estimation formula
is derived on the basis of “context” modeling. As shown in Fig. 6, when estimating a certain joint
position, features are collected from its “context” joint positions (defined by the input body structure).
These joint positions are integrated with the features and updated by these features.

A graph convolutional network (GCN) is a deep-learning-based method that performs convolu-
tion operations on graphs. Compared with the traditional CNN, GCNs have a unique convolution
operator for irregular data structures. GCNs can be categorized into two types: Spectral-based GCN
[99,100] and non-spectral-based GCN [101,102]. The latter attempts to expand the spatial definition of
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convolution by rearranging the vertices of a graph into a certain grid form in order to directly perform
conventional convolution operations, whereas the former uses the Fourier transform to perform the
convolution process. Spectral GCN is usually suitable for processing graphs with fixed topology,
whereas non-spectral GCN is suitable for processing graphs with topological changes. GCNs extends
CNNs to any graph structure. They have attracted considerable attention and are widely used in many
fields, such as image classification, document classification, and semi-supervised learning. However,
these methods are based on a fixed curve graph as input.

Figure 6: Update process of key nodes

Previous studies have used only the first-level edge of each node. This limits the receptive field
to one dimension, and it is not conducive to learning global features. In reference [36], semantic
GCNs were used to learn semantic information that is not explicitly represented in the graph, such
as local and global node relationships. First, the pre-trained 2D pose network is used to extract the
2D skeleton from the image. Second, the 2D pose is input to the semantic GCN to return the 3D pose.
Finally, summing of the joint position loss and bone length loss is performed to train the network. The
experimental results are summarized in Table 2. It can be seen that SemCN achieves the performance
of SOTA, while the parameter magnitude is reduced by 90%.
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In contrast to the study of the unified GCN [110,111] for dense hand mesh reconstruction or
spatial map LSTM, in reference [97], the GCN was used for spatiotemporal graphs with semantic
grouping and sequence 3D pose estimation. In reference [97], the bone joint sequence was defined as
a spatiotemporal graph. The graph topology takes the joints as the graph nodes, represents the spatial
edges of the spatial dependence between different joints, and represents time edges that connect the
same joints in adjacent frames. The adjacent nodes are classified according to their semantics to solve
the problem of sparse connections and changing graph edges of functions in 3D pose estimation.
Instead of different adjacent nodes with different kernels, the general graph convolution operator
shares kernel weights to deal with adjacent nodes of the same degree.

A study [112] was conducted by Peking University and Microsoft Research Asia along with deep
medical cooperation to solve the problem of 3D pose estimation of people in a scene from a single
image. This work improved on the method proposed in reference [38], and a generalized formula,
y = X(S�W), was proposed on the basis of GCNs. Furthermore, a local connection network (LCN)
was proposed to assign special filters to different joints in order to overcome the insufficient represen-
tation ability of GCNs. By using the common spatial integral method, end-to-end training was carried
out by combining the existing 2D pose estimator and the LCN. Thus, the network representation
and generalization ability was improved considerably. This approach has been successfully applied to
different scenes.

3.5 Unsupervised Methods
Owing to the small amount of human posture data compared with other studies as well as the

complexity of data annotation, the data richness that is available for training is not sufficient. By
contrast, unsupervised learning can directly derive the properties of the data from the data itself
and then summarize them, thereby enabling researchers to use these properties to make data-driven
decisions. Therefore, some unsupervised-learning-based human pose estimation methods have been
studied extensively [113–115]. Unsupervised learning usually treats pose estimation as a template
matching problem that can be learned. A CNN is used to extract deep features, and the human
body composition template with 2D Gaussian distribution features is then used to obtain the location
information of key nodes. This method has achieved significant results.

3.6 Other Methods
In reference [116], a differentiable and modular self-supervised learning framework was proposed

for monocular 3D human pose estimation. The encoder network takes an image as input and outputs
three separate representations: (1) The unchanged 3D human pose observed in the standard coordinate
system; (2) the camera parameters; (3) the potential code representing the human appearance in
the foreground (FG). Then, the decoder network receives the aforementioned coded representation,
projects it into 2D space, and synthesizes the FG human images. At the same time, the decoder also
generates the 2D partial segmentation. In reference [117], during the training process, the predicted
3D pose representation and the sampled real 3D pose were alternately used to guide the model toward
a reasonable 3D pose distribution. In reference [118], a novel bottom-up multi-person 3D human
pose estimation method was proposed on the basis of monocular RGB images. It uses high-resolution
volumetric heat maps to model joint positions and designs a simple and effective compression method.
The essence of this method is a fully convolutional network-volume [119] at map automatic encoder,
which is responsible for compressing the real heat map into a dense intermediate representation. In
reference [120], a self-supervised estimation method called EpipolarPose was proposed for obtaining
the 3D pose from a 2D image using multi-view polar geometry. This approach can directly predict the
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3D human pose from a single image. During training, it does not require 3D supervision or external
camera parameters. Epipolar geometry and 2D pose information are used to obtain the 3D pose
similarity. The network is inferred from a single perspective, whereas multiple perspectives are used
during training. Thus, even without any 3D ground-truth data and external camera parameters, this
method can be used for the self-supervision of multi-view images, as shown in Fig. 7.

Figure 7: Epipolarpose algorithm flow chart

4 Video-Based Input

The 3D pose estimation of monocular video has attracted considerable attention in recent decades.
It focuses on how to explore the temporal information from the video to generate more stable
predictions and reduce the sensitivity to noise. In particular, it involves the estimation of human
key point trajectories in a 3D space. Owing to motion blur and self-occlusion in video sequences,
2D detection is usually noisy and unreliable. The essence of video-based 3D pose estimation is how
to use spatio-temporal information. One method is to use RNN or LSTM [121–123] to model the
information of different frames. The other method is convolutional modeling. Compared with image-
based methods, video-based methods can provide a larger amount of time and space information.
Existing methods include RNN or LSTM and time-domain convolution to obtain sequence infor-
mation [124]. By mining the information from the time dimension of the video, the accuracy of 3D
human pose estimation can be further improved. Predicting the corresponding 3D joint position from
the monocular video yields good results and requires less training resources than other methods that
use RGB images [125]. Prior knowledge in space can not only reduce the possibility of generating
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physically impossible 3D structures but also alleviate the problem of self-occlusion. Using temporal
reasoning can help solve challenging problems, such as depth blur and visible jitter. Studies of video
data input generally do not focus on solving the occlusion problem.

Recently, temporal information in monocular video has attracted increasing attention
[90,126–128]. The difficulty in studies on video input is due to drastic changes in the human body shape
in consecutive frames. To deal with the estimation of incoherence and jitter, some studies have used
the temporal information between sequences. For example, Hossain et al. [96] designed a sequence-
to-sequence network to predict 3D joint positions. They imposed a temporal smoothness constraint
to ensure temporal consistency of the sequence during training. In reference [94], a sequence-to-
sequence network composed of layer-normalized LSTM units was designed. It connects the input to
the output on the decoder side and imposes a temporal smoothness constraint during the training
process. XNect [129] was the first model to use RGB cameras to capture real-time 3D motion in a
multi-person scene. This method can be divided into three stages. In the first stage, each person’s 2D
and 3D pose features are estimated through a CNN. This part designs a fast network structure called
SelecSLS. In the second stage, the occluded parts of the 2D pose and 3D pose features are inferred as a
complete 3D pose through the fully connected neural network. In the third stage, the spatio-temporal
skeleton model is used to simulate the predicted 2D and 3D poses of each person. Its purpose is to
further coordinate the 2D and 3D poses and improve the time consistency, and it finally returns the
whole skeletal posture with joint angle information. In reference [130], GCNs were extended to a
spatial-temporal graph model called ST-GCN. This model is constructed on a sequence of skeletal
images, and each node corresponds to a joint of the human body. The model uses graph convolution
to learn the skeleton data as well as the features of the established graph data and then identifies the
behavior. In the relevant space, the key points between the skeletons are used as the input of the spatial
relationship, and the video data are used in the temporal relationship between the input images.

4.1 Using Human Prior Knowledge
Existing methods take advantage of simple structural constraints. They employ symmetrical bone

length [90] and limited joint angles [91] to facilitate 3D joint estimation; however, this is not sufficient
to achieve significant improvement in this task. Most existing methods directly regard this task as
a coordinate regression problem and fail to consider the inherent kinematic structure of the human
body, which often leads to ineffective results. Studies have also investigated RNN methods, which
consider prior knowledge based on the structural connectivity of body parts. Hossain et al. [96]
used a temporal smoothness constraint across 2D joint position sequences to estimate 3D pose
sequences. Pavllo et al. [90] transformed a series of 2D poses through temporal convolution. Thus, the
computational complexity is independent of the spatial resolution of the key points, and the kinematics
analysis pipeline can be explicitly combined for 3D pose estimation. In reference [116], a good pose
prior constraint and a differentiable parent-relative local limb kinematics model were used to clarify
the modeling as 3D rigid and non-rigid body posture transformation. This can reduce the ambiguity
in the learning representation. In reference [97], field knowledge of the hand (body) structure was used
in graph convolution operations to meet the specific requirements of 3D pose estimation.

4.2 Weakly Supervised Training
The 3D pose can be effectively predicted in videos using a fully convolutional model based on

the 2D joint positions in the dilated temporal domain. In reference [90], a semi-supervised training
method that can use unlabeled video data was proposed, as shown in Fig. 8. This method estimates the
2D joint positions based on unlabeled videos, then predicts the 3D pose, and finally performs reverse
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mapping back to the 2D joint positions. A fully convolutional structure with residual connections has
been proposed to perform time-domain convolution and linear projection layer alternation on the 2D
nodes in the video. This extended convolution is used to model long-term dependencies and achieve
accurate 3D pose estimation. This method is also compatible with any 2D joint position detector,
which can process large contextual information through time-domain convolution. Compared with
RNN, the convolution model of this method can process 2D pose information and time dimension
information simultaneously. It can reduce the risk of not only gradient disappearance but also gradient
explosion. This method is highly accurate, simple, and effective, and it also has other advantages such
as low computational complexity and a small number of parameters.

Figure 8: Human mesh restoration (HMR) framework

In reference [131], how to estimate human 3D actions more accurately using monocular video was
discussed according to the time information and training of an adversarial learning network. AMASS
[85] has been used to distinguish real human actions from human actions generated by the regression
network. Thus, the regression can output more real actions by minimizing the error of adversarial
training. The discriminator is trained in a semi-supervised manner. In reference [132], a monocular
human motion capture method was proposed on the basis of a weakly supervised neural network,
as shown in Fig. 9. The entire network architecture is divided into two parts, namely PoseNet and
DefNet, which perform human pose estimation from monocular images (expressed on the basis of the
angles of joint positions) and non-rigid surface deformation (expressed on the basis of the embedded
deformation graph), respectively. The training process is performed in a weakly supervised manner
based on multi-view images in order to avoid the use of 3D annotation data. The author trained a
neural network to achieve this goal. Thus, the author proposed a differentiable human deformation
and rendering model. This model can render the human body model and achieve a backpropagation
loss compared with the 2D image. Compared to other methods in terms of the accuracy of the skeleton
pose, the proposed method achieved better results, as shown in Table 3.
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Figure 9: Deepcap is realized by a neural network composed of two parts

Table 3: MVBL performance comparison

MPJPE/GLE (in mm) and 3DPCK/AUC (in %) on S1

Method GLE↓ 3DPCK↑ AUC↑ MPJPE↓
VNect - 66.06 28.02 77.19
HMR - 82.39 43.61 72.61
HMMR - 87.48 45.33 72.40
LiveCap 317.01 71.13 37.90 92.84
MVBL 76.03 99.17 57.79 45.44

5 Dataset

Currently, the Human3.6 M dataset is the most widely used datin 3D pose estimation. It includes
3.6 million images captured by four cameras from different perspectives (50 fps video). It covers 15
actions: Directions, discussion, eating, greeting, phoning, posing, purchases, sitting, sitting down,
smoking, taking photos, waiting, walking, walking dogs, and walking together. Further, it contains
11 individuals, 7 of which have 3D tags. Therefore, S1, S5, S6, S7, and S8 are generally used as training
sets, while S9 and S11 are used as test sets. The dataset is available at http://vision.imar.ro/human3.6
m/description.php. The data sample is shown in Fig. 10.

http://vision.imar.ro/human3.6m/description.php
http://vision.imar.ro/human3.6m/description.php
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Figure 10: Human3.6 M data sample

MPI-INF-3DHP was developed by the Max Planck Institute for Informatics. It is a 3D human
pose estimation dataset composed of constrained indoor and complex outdoor scenes. It covers 8
actors performing 8 activities from 14 camera views, including walking and sitting postures as well as
complex sports postures and dynamic actions. It contains 1.3 million frames, covering more posture
categories than Human3.6 M. This dataset uses multiple unmarked cameras to capture actors in
a green screen studio. By calculating the masks of different areas and independently synthesizing
different textures of the background, chair, upper body, and lower body areas, the captured image can
be enhanced. The camera captures the actions of wearing everyday clothes, and each actor has two
sets of clothes to wear in the activity: One set of clothing is casual daily clothing, while the other set is
plain color clothing. In contrast to the existing dataset, this dataset allows automatic segmentation
and expansion and provides true 3D annotation as well as a universal skeleton compatible with
Human3.6 M. Compared with the unmarked records proposed by Joo et al. [133], this dataset
provides a wider range for foreground and background enhancement. It uses images sampled from the
Internet for background enhancement as well as a simplified internal decomposition for foreground
enhancement. For plain clothes, the change in intensity is only caused by the shadow; hence, the
average pixel intensity is used as a substitute for the shadow component. In reference [27], a new
test set containing ground-truth annotations from a multi-view unmarked motion capture system was
created. It complements existing test sets with more diverse movements (standing/walking, sitting/-
lying, exercising, dynamic postures on the floor, dancing, etc.). It also includes camera perspective
changes, clothing changes, and outdoor recordings in an unconstrained environment captured by
Robertinis et al. [134]. The dataset is available at http://gvv.mpi-inf.mpg.de/3dhp-dataset. The data
sample is shown in Fig. 11.

Owing to the high cost of collecting a large-scale multi-person 3D pose estimation dataset,
MPI-INF-3DHP is synthesized using the MuCo-3D-HP dataset with data enhancement. The data
enhancement methods include background enhancement and perceptual shadow enhancement of
human contours. This method uses single-person image data of real people in MuCo-3D-HP to
synthesize numerous multi-person interactive images under the control of the user. It also includes
3D pose annotations. A new shooting (non-synthesis) multi-person test set is proposed, including 20
general real-world scenes with ground-truth 3D poses, which can be obtained by up to three subjects
using a multi-view unmarked motion capture system. In addition, occlusion instructions are provided
for each joint. This set of scenes includes 5 indoor and 15 outdoor scenes. The background includes
trees, office buildings, roads, people, vehicles, and other fixed and moving entities. The new test set is
called MuPoTS-3D [135]. The dataset is available at https://paperswithcode.com/dataset/mupots-3d.
The data sample is shown in Fig. 12.

http://gvv.mpi-inf.mpg.de/3dhp-dataset
https://paperswithcode.com/dataset/mupots-3d
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Figure 11: MPI-INF-3DHP data sample

Figure 12: MuPoTS-3D data sample

CMU Panopoptic: This point cloud dataset is captured by 10 synchronous Kinect (Kinoptic
Studio) devices installed using Panoptic Studio. The Kinect data are captured by more than 500 RGB
cameras. They share temporal-spatial and 3D world coordinates. The point cloud output can be used
with the output of an RGB camera (such as RGB video and 3D skeleton). It contains 10 synchronized
RGB-D videos, 3D point clouds from 10 RGB-D videos, 31 synchronized HD videos of the same
scene from other viewpoints, calibration parameters for 10 RGB-D cameras and 31 HD cameras,
and synchronization tables for all the RGB-D and HD videos [136]. The dataset is available at http://
domedb.perception.cs.cmu.edu/dataset.html. The data sample is shown in Fig. 13.

AMASS: It is a large and diverse human motion database, which is standardized and parameter-
ized by representing 15 different motion capture (mocap) datasets based on optical tags in a common
framework. It uses a new method called MoSh++ to convert the mocap data into a real 3D human
body mesh initially, and finally maps a large amount of labeled data to the common SMPL posture,
shape, and soft tissue parameters. It is represented by an assembled human model, providing a standard
skeleton representation and a fully assembled curved surface mesh. The consistent representation

http://domedb.perception.cs.cmu.edu/dataset.html
http://domedb.perception.cs.cmu.edu/dataset.html
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of AMASS makes it very useful for animation, visualization, and generating training data for deep
learning. Compared with other human motion datasets, it is much richer, with more than 40 h of
motion data and recordings, covering 344 subjects and 11265 actions [85]. The dataset is available at
https://amass.is.tue.mpg.de.

Figure 13: CMU Panopoptic data sample

Leeds Sports Pose (LSP) dataset: It is a single human body key point detection dataset. The
number of key points is 14, and the number of samples is 2000. It is the second-most commonly used
dataset in current research. It covers many sports postures, including athletics, badminton, baseball,
gymnastics, parkour, football, volleyball, and tennis. It contains around 2000 posture annotations. The
images are all obtained from athletes on Flickr. Each image is a three-channel color image. The row
range of pixels is 23, and the column range is 16. Each image is marked with 14 joint positions, and
the left and right joints are always marked according to the human center [85]. The dataset is available
at http://sam.johnson.io/research/lsp.html. The data sample is shown in Fig. 14.

MPII Human Pose dataset: It is based on single/multiple human body key point detection datasets.
The entire human body has a total of 16 joints. The MPII Human Pose dataset is a benchmark for
human pose estimation. It includes 25,000 annotated images of more than 40,000 people, which are
extracted from YouTube videos. The test set also includes body part occlusion, 3D torso, and head
direction annotations. The dataset is available at http://human-pose.mpi-inf.mpg.de. The data sample
is shown in Fig. 15.

The PoseTrack dataset includes videos around key frames from the MPII Human Pose dataset.
These videos contain multiple individuals and non-static scenes. It uses MPII to select 41–298 adjacent
frames of video clips and crowded scenes. This dataset contains an unconstrained evaluation protocol
(without any prior assumptions about the size, location, and number of people, which are arbitrary).
The scenes contain multiple people, and the people are articulated with each other and participate in
a variety of dynamic activities. The video contains many body movements and postures, appearance
changes, as well as high mutual occlusion and truncation. Part or all of the target disappears and
reappears as much as possible. The dataset annotates the head boundary of each person in the video.
Each person who appears in the video is assigned a unique tracking ID until that person leaves the
field of view of the camera. For each person being tracked, 15 parts are annotated in the video,

https://amass.is.tue.mpg.de
http://sam.johnson.io/research/lsp.html
http://human-pose.mpi-inf.mpg.de
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including the head, nose, neck, shoulders, elbows, wrists, hips, knees, and ankles. Finally, the VATIC
tool is used to accelerate the annotation process. The annotation between adjacent frames is completed
by interpolation. The dataset contains 550 videos, 66,374 frames, divided into 292 training videos,
50 verification videos, and 208 test videos. For each video sequence, 30 frames in the middle are
annotated to obtain a total of 23,000 annotated frames and 153,615 annotated poses. In addition, in
the verification and test set, dense annotations are made every 4 frames to test the ability and stability
of long-term tracking of body joints. The dataset is available at https://posetrack.net.

Figure 14: LSP data sample

Figure 15: MPII data sample

The Martial Arts, Dancing and Sports (MADS) dataset is provided by the City University of
Hong Kong. It contains five categories, namely tai chi, karate, jazz, hip hop, and sports, with a total of
53,000 frames. The motion capture of this dataset is recorded by two martial arts masters, two dancers,
and one athlete using multiple cameras or stereo cameras. The motions in the MADS dataset are more
complex and challenging than ordinary motions. First, they have a larger range of motion, and some
postures do not appear in normal actions. Second, there are more self-occlusions and interactions
between limbs. Third, the motions are relatively fast. A Gaussian Mixture Model (GMM) [29] and
shadow detection [30] are used to remove the background and obtain the human contours. This dataset
can be used for research in human pose estimation and other fields [137]. It is available at http://visal.
cs.cityu.edu.hk/research/mads/#download.

https://posetrack.net
http://visal.cs.cityu.edu.hk/research/mads/#download
http://visal.cs.cityu.edu.hk/research/mads/#download
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The CrowdPose dataset was constructed by a team at Shanghai Jiaotong University. It is used
for multi-person joint position recognition in crowded scenes, with 14 joint positions per person.
According to the crowd index of MSCOCO (person subset), MPII, and AI Challenger, the images
are divided into 20 groups, ranging from 0 to 1, with a step size of 0.05 between the groups. Then,
30,000 images are evenly extracted from these groups. Further, 20,000 high-quality images are selected
from the 30,000 images, each person in the image is cropped, and the key points of interference in each
bounding box are marked. The dataset consists of 20,000 images and contains approximately 80,000
people. The training, verification, and test subsets are divided in a ratio of 5:1:4. The crowd index
satisfies a uniform distribution in [0,1]. The dataset is designed to not only improve the performance
in crowded situations but also extend the model to different scenarios [138]. It is available at https://
github.com/MVIG-SJTU/AlphaPose/blob/pytorch/doc/CrowdPose.md.

PedX is a large multi-modal pedestrian dataset based on a complex urban intersection. It consists
of more than 5,000 pairs of high-resolution (12 MP) stereo images and lidar data, and it provides 2D
image tags and pedestrian 3D tags in the global coordinate system. The data were captured at the
intersection of three four-way parking lanes with considerable interaction between pedestrians and
vehicles. The author also proposed a 3D model-fitting algorithm to automatically label the constraints
of different modes as well as novel shapes and time priors. All the annotated 3D pedestrians are in
the real-world metric space, and the generated 3D model is validated using a motion capture system
configured in a controlled outdoor environment to simulate pedestrians at urban intersections. The
manual 2D image tags also can be replaced by advanced automatic labeling methods, which facilitate
the automatic generation of large-scale datasets [139]. The dataset is available at http://pedx.io.

6 Evaluation Indicators
6.1 PSS

The pose structure score (PSS) is proposed to measure the structural similarity. The traditional
distance evaluation indicators (MPJPE and PCK) deal with each joint position independently, and
they cannot evaluate the structural accuracy of the posture as a whole.

Therefore, the PSS indicator is designed to measure structural similarity:

PSS(p, q) = δ(C(p), C(q)) (1)

where C(p) = arg min ‖p − μk‖2
2 , δ(i, j) =

{
1 i = j
0 i �= j (2)

Calculating PSS requires the pose distribution of the ground truth as a reference. The ground-

truth set is assumed to have n poses, and each vector is standardized as q̂i = qi

‖qi‖qi. After k-means

clustering, the PSS is calculated between the estimated pose p and the true value q [41].

6.2 Mean Per-Joint Position Error (MPJPE)
It is the average Euclidean distance between the joint position coordinates output by the network

and the ground truth (usually converted to camera coordinates).

6.3 Procrustes Analysis MPJPE (P-MPJPE)
First, the network output is rigidly aligned (translation, rotation, and scaling) with the ground

truth; then, the MPJPE is calculated.

https://github.com/MVIG-SJTU/AlphaPose/blob/pytorch/doc/CrowdPose.md
https://github.com/MVIG-SJTU/AlphaPose/blob/pytorch/doc/CrowdPose.md
http://pedx.io
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6.4 Percentage of Correct Key Points (PCK)
When the distance between the predicted joint and the ground truth is within a certain threshold,

the detected joint is considered to be correct.

6.5 Percentage of Correct Parts (PCP)
If the distance between the two predicted joint positions and the ground truth is less than half of

the limb length, the limb is considered to be detected.

6.6 3DPCK
The principle of 3DPCK is that if a joint is located within a 15 cm sphere centered at the ground-

truth joint position, the joint prediction is regarded as correct and the common minimum set of 14
marked joints is evaluated. 3DPCK is more robust than MPJPE, and it [103] also helps offset the jitter
effect in all non-synthetic annotations (including our annotations).

6.7 Evaluation Indicator Analysis
Both MPJPE and P-MPJPE are commonly used evaluation indicators that represent the error

value of the results. PSS focuses on the structural accuracy of the overall result rather than the average
error of each point position. PCK and 3DPCK represent the percentage of correct key points. These
evaluation methods can alleviate the problem of short limbs. Further, PCP penalizes shorter limbs
more than PCK.

7 Conclusion

Research on 3D human pose estimation is attracting increasing attention. This article system-
atically introduced recent advancements in 3D human pose estimation on the basis of monocular
cameras. Different data input formats lead to different research focus areas, namely image-based
methods and video-based methods. The solutions to the problems faced by these two methods are
similar. For landmark networks, this article compared the performances of some algorithms in order
to prove their effectiveness.

Image-based input mainly focuses on estimation using the regression algorithm. The well-known
existing algorithm is divided into two steps. The first step is to detect the 2D key points, and the second
step is to map the 2D key points to the 3D key points. To address occlusion problems, researchers
often use the multi-view method in order to improve the estimation results. To address the problem of
insufficient training data, some methods [86–87,140] use data enhancement. Meanwhile, some other
excellent methods use weakly supervised learning to improve the generalization ability of the model
[73–74,84]. In addition, image-based input often encounters the problem of human pose diversity,
which can be solved using kinematic constraints [88–93]. In recent years, some studies have investigated
graph convolution [38]; these studies are summarized here. Compared with image data, video data has
time-series information, which can be used to estimate human poses more effectively as well as to
alleviate the problem of self-occlusion to a certain extent. Video-based input methods focus on taking
advantage of human prior knowledge to constrain the estimation process [90,91] and adopt weakly
supervised training to improve the performance of the model [131].

Directions for future research on 3D human pose estimation based on a monocular camera are
as follows: (1) Owing to the limitations of 3DHPE, the HPE method cannot be effectively extended
to different fields. Therefore, how to reduce the model parameter compression to ensure real-time
performance must be investigated. (2) The interaction between humans and 3D scenes must be
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explored. (3) Visual tracking and analysis can be achieved using physical constraints. (4) The problem
of inaccurate estimation using low-resolution input must be solved. (5) Another inevitable problem
is that noise has a significant impact on the performance of HPE. Therefore, how to improve the
robustness of the HPE network is a topic for future research.
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