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ABSTRACT

Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common practice.
Encryption of medical images is very important to secure patient information. Encrypting these images consumes a
lot of time on edge computing; therefore, the use of an auto-encoder for compression before encoding will solve such
a problem. In this paper, we use an auto-encoder to compress a medical image before encryption, and an encryption
output (vector) is sent out over the network. On the other hand, a decoder was used to reproduce the original image
back after the vector was received and decrypted. Two convolutional neural networks were conducted to evaluate
our proposed approach: The first one is the auto-encoder, which is utilized to compress and encrypt the images, and
the other assesses the classification accuracy of the image after decryption and decoding. Different hyperparameters
of the encoder were tested, followed by the classification of the image to verify that no critical information was lost,
to test the encryption and encoding resolution. In this approach, sixteen hyperparameter permutations are utilized,
but this research discusses three main cases in detail. The first case shows that the combination of Mean Square
Logarithmic Error (MSLE), ADAgrad, two layers for the auto-encoder, and ReLU had the best auto-encoder results
with a Mean Absolute Error (MAE) = 0.221 after 50 epochs and 75% classification with the best result for the
classification algorithm. The second case shows the reflection of auto-encoder results on the classification results
which is a combination of Mean Square Error (MSE), RMSprop, three layers for the auto-encoder, and ReLU, which
had the best classification accuracy of 65%, the auto-encoder gives MAE = 0.31 after 50 epochs. The third case is
the worst, which is the combination of the hinge, RMSprop, three layers for the auto-encoder, and ReLU, providing
accuracy of 20% and MAE = 0.485.
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1 Introduction

Healthcare systems collect data from patients through the Internet of Things (IoT) sensors. The
data is then stored in the cloud and analyzed for useful recommendations back to the healthcare
provider. However, there are two problems facing the IoT in health systems, especially when such data
is spatial: bandwidth congestion and security over the network. This research focuses on using X-ray
images as one of the main medical analysis methods for diagnosis. Thus, this research focuses on such
data types for health analysis. Healthcare images are huge in size; accordingly, the transmission of
such data consumes a lot of bandwidth and thus transmission time. This problem can be reduced
by image compression while maintaining resolution, as this data is very sensitive to quality. A
major solution to the security issues of health data is encryption. IoT servers are hacked every day
[1–3], so encryption of such data is necessary [4,5]. Some models have been developed for image
encryption using different algorithms. A chaotic-based artificial neural network (ANN) [6] is a stream
image encryption mechanism that has a complex design and is time-consuming. A block-wise pixel
shuffling algorithm was proposed for learnable image encryption [7]. A stacked auto-encoder (SAE)
network was proposed as an 8-bit RGB image block-wise pixel shuffling algorithm with batch image
encryption, which generates two chaotic matrices. One set was used to produce a total shuffling
matrix to shuffle the pixel positions on each plain image. The other produced a series of independent
sequences, each of which was used to confuse the relationship between the permutated image and the
encrypted image. The schema was efficient because of the advantages of parallel computing in SAE,
which led to a significant reduction in run-time complexity.

Although the hybrid application of shuffling and confusing enhances the encryption effect,
the images still consume transmission overhead, and the process is time-consuming, which is not
acceptable. Therefore, image compression also needs to be performed for higher performance. In
previous studies [8], an SAE and a chaotic logistic map were suggested for image compression
and encryption. Studies have shown that this application is viable and successful. It can be used
simultaneously on the internet for picture transmission and safety. A five-layer SAE model was
established in which the second layer had fewer neurons than the input layer to realize the primary
compression of the image, and the third layer had fewer neurons than the second layer to realize the
second stage of the image. The fourth and fifth remaining layers were mirror images of the second and
first layers, respectively. In the experiment, the activation function was a nonlinear sigmoid function.
The number of neurons was modified to achieve various compression ratios (CRs) in the hidden
layers. The model took a lot of time for training and testing due to its complexity. Hence, the present
study proposes a simplified and faster model that maintains the intrinsic properties of images. This
research has two main contributions. The first one is utilizing the auto-encoder [9,10] for compression.
The second is encrypting the X-ray image to secure it during transmission. The auto-encoder is a
convolutional neural network used to compress the x-ray image (in the compressing phrase). This
step is reversed to get the image decoding. Between the encoding and decoding phases, the output is
encrypted and decrypted to secure the image. A classification algorithm is used after using the modified
auto-encoder to evaluate the amount of loss in the original image. In this paper, we discuss the effect
of the hyperparameter [11] of the auto-encoder on the quality of the retrieved image and the use of
an encryption function on image loss. A convolution neural network is also used in the classification
algorithm [12,13].

Our approach introduces compression using an auto-encoder and encryption using a customized
function that is not as complicated as in state-of-the-art models and thus faster. The compression
and encryption processes utilize image distortion. Therefore, an artificial application was applied to
examine the amount of distortion in the received images. This application was a diagnostic classifier
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used to examine the acceptable amount of distortion in the images. We also examined different
hyperparameters of the modified auto-encoder and assessed their effects on the level of distortion
of the images. The contributions of the study are as follows:

1. An auto-encoder was utilized to compress images to reduce the time taken to transmit them
over the internet. After encoding, the feature vector, which was the output of the encoder layer,
was encrypted.

2. After encryption, a reverse function was utilized for the decryption of the feature vector (the
output of the encryption function). A mirror reverse of the encoder layers was run on the
output of the decryption function to retrieve the original image, with some acceptable loss.

3. Some changes were made to the auto-encoder hyperparameters to demonstrate their effects on
the classification algorithm and the extent of the acceptability of the classification step.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3 introduces
the proposed methodology. Section 4 describes the results achieved in this study. The conclusions are
drawn in Section 5.

2 Related Work

IoT data security is a very challenging area of research in real life. In this section, a brief discussion
of some recent developments in IoT systems, image encryption, and auto-encoders is presented. Hu
et al. [14] proposed a batch image encryption scheme that included a stacked auto-encoder. The
SAE network was introduced to create two chaotic matrices. One set was used to create a complete
shuffling matrix to shuffle the pixel positions on every image. Another set generated a series of separate
sequences, each of which was used to confuse the relationship between the permutated image and the
encrypted image. The framework was efficient because of the benefits of SAE’s parallel computing,
which led to a substantial decrease in its complexity. The hybrid implementation of shuffling and
confusing improved the encryption effect. The authors contrasted the model with the prevalent
“logistic diagram” to determine the efficacy of the system, and the performance in running time
estimation was collected. The results and review of the experiments showed that their device had a
strong encryption effect and was capable of resisting brute force, statistical, and differential attacks.

Thanikaiselvan et al. [15] suggested implementing a batch image encryption method using a
stacked auto-encoder network in which two chaotic sequences were used. The first sequence shuffles
the image pixels of each input image, creating a shuffling matrix. The other sequence generates a
set of separate sequences that are used to confuse the allowed images with the encrypted images.
Parallel computation of the stacked auto-encoder in this scheme could reduce the complexity of the
run time and improve the encryption effect. A collection of studies has assessed the performance of
the scheme and concluded that the proposed scheme is capable of avoiding statistical and differential
attacks. Sushmit et al. [16] presented a method of X-ray image compression based on a recurrent neural
network convolution (RNN-Conv). During implementation, the proposed architecture can provide
variable compression rates, while requiring each network to be trained only once for a particular X-ray
image dimension. For efficient compression, the model uses a multi-level pooling scheme that learns
contextualized features. Using the National Institute of Health (NIH)’s Chest X-ray dataset, they
conducted image compression experiments and compared the output of the proposed architecture with
a state-of-the-art RNN-based technique and JPEG 2000. In terms of the structural similarity index
(SSIM) and peak signal-to-noise ratio (PSNR) metrics, the experimental results reflected improved
compression efficiency.
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Akyazi et al. [17] introduced a learning-based method of image compression using wavelet
decomposition as a preprocessing stage. The proposed convolution auto-encoder was trained end-
to-end to achieve a target bit rate of less than 0.15 bits per pixel across the entire CLIC2019 test
range. The proposed model outperformed legacy JPEG compression as well as an auto-encoder of a
related convolution that lacks the proposed preprocessing. The presented architecture demonstrates
that wavelet decomposition is useful in modifying the compressed image’s frequency characteristics
and helps enhance the performance of image compression models based on learning. Optimization
of wavelet scales at the analysis/synthesis and quantization stages of the wavelet convolutional auto-
encoders (WCAE) may enhance the implemented method. Vu et al. [18] proposed a new method of
representation learning to “describe” unknown attacks more precisely, enabling supervised methods to
identify learning-based anomalies. Specifically, to learn a latent representation from the input data, the
author created three regularized versions of auto-encoders. The bottleneck layers of these regularized
auto-encoders need to be updated in a new classification algorithm. Input features were trained in a
controlled way using normal data and known IoT attacks. The authors utilized a supervised learning
method for anomaly detection. Specifically, they developed three regularized versions of auto-encoders
to learn a latent representation from the input data. They also conducted experiments to explore the
features of the proposed models and their effects on the output of the hyperparameters.

Ameen Suhail et al. [19] used an auto-compression encoder and a chaotic encryption logistic map.
An auto-encoder is an unsupervised deep-learning neural network algorithm that compresses the input
vector into a smaller dimension vector that forms a dense representation of the input data. It is possible
to use this feature of the auto-encoder to compress images. The encryption protocol is applied to the
compressed data. In shuffling and encrypting the compressed image type, the sequences created by
the logistic map are efficiently used. The security review indicates that the device is secure enough for
image data to be transmitted. However, the chaotic encryption method is a loosy technique; the output
image cannot be returned to its original colors. This is a critical drawback for medical images.

From the previous studies, this research innovation combines two different techniques. The first is
to compress medical images with the least amount of image loss. The second is to encrypt the images
so they cannot be hacked over the internet, as it is medical data and should be secure. The proposed
model combined these two ideas together to show that there is a way that we can send encrypted images
with low capacity and minimum loss. To achieve minimum loss, auto-encoder parameters need to be
tuned for the best results, which is our main goal in this study. The images need to be regenerated as
the originals as soon as possible after transmission, particularly in areas where medical images are
used for critical diagnosis. The regenerated images are validated by feeding them into a classifier and
verifying the resultant diagnoses.

3 Background and Methodology

Auto-encoders are basic learning circuits aimed at transforming inputs into outputs with the least
amount of possible distortion.

Fig. 1 shows auto-encoders that consist of an input layer and an output layer connected by one
or more hidden layers. The auto-encoder has two main parts which are responsible for encoding and
decoding. The encoding phase is done in the first layers after the input layer. After the encoding phase
is ended, some other layers with the same number of the encoding layers are begun but in the inverse
structure, which is known as the decoder. The input is obtained by the encoder and converted to a new
representation, typically referred to as a code or latent variable. The decoder receives the generated
code and converts it to a reconstruction of the original input. The goal of this network is to recreate the
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input by converting it into outputs in the simplest way possible so that the input is not very distorted.
This kind of neural network has been used mostly to solve problems of unsupervised learning as well as
transfer learning. An auto-encoder has two main components: an encoder and a decoder. The training
method for auto-encoders requires minimizing reconstruction errors; that is, the output and input must
differ as little as possible [20]. The standard AE structure is shown in Fig. 1.

Figure 1: Structure of auto-encoders

To compress an image, the AE has some nodes in the hidden layer that is less than the number
of pixels in the input layer. The code produced by the hidden layer is transmitted to the other side.
The received code is decoded into the original image through the output layer, which has the same
number of nodes as the input layer. Transferring data on the IoT network is an unsecured practice
that requires a lot of effort to secure all stages. One of the techniques used to ensure privacy is
image encryption. Image encryption algorithms have mainly been developed to change images before
transmission through public networks. To use the transmitted image, it must be decrypted first.

4 Proposed Model

As mentioned earlier, the transfer of patient data through the internet faces two problems: the
large size of the images and image hacking. Hence, here, a novel image encryption and compression
technique using an auto-encoder is introduced. Image compression is applied first, followed by image
encryption. As shown in Fig. 2, the other end of the network decrypts the image before decoding to
retrieve the original image again.

Given its large size, the image (1) congests the network at transmission, (2) requires complex
encryption techniques to guarantee privacy, and (3) consumes high encryption time. The proposed
technique uses a neural network (an auto-encoder) for fast compression. The reduced-size image is
then encrypted with a simple, and fast encryption technique. As the image is not the original one,
any encryption technique will suffice to change the image into an unrecognizable one. The integration
of the auto-encoder proceeds with an encryption method and is an efficient model for safe image
transmission with a low overhead.
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Figure 2: Proposed system diagram

Input: X-ray images
Steps:

1-Compressong
a. Convert x-ray to numpy array
b. Compress the image (numpy array)
2-encryption
c. Get the output of the compressing phase and multiply it by it itself
d. Adding the output of the previous step with another image which is multiplied by itself also
3-Decryption
e. Convert the encryption step by subtract the image from the previous step
f. Take the SQRT of the result
4-Decompressing
g. The compressing step is reversed to get the original image

After the auto encoder a classification algorithm is used to show the acceptable percent of loss in
the images.
Outputs

- x-ray images (from autoender)
- Acceptable percent of loss of images(from the classification algorithm)

The algorithm steps for the compression and encryption of the image before it is sent over the
internet are as follows:

1. The image is compressed using an auto-encoder.
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2. A specific equation is applied to the output of the auto-encoder to encrypt the image.
a) The encryption function is done on the 1-D vector, which is the output of the encoder, by

adding another 1-D vector (another image).

b) The square of the two vectors is calculated as the encrypted outcome.

The reverse of the previous step is then performed as follows:

1. Calculate the square root of the vector and then subtract the added image (vector) from it.

2. Decode to obtain the transferred image with some allowed loss.

To evaluate the loss and ensure that the content is not distorted, the reconstructed images are fed
into a classifier to be recognized for medical diagnosis, as shown in Fig. 2.

Fig. 3 shows the modified auto-encoder, which has a 200 × 200 pixel in image size as the input
to the encoder. The resulting feature vector from the encoder represents the input to the encryption
block and yields the output as an encrypted feature vector. The transmitted vector is decrypted and
then decoded to retrieve the original image. The hyperparameters of the auto-encoder affect the output
image. Thus, a CNN with different numbers of layers (but the main model has three layers) was utilized
to test the changes in the hyperparameters in the AE and the effect of the results on the classification
stage. Our main auto-encoder consisted of three layers (three convolutions and two max pooling) as
an encoder and another three for the decoder, as follows:

• Layer 1: The first layer in the encoder was the input layer, consisting of 32 nodes, which had a
200 × 200 input image, with a (3, 3) filter. Each image had the same padding. The pooling layer
for the first layer was a MaxPooling2D layer with a (2, 2) pool size.

• Layer 2: The second layer had 64 nodes, used the ReLU activation function with a (3, 3) filter,
and utilized the same padding for the image. Another MaxPooling2D layer with a (2, 2) pool
size as the pooling layer for the second one.

• Layer 3: The third layer is a convolution 2D (Conv2D) layer with the same criteria as the
convolution layers but with 128 nodes.

The decoder also consisted of three layers that were in reverse order to those of the encoder.

• The first layer was the input layer of the decoder. The input of this layer was the feature vector
that resulted from the encoder.

• The second layer was a Conv2D layer with the same criteria as in the convolution layer in the
encoder but with 128 nodes. Then, there was an UpSampling2D layer with a (2, 2) filter.

• The third layer was the convolution layer but with 64 nodes, followed by an UpSampling2D
layer. The final layer was the convolution layer, with 32 nodes and a sigmoid function.

The difference between the auto-encoder discussed in Fig. 1 and the proposed model is that there
is an encryption-decryption phase between the encoding and decoding phases.

The encryption function between the encoder and the decoder takes the resulting feature vector
from the encoder as an input. At this stage, another image is added to the original image to hide it,
and then the square is calculated of the resulting feature vector, as shown in Fig. 4.
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Figure 3: Modified auto-encoder

Figure 4: The equation used for encryption

The equation used for encryption is shown above. In the decryption step, the encrypted image
(feature vector) is used and subtracted from the added image (vector). Then, the square root is
calculated for the resultant vector. The resulting vector from the decryption step is the input vector to
the decoder, which is used to retrieve the original image (Fig. 5).

(C) Retrieved image(B) Encrypted image(A) Original image

Figure 5: (A) shows the original image; (B) is the encrypted image after applying encoding and
encryption; (C) is the retrieved equation after applying decryption and decoding

Our algorithm for the X-ray image can be summarized as follows:

1. The X-ray image is decoded using a CNN auto-encoder.

2. The encoder’s output, which is an encoded vector, is then encrypted by adding it to another
image and using the power function on the feature vector.
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3. In the decryption step, the image (vector) is subtracted from the resulting vector, and then the
power function is reversed using the square root function.

4. The decrypted image is then decoded to retrieve the original image.

5 Experimental Results and Discussion
5.1 Dataset

Our dataset was extracted from the clinical PACS database within the National Institutes of
Physical Fitness Clinical Center and consists of 60% of all informed chest X-rays in the hospital [21].
Therefore, this dataset is considered to be highly associated with the actual human patient population
distributions and realistic. This dataset contains several images of healthy and non-healthy volunteers.
We used 5000 images to train the auto-encoder and another 5000 to predict and train the classifier. As
shown in Fig. 6, the number of negative cases was 5800 and the number of positive cases was 3200.

Figure 6: Positive and negative X-rays

5.2 Experiment
Some different hyperparameters were examined, such as the loss function, optimizers, number of

layers, number of nodes, number of epochs, and activation function on the auto-encoder. Different
measures of metrics were calculated. The source code can be found at the following link [22].

Fig. 7 shows the different metrics used to evaluate the auto-encoder, such as the mean square error
(MSE) and the mean absolute error (MAE). The model with the combination of the loss function
(mean square logarithmic error), optimizer (ADAM), activation function (ReLU), and 3-layer auto-
encoder provided the best results, with a minimum MSE and MAE.

Fig. 8 shows the loss function of the auto-encoder with different hyperparameters. This loss
function occurs at 10, 25, and 50 epochs. As shown in the graph, more than one combination results
in a minimum loss, as the last five combinations from the right. Fig. 8 shows some ups and downs,
which indicates that the three combinations with the ups have the biggest values in the loss function
with the least accurate model.
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Figure 7: Mean square error (MSE) and mean absolute error (MEA) for the different hyperparameter
combinations in the auto-encoder
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Figure 8: The loss function in different numbers of epochs (10, 25, 50) for the different hyperparameter
combinations in the auto-encoder

After retrieving the image, we need to validate its resolution, specifically the use of different
hyperparameters on the auto-encoder. Thus, the image was diagnosed using a classifier. Fig. 9
shows the different measures, such as recall, precision, F1, and area under the curve (AUC), of the
classification algorithm for the use of different hyperparameters of the auto-encoder. The diagnostic
classifier is another CNN classifier used to test the amount of image distortion caused by the
application of different hyperparameters on the transmitted image. This was to demonstrate that the
distortion was minimal, and thus acceptable, and that the image was diagnosed as required through a
classification step.

After retrieving images from the auto encoder, a classification algorithm is utilized to show the
acceptable amount of damage in the original image. Fig. 10 shows the training accuracy and the testing
accuracy of the images resulting from changing auto encoder parameters. The best result is gotten from
the third hyperpparameter combination; the last combination gives the worst. The details of the results
of the effects of the different hyperparameters on the classification are as follows:

In Case 1, the best results are achieved for the auto-encoder with RMSprop as an optimizer, three
layers for the encoder, and another reverse for the decoder, with ReLU as the activation function. Each
epoch consumed takes 15 s to run. Table 1 shows the loss parameters of the training and validation
iterations.
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Figure 9: Recall, precision, F1 measure, and AUC for the classifier on the retrieved images after
applying different hyperparameter combinations in the auto-encoder

0
10
20
30
40
50
60
70
80
90

100
Accuracy Training

Accuracy Test

Figure 10: The training accuracy and test accuracy of the classifier on the retrieved images after
applying different hyperparameter combinations to the auto-encoder

Table 1: Loss parameters of the training and validation iterations of the auto-encoder that has the best
result in the classification step

Epoch MSE MAE Loss

10 0.0033 0.0478 0.0033
25 0.0021 0.0387 0.0021
50 0.0012 0.0221 0.0012

Table 1 shows the MSE, the MAE and the loss function with 10 epochs, 25 epochs and 50 epochs.
This table shows that the increase in the epochs decreases the three evaluation functions. The training
and validation sets decreased as the epochs increased. The parameters for the auto-encoder provided
the best results in the classification model. Fig. 11 shows the training and testing loss function curves
of the auto-encoder hyperparameter results for Case 1.



920 CMES, 2023, vol.134, no.2

Figure 11: The training and testing loss functions

Table 2 shows the values of the following measures: training accuracy, test accuracy, precision,
recall, F1-score, and AUC of the classifier. Table 2 shows the training accuracy, and the test accuracy,
recall, precision, F1-score and AUC of the model in the first case. Case 1 shows the best evaluation
matrices more than the other two cases.

Table 2: Results of the classification model

Training accuracy Test accuracy Recall Precision F1-score AUC

79.77 75.07 0.447 0.487 0.466 0.626

Fig. 12 shows the confusion matrix of the classification stage. The matrix presents the performance
of the classification model and the relationship between the predicted and actual values. The first cell
shows a false-negative result. The second cell shows the true-negative results, and the third one shows
the percentage of the true results according to the whole result (which is 41e+03). In the second row,
the first cell is the false positive. The second cell is the true positive. It also shows the iterations in
the classification step vs. the loss function (the loss function increases and decreases according to the
number of epochs until it remains slightly fixed).

Figure 12: Left: The confusion matrix, and right: The iterations in the classification step
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In Case 2, the results of the auto-encoder are not good as in Case 1. This case used mean square
logarithmic error as the loss function, ADAGrad as an optimizer, two layers for the encoder, with
another set of layers reversed for the decoder and ReLU as the activation function. Each epoch
consumed 10 s.

Table 3 presents the auto-encoder evaluation parameters like MSE, MAE, and loss function. It
shows that the evaluation function is not so good. The evaluation matrices decrease with the increase
of the epoch’s numbers.

Table 3: The best auto-encoder parameters

Epoch MSE MAE Loss

10 9.3314e−04 0.052 9.3314e−04
25 4.7267e−04 0.045 2.2814e−04
50 2.5894e−04 0.031 1.2790e−04

Fig. 13 shows the training and testing loss functions in the auto-encoder hyperparameter results
in Case 2. It shows the decrease of the loss function during the increase in the epoch numbers.

Figure 13: The training and testing loss function

Table 4 shows the different parameters of the classification, such as the training accuracy, test
accuracy, precision, recall, F1-score, and AUC (which were not the best values). In Case 2, the results
of the auto-encoder reflected on the evaluation of the classification algorithm.

Table 4: Some matrices of the classification step

Training accuracy Test accuracy Recall

70.08 65.74 0.478
Precision F1-score AUC
0.461 0.154 0.523

Fig. 14 shows the confusion matrix of the classification stage. The matrix presents the performance
of the classification model and the relationship between the predicted and actual values. The first cell



922 CMES, 2023, vol.134, no.2

shows a false-negative result. The second cell shows the true-negative results, and the third one shows
the percentage of the true results according to the whole result (which was 17e+03). In the second row,
the first cell is a false positive. The second cell is the true positive. The figure also shows the iterations
in the classification step vs. the loss function (the loss function increases and decreases according to
the number of epochs until it remains slightly fixed).

Figure 14: Confusion matrix and iterations in the classification step

Case 3 had the worst classification results after applying the auto-encoder that used hinge as the
loss function, RMSprop as an optimizer, three layers for the encoder, with another set of layers reversed
for the decoder, and ReLU as the activation function. The total run time for each epoch consumed
was 14 s.

Table 5 shows the loss parameter of the training and validation iterations. All matrices remained
the same with increasing epochs, even in the validation set, which indicates that there was no learning
from the model side, even with increasing epoch numbers. This table shows the worst evaluation
matrices in the auto-encoder algorithm.

Table 5: Some matrices of the auto-encoder with the worst results in the classification step

Epoch MSE MAE Loss

10 0.299 0.485 0.485
25 0.299 0.485 0.485
50 0.299 0.485 0.485

Fig. 15 shows the training and testing loss function in the auto-encoder hyperparameter results in
Case 3. The training and testing loss function remain the same which means there is no earning during
the training or the validation phases.
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Figure 15: The training and testing loss function

Table 6 shows the different parameters of the classification, such as the training accuracy, test
accuracy, precision, recall, F1-score, and AUC (which were the worst values). These matrices ensure
the results of the autoenceder, which gives the worst case in all cases with zero recall, precision, and
F1-score.

Table 6: Some matrices of the classification step

Training accuracy Test accuracy Recall

40.76 20.32 0
Precision F1-score AUC
0 0 0.5

Fig. 16 shows the confusion matrix of the classification stage. The results of the predicted vs. the
actual were not good; the expected results were not obtained. The figure also shows the iterations
in the classification step vs. the loss function (the loss function did not yield any good results). The
model of that combination of hyperparameters gives the worst retrieved image and that reflected on
the classification algorithm results which are precision = 0, F1-score = 0, and recall = 0. The blank
graph shows the classification model failure.

Figure 16: Confusion matrix and iterations in the classification step
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Fig. 17 presents the ROC curve of the classification algorithm, reflecting the effects of vari-
ous hyperparameters on the classification results. The combination of the mean square logarith-
mic error loss function, the ADAGrad optimizer, the ReLU activation function, and two CNNs
(MSLE+ADAGrad+ReLU+2 layers) shows the best curve, compared to combining the mean square
logarithmic error loss function. A combination of the mean square logarithmic error loss function,
the ADAM optimizer, the ReLU activation function, and two CNN (MSLE+ADAM+ReLU+2
layers), or the mean square logarithmic error loss function, the ADAM optimizer, the ReLU activation
function, and five CNN (MSLE+ADAM+ReLU+3 layers).
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Figure 17: The ROC curve of the classifier on the retrieved images obtained by applying different
hyperparameters in the auto-encoder

6 Conclusion

In this study, we provided some deep knowledge, describing various state-of-the-art auto-encoder
architectures and showing the usefulness of compressing and encrypting medical images during
transmission across an IoT system. We explained the auto-encoder and how different parameters can
change its performance and the matrices of the classification algorithm. Based on our findings, we
concluded that changing the algorithm hyperparameters may affect the algorithm matrices and the
number of epochs. Our findings show that increasing the number of epochs decreases the loss function,
while increasing the number of layers does not increase the evaluation matrices. Further, the optimizer
ADAM and ADAGrad yielded the best results when applying the auto-encoder with the ReLU
activation function and loss function mean square logarithmic error. Early stopping can also give
good results. This paper presents a novel auto-encoder model for compressing and encrypting medical
images during internet transfer. This model is very important because of the hacking processing over
the internet, especially when transferring medical images. Compressing the images is important to
speed up the process of transferring images. In future work, some other auto-encoder hyparameter
permutations can be utilized. Another classification algorithm with a lot of critical structure can be
used to get better results.
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