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ABSTRACT

Accurate prediction of ship motion is very important for ensuring marine safety, weapon control, and aircraft carrier
landing, etc. Ship motion is a complex time-varying nonlinear process which is affected by many factors. Time
series analysis method and many machine learning methods such as neural networks, support vector machines
regression (SVR) have been widely used in ship motion predictions. However, these single models have certain
limitations, so this paper adopts a multi-model prediction method. First, ensemble empirical mode decomposition
(EEMD) is used to remove noise in ship motion data. Then the random forest (RF) prediction model optimized by
genetic algorithm (GA), back propagation neural network (BPNN) prediction model and SVR prediction model
are respectively established, and the final prediction results are obtained by results of three models. And the
weights coefficients are determined by the correlation coefficients, reducing the risk of prediction and improving
the reliability. The experimental results show that the proposed combined model EEMD-GARF-BPNN-SVR is
superior to the single predictive model and more reliable. The mean absolute percentage error (MAPE) of the
proposed model is 0.84%, but the results of the single models are greater than 1%.
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1 Introduction

Under the influence of wind, waves and other factors, the movement of the ship sailing on the
sea in six degrees of freedom is randomly complicated and it seriously affects the sport safety of
the ship. Since it is difficult to establish an accurate dynamical model for ship motion, most of the
existing models for predicting ship motion are based on the measurements data of the ship at historical
moments to predict the movement in the future.

There are a lot of studies that have been adopted in ship motion prediction. These methods are
mainly categorized into traditional time series analysis methods and intelligent prediction methods.
Traditional methods mainly include auto-regressive model (AR), moving-average model (MA) and
auto regressive moving average mode (ARMA). Yumori et al. established ship motion prediction
model based on AR and ARMA model with measured information, including wave motion and ship
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motions [1]. And similar models can be found in Zhang et al. [2,3]. However, these methods generally
used the least squares to solve model coefficients but it was inappropriate to use this constant model
coefficients to forecast ship motion which is a random process. Therefore, Peng et al. proposed a
method for on-line estimation of parameters using recursive least squares and developed an on-line fast
ARMA fixed-order algorithm [4] . The methods mentioned above play an important role in predicting
the ship motions, but AR, MA and ARMA model are linear models, which are not suitable to forecast
the real ship motion which has complex, strong nonlinear and chaos characteristic.

Huang et al. creatively proposed a new processing method called empirical mode decomposition
(EMD), which can effectively and adaptively deal with the nonlinearity and non-stationarity existing
in actual engineering signals [5]. EMD is to equalize the original time series with the sum of several
stationary intrinsic mode function (IMF) components and a trend function component, which is
the process of smoothing the original time series. Therefore, it has been popularly employed in
developing hybrid models for various time series prediction. Huang et al. proposed AR-EMD
technique decomposing the complex ship motion data into a couple of simple intrinsic mode functions
and residual, which produces better prediction compared to AR models [6]. Duan et al. developed
a hybrid AR-EMD-SVR model which overcomes the non-stationary difficulty and achieves better
predictions than other models [7]. However, the EMD method has mode mixing and endpoint effects,
which destroys the physical meaning of the IMF. Aiming at the deficiency of EMD, EEMD is adopted
in this paper to decompose complex signals of ship motion into multiple simple sub-signals [8,9].

With the development of artificial intelligence technology, machine learning models, which could
solve the nonlinear or nonstationary problem, have drawn attention and are used to predict the time
series. These models are all data-driven models, such as Artificial Neural Networks (ANNS), Support
Vector Regression (SVR), etc. Zhang et al. discussed diagonal recurrent neural network and acquired
better results [10]. Peng et al. proposed a novel method of single-output three-layer Back Propagation
(BP) neural network to identify Volterra series kernels, which has higher precision, longer prediction
time, effectiveness and adaptability [11]. Huang et al. applied radial basis function (RBF) neural
network to develop one-step forward prediction of ship pitching motion [12]. Peng et al. proposed
Echo State Network (ESN) based on Kalman filter algorithm for modeling in ship motion. However,
there are issues that must be considered regarding the actual number of hidden nodes included in an
ANN [13]. Liu et al. introduced a prediction method based on extreme learning machine, support
vector machine and particle swarm optimization (PSO-KELM), which has a simple structure, fast
training speed and simulation results showed high accuracy prediction [14]. Luo et al. adopted support
vector machine for the parametric identification of ship coupled heave and pitch motions with real
oceanic conditions [15]. Furthermore, Li et al. designed a dynamic seasonal robust v-support vector
regression forecasting model (DSRvSVR) and analysis results showed that the hybrid model received
better forecasting performance compared with other models [16]. Ensemble learning tree model is
another important machine learning model that has achieved great success in predicting weather,
stocks, traffic flow [17,18]. For example, Chen designed a random-forest based forecast model that had
consistently shown better predictive skills than the ARIMA model for both long and short drought
forecasting [19]. Li et al. adopted the ARIMA-XGBooost hybrid model to forecast China’s energy
supply security level and got accurate result [20]. But tree model is rarely used to predict ship motion.

Due to the uncertainty of ship motion, the methods mentioned above usually use a single
complex model for prediction, which becomes unreliable when overfitting or failure occurs. Therefore,
an EEMD-GARF-BPNN-SVR combined prediction method is proposed in the paper, which can
effectively utilize the information of different single models and has higher precision and credibility.
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The final prediction result is obtained by adding the results of various models according to the weight
coefficient. And the weights coefficients are determined by the correlation coefficients.

The rest of this paper is structured as follows: First, the EEMD algorithm and various prediction
models are introduced. The methods used to predict ship motion are introduced in detail, including
time series method and various machine learning algorithms such as BPNN, SVR, RF and XGBoost.
Then the GA algorithm for optimizing RF model parameters and the combined prediction model
based on correlation coefficient are introduced. Next, all the models are constructed with measured
data and the performance of each model is analyzed. The conclusion is drawn finally.

2 Method

In general, the goal of the prediction model is to map historical data (xt, xt−1, · · · , xt−p) to future
data xt+q with mapping function f :

xt+q = f (xt, xt−1, · · · , xt−p+1),q > 0, p > 0

where p is the number of the inputs, q is the prediction step size. Due to the non-stationary and
nonlinear behavior of ship motion, f is a time-varying nonlinear function. Therefore, ship motion
prediction is a nonlinear multi-step prediction problem which is more difficult than one-step ahead
forecasting, since it has to deal with various additional complications, like reduced accuracy and
increased uncertainty [21,22].

In this paper, the EEMD-BPNN-GARF-SVR algorithm is used as the prediction model. Fig. 1
shows the main framework of the algorithm proposed in this paper.

Original data

IMF1 IMF2 IMFn... Rn

EEMD

Decomposed 
sequence

BPNN GARF SVR

ADD

Prediction 
Value

W1 W2 W3

Figure 1: The framework of the EEMD-BPNN-GARF-SVR model

First, original data is processed by EEMD and is divided into n+1 subsets including IMFi(i =
1, 2, . . . n) and a residual set. IMF1 corresponds to the highest frequency component and IMFn

corresponds to the lowest frequency component. IMF1 is considered as a noise sequence, thus a
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reconstructed sequence can be obtained by removing IMF1.Then the reconstructed data is divided
into training set and test set. training set is used to build BPNN, GARF and SVR models, where the
parameters of GARF is optimized by genetic algorithm (GA), and the test data is used to test the
prediction performance of the models. The final prediction results of the hybrid model are obtained
by combining the results of single model, while the optimal weighting coefficients are determined
according to the correlation coefficients between the model prediction values and ship motion test
values.

2.1 EEMD
EMD is a processing method for non-stationary nonlinear signals proposed by Huang in 1998

[5] which has been successfully applied in many fields [5]. The purpose of the EMD algorithm is to
decompose a poorly performing signal into a set of better performing Intrinsic Mode Function (IMF)
functions that satisfy two properties: (1) the number of extreme points (maximum or minimum) of the
signal is equal to or at most one different from the number of zero crossings; (2) The average of the
upper envelope composed of local maxima and the lower envelope composed of local minima is zero.

The procedure of the EMD algorithm is shown in Table 1.

Table 1: EMD algorithm

1. Find all the maxima and minima points of the original data sequence x(t) and fit them to the
upper and lower envelopes of the original sequence respectively using the cubic spline function;
2. Calculate the mean of the upper and lower envelopes m1;
3. Calculate a new sequence h1 = x(t) − m1;
4. If h1 satisfies the two criteria of the IMF, h1 is defined as an IMF, r(t) = x(t) − h1; otherwise, let
x(t) = h1, and return to the step 1;
5. Return to the first step unless the last data sequence r(t) cannot be decomposed.

The EMD method has been applied quickly and effectively in different engineering fields, such
as in oceans, atmosphere, celestial observations and geophysical record analysis. But an inevitable
shortcoming of EMD, mode mixing which is caused by the data intermittency, such as intermittent
signal, impulse interference and noise, limits its application. Mode mixing refers to an IMF containing
extremely different characteristic scales or similar characteristic scales distributed in different IMFs,
causing adjacent IMFs to mix together.

Aiming at this phenomenon, Huang proposed the EEMD which use Gaussian white noise in
original sequence. When the signal is added to a uniformly distributed white noise background, signal
regions of different scales are automatically mapped to the appropriate scale associated with the
background white noise. Due to the characteristics of zero-mean noise, the noise will be canceled after
multiple averaging calculations.

The steps of EEMD algorithm steps are shown in Table 2.
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Table 2: EEMD algorithm

1. Add a random white noise with the mean of 0 and the variance of σ to the original signal to
obtain a noisy signal xw(t).
2. Decompose xw(t) into k IMFs components via the EMD.
3. Repeat steps 1 and 2 N times, and each time adds different white noise sequences.
4. Since the random white noise mean value is 0, the noise component of each IMF component
can be eliminated by averaging the corresponding IMF component, and the IMF component
decomposed by EEMD is obtained.

2.2 Autoregressive Integrated Moving Average (ARMA)
The ARMA model is mostly used in time series forecasting. For a given data set of ship motion

{x(t), t = 1, 2, . . . , n}, ARMA (p, q) can be defined as follows:

x (t) = α1x (t − 1) + α2x (t − 2) + · · · + αpx (t − p) + εt + β1εt−1 + β2ε2 + · · · + βqεq (1)

where p and q are the model order of the AR and MA, respectively. εt is a white noise with finite
variance, αp and βq are the regression coefficients of the ARMA model. The most important step
in model construction is to determine the model orders p and q, which are generally identified by
autocorrelation functions and partial autocorrelation functions. In order to fit the data as much as
possible and avoid overfitting, Akaike Information Criteria (AIC) was used for model identification
in this paper.

AIC = 2k − 2ln(L) (2)

where k is the number of parameters, L is the likelihood:

L =
n∏

i=1

1√
2πσ 2

exp

[
−

n∑
i=1

(xi − x̂i)
2

2σ 2

]
(3)

where xi is the observed, and x̂i is the prediction, (xi − x̂i) is the prediction residual. In the model
identification, the AIC value is minimized, which determines the smallest appropriate order to
represent the time series.

2.3 Back Propagation Neural Network (BPNN)
Artificial neural networks have been widely used in recent years to construct time series prediction

models because they can fit functions of arbitrary complexity with arbitrary precision. As a classic
algorithm, BP network is favored by many researchers. A typical predictive network structure with
one input layer, one hidden layer and one output layer is as follows:

In general, the output of the neural network is

x(t+1) = fo

(
n∑

h=1

[
who

[
fh(

p∑
i=1

wihx(t − i) + bh)

]]
+ bo

)
(4)

where p and n are the number of input layer and hidden layer neurons, respectively. wih, who, bh, bo are
the coefficients of the input layer and the hidden layer, coefficients of the hidden layer and output
layer, offsets of the hidden layer and output layer, respectively. fh and fo are the hidden layer activation
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function and output layer activation function, respectively. A network structure with one input layer,
two hidden layers and one output layer is adopted in this paper.
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x(t)
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Wih
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Input Layer Hidden Layer Output Layer
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Figure 2: The structure of BPNN

2.4 Support Vector Regression
For a given training set T = {(x1, y1), (x2, y2), . . . , (xN, yN)}
where xi ∈ Rn is n-dimensional input of the ship motion, yi ∈ R is the prediction value, the

aim of SVR is to find a hyperplane that fits y without errors under the given accuracy ε, that is, the
distance from all sample points to the optimal hyperplane is not greater than ε. SVR tries to map initial
data from the sample space into a higher dimensional feature space Rm through a nonlinear mapping
function and thus converts a nonlinear problem into linear problem to get the optimal solution. The
SVR model is constructed as follows:

y = f (x) = ω · ϕ(x) + b (5)

where ϕ(x) is the nonlinear mapping function, ω is the weight vector, b ∈ R is the threshold, “·” is the
dot-product in the feature space. Taking into account the allowable error, we introduce slack variables
ξ , ξ ∗ and penalty parameter C, therefore transform the above problem to a convex optimization
problem:

min 1
2
‖ω‖2 + C

∑N

i=1 (ξi + ξ ∗
i )

s.t.

⎧⎨
⎩

yi − ω · ϕ(xi) − b ≤ ε + ξ

ω · ϕ(xi) + b − yi ≤ ε + ξ ∗

ξ , ξ ∗ ≥ 0

(6)

After converting the optimization problem into a dual problem, the optimal regression function
can be solved as

y = f (x) = ω · ϕ(x) + b =
N∑

i=1

(αi − α∗
i )K(xi, x) + b (7)

where αi and α∗
i are the Lagrange multipliers, K(xi,x) = ϕ(xi)·ϕ(x) is the kernel function, and gaussian

function is choose as the kernel function in the paper.
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2.5 Ensemble Trees
Decision tree is a well-known predictive model with many advantages such as intelligibility and

small amount of computation, therefore, it is widely used in data science and competition. But a simple
regression tree has the disadvantage of easily fitting the training data and unstable, therefore, little
change in training data may result in very different trees and predictions. Ensemble trees are one
solution to improve robustness and reliability of regression trees by combining multiple regression
trees produced with different generation methods. RF and XGBoost are two widely used ensemble
models but with different features.

The RF first randomly samples the original sample set by the Bootstrap sampling method to
obtain t samples containing m samples, so that 63.2% of the samples in the initial training set appear in
all sampling sets. Based on each sample set, a regression tree can be built. The process of RF regression
tree is different from the traditional decision tree. It randomly extracts k features from all features as
the split feature set of the current node. Each regression tree grows from top to bottom recursively,
and all decision trees are combined. Random forests. The final predicted result is the average of the t
regression trees predictions.

XGBoost is a scalable end-to-end tree boosting system, which is used widely by data scientists
to achieve state-of-the-art results on many machines learning challenges. The goal of this model is to
predict the output y with input x,

�yi =
K∑

k=1

fk(xi), fk ∈ 
, (8)

where K is the number of the functions, Γ represents a set of regression functions.

The objective function of XGBoost is as follows:

Obj=
∑

I

l( �yi,yi)+
∑

k

Ω(fk), where Ω(fk) = γ T + 1
2
λ ‖ω‖2 (9)

where l is the loss function indicating the difference between the prediction �yi and the target yi. Ω is
the complexity of a single tree including the number of leaves T and the regular term of the residual
ω to prevent overfitting.

During the training process, the training objective function of each tree is shown in

Obj(t)=
n∑

i=1

l(yi, �yi
(t−1) + ft(xi)) + Ω(ft) (10)

The second-order Taylor expansion of the objective function is

Obj(t)=
n∑

i=1

[l(yi, �yi
(t−1)) + gift(xi) + 1

2
hift

2
(xi)] + (ft)

where gi = ∂�y (t−1) l(yi, �y(t−1)) and hi = ∂2�y (t−1)
l(yi, �y(t−1))

(11)

f is defined as

ft(x) = ωq(x), ω ∈ RT , q : Rd → {1, 2, . . . ,T} (12)

where q is a structure function that maps input x to the index of the lead node. w gives the leaf score
corresponding to each index number.

I is defined as a sample set above each leaf:

Ij = {i/q(xi) = ji} (13)
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therefore,

Obj(t) =
n∑

i=1

[
gift(xi) + 1

2
hift

2
(xi)

]
+ (ft)

=
n∑

i=1

[
giωq(xi) + 1

2
hiω

2
q(xi)

]
+ γ T + 1

2
λ

T∑
j=1

ω2
j

=
T∑

j=1

⎡
⎣

⎛
⎝∑

i∈Ij

gi

⎞
⎠ wj + 1

2

⎛
⎝∑

i∈Ij

hi + λ

⎞
⎠ω2

j

⎤
⎦ + γ T

=
T∑

j=1

[
Gjwj + 1

2
(Hj + λ)w2

j

]
+ γ T (14)

where Gj = ∑
i∈Ij

gi, Hi = ∑
i∈Ij

hi

Then the optimal ω∗
j can be obtained as follows:

ω∗
j = − Gj

Hj + λ
(15)

Obj = −1
2

T∑
j=1

G2
j

Hj + λ
+ γ T (16)

The good structure can be obtained by the objective function. In order to balance the new node
complexity and objective function, exact greedy algorithm was adopted by the authors to calculate the
gain in the loss reduction from introducing the split:

Gain = −1
2

[
G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)

2

HL + HR + λ

]
− γ (17)

L, R represents the left and right nodes of the leaf.

2.6 Genetic Algorithm
Genetic algorithm is a randomized search algorithm generated by evolutionary theory and genetic

mechanism, which adaptively adjust the search direction and can be used to optimize parameters
without falling into the local optimal solution. Genetic algorithms mainly include chromosome
coding, evaluation of fitness, selection, and hybrid mutation operations. In the paper, the GA algorithm
is used to optimize the two parameters of the RF prediction model, which are the maximum depth
of the tree and the number of base classifiers. First, set the range of values for the two parameters,
it determines the required number of binary coded, which map the parameter space into to the
chromosomal space. An initial binary coded chromosome of a certain size is then randomly generated,
and fitness of each individual in the initial chromosome population is calculated. Roulette wheel
selection, deterministic or tournament selection are adopted to select individuals with higher fitness
values from the group they have higher opportunity to transmit the good genes to the next generation
as parents. Then the core operational variations and intersections in the genetic algorithm are executed,
improving the search ability of the genetic algorithm and promoting the group to continuously develop
toward the optimal solution. Fig. 3 shows the algorithm structure of EEMD-GARF.
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Figure 3: The framework of the EEMD-GARF model

2.7 Combined Prediction Based on Correlation Coefficient
In order to reduce the risk of prediction, a combined forecasting method came into being, the

most concerned issue of which is how to find the weighted average coefficient. In most cases, the time-
varying weight combination method produces better results than the constant weight combination
method. A combined prediction model based on correlation coefficients is adopted in this paper, and
the optimal solution of weighting coefficients is determined by the error square sum criterion.

We assume the observations are {xt, t = 1, 2, . . . ,N}, the predicted values of the prediction
models are

{xit,t = 1, 2, . . . ,N,i = 1, 2, . . . ,m}
where m is the number of the model. Combined forecast value is as follows:

x̂i =
m∑

i=1

lixit, i = 1, 2, . . . , m,
m∑

i=1

li = 1 (18)

li is the weight coefficient of the i-th prediction method.
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The correlation coefficient between the predicted sequence of the i-th single prediction method
and the actual observed sequence is

Ri =
∑N

t=1(xt − x)(xit − xi)√∑N

t=1(xt − x)2

√∑N

t=1(xit − xi)2

, i = 1, 2, . . . , m (19)

The correlation coefficient between the combined predicted value and the actual observed value is

R =
∑N

t=1(xt − x)(x̂t − x̂)√∑N

t=1(xt − x)2

√∑N

t=1(x̂t − x̂)2

=
∑N

t=1 et

∑m

i=1 lieit√∑N

t=1 et
2

√∑N

t=1(
∑m

i=1 lieit)2

, i = 1, 2, . . . , m (20)

where et = xt − x, xit − xi

We define

εi = (ei1, ei2, . . . eiN)T Eij = εT
i εj =

N∑
t=1

eitejt, i, j = 1, 2, · · · , m E = (Eij)m×m L = (l1, l2, . . . , lm)T

Then the (21) can be obtained

R =
∑m

i=1 li

∑N

t=1 eteit√∑N

t=1 et
2
√

LTEL
,i = 1, 2, · · · ,m (21)

Eij represents the covariance of the predicted values of the i-th and j-th prediction methods, and
Eij represents the variance of the predicted value sequence of the i-th method. E is the covariance
information matrix of the combined prediction.

It is obvious that the larger R is, the more effective the prediction method is, so the solution of the
weighting coefficient can be defined as an optimization problem as follows:

Max R(l1, l2, L, lm) =

m∑
i=1

li

N∑
t=1

eteit√
N∑

t=1

e2
t

√
LTEL

s.t.

⎧⎨
⎩

m∑
i=1

li = 1,

li ≥ 0, i = 1, 2, L, m

(22)

When R is the largest, the l is the weight coefficient of each model. When the optimal solution has
more than two components that are not zero, that is, two or more single prediction methods provide
effective information, the combined prediction method corresponding to the optimal solution is better
than the best one of the single prediction methods.

3 Result and Experiment

In the paper, ARMA, BPNN, SVR, RF, GARF, XGBOOST are selected as the single prediction
model to forecast the ship motion and BPNN-GARF, GARF-SVR, BPNN-XGBoost-SVR and
BPNN-GARF-SVR are designed as the hybrid models. The data used in this paper is the measured
data of the ship sailing in the sea, whose sampling frequency is 10 Hz. Three common criteria, root
mean square error (RMSE), the mean absolute deviation (MAE) and the mean absolute percentage



CMES, 2023, vol.134, no.2 1363

error (MAPE) were adopted to measure the prediction performances of the models. The definition of
the RMSE, MAE, MAPE are as follows:

RMSE =
√√√√ 1

N

N∑
i=1

(x̂(t + q) − x(t + q))
2

MAE = 1
N

N∑
i=1

∣∣x̂(t + q) − x(t + q)
∣∣

MAPE = 100
N

N∑
i=1

∣∣∣∣ x̂(t + q) − x(t + q)

x(t+q)

∣∣∣∣ (23)

where x̂(t + q) and x(t + q) represent predicted and actual values at time t + q, respectively. N is the
number of forecasting samples.

For the model mentioned in the article, parameter adjustment is very important, which helps to
improve the prediction accuracy of the model. The parameters of used models were set and determined
as the following. For ARMA model, orders p and q were determined by Akaike Information
Criterion (AIC) with the coefficients α and ε were calculated by recursive least square method. The
decomposition parameters of EEMD are set according to common settings where σ = 0.1, N = 100.
In the BPNN model, the parameters with better performances are adopted as the number of neurons.
Therefore, a BPNN structure containing an input layer, two hidden layers, and an output layer
is designed in the text, where the number of neurons is 100, 10, 10, 100, respectively. The weight
coefficients and offset coefficients between the layers are first randomly initialized and then optimized
by the gradient descent method. The Gaussian function is used as the kernel function in the SVR
model. The XGBoost use a grid search method to determine multiple parameters. In the GARF model,
the range of values of the two parameters are taken as [10,160] and [1,64] and intervals are 10 and 1,
respectively, therefore, the number of coded bits is 10 bits. The number of populations and the number
of iterations is both set to 50, the mean square error of predicted and true values is adopted as the
fitness function of the model.

A set of 100 s with a sampling frequency of 10 Hz is created for EEMD decomposition and the
Fig. 4 is the result of EEMD. The ship motion series is divided into 8 IMFs and one residual. The
original sequence is divided into 8 IMFs and one residual, and all IMFs are arranged in the order in
which they are extracted, with frequencies from high to low. It can be seen from the decomposition
results that the original sequence is mainly controlled by low frequency sequences such as IMF2,
IMF3, and IMF4. In all IMFs, the IMF1 with the highest frequency is considered as noise, and the
remaining IMFs and residuals are re-added into a new approximate sequence, the complexity of which
is reduced.

The Fig. 5 shows the instantaneous frequency of each IMF sequence. The fold lines are
IMF1∼IMF5 from top to bottom, and the frequency is also from high to low, which is consistent
with the decomposition result of the Fig. 5. It can be seen that the main IMFs are clearly separated
into different frequency components and there is no mode mixing.

This paper used 0.1 s as the initial prediction step, and each prediction is increased by 0.1 s until
9.9 s. The Fig. 5 describes the true value and the predicted value curve for the 50-step prediction of
different models. The Table 3 shows the prediction accuracy of the 10 prediction models from the three
evaluation criteria RMSE, MAE, MAPE when predicting 50 steps.
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Figure 4: EEMD decomposition results and reconstruction sequences

Figure 5: Instantaneous frequency estimation of the IMFs

As can be seen from the Fig. 6 and Table 3, as a linear model which is easy to construct, the
prediction accuracy of ARMA model is inferior to all other models when it is used to predict the
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complex nonlinear ship motion. As a model with strong nonlinear fitting ability, BPNN and XGBoost
models behave much better than ARMA model, but they are inferior to SVR and RF models in
a single model. The RF model optimized by the genetic algorithm has better performance, but the
improvement effect brought by the genetic algorithm cannot make the RF model exceed the SVR
model, whose performance is the best in the single model when predicting 50 steps, and the RMSE,
MAE, MAPE of which is 10.26, 7.47, 0.91.

Figure 6: Ship motion prediction curve for all models

Table 3: Prediction accuracy of each model when the forecast step is 50

Forecasting models RMSE MAE MAPE (%)

ARMA 25.17 19.41 3.92
BPNN 12.15 8.16 0.98
SVR 10.26 7.47 0.91
XGBoost 12.40 9.27 1.44
RF 11.38 8.58 1.18
GARF 10.86 7.91 1.15
BPNN-GARF 10.22 7.24 1.01
GARF-SVR 10.08 7.34 0.95
BPNN-XGBoost-SVR 9.71 6.84 0.84
BPNN-GARF-SVR 9.69 6.84 0.85

Among the four combined models used in the article, BPNN-GARF has similar performance with
SVR while the other three models GARF-SVR, BPNN-GARF-SVR, BPNN-XGBoost-SVR have
higher precision than the SVR model, which indicates the prediction method designed in the paper is
at least non-inferior combination. GARF-SVR can be regarded as a redundant combination forecast
model because compared to the SVR model (RMSE = 10.26, MAE = 7.46, MAPE = 0.91) and the
GARF model (RMSE = 10.87, MAE = 7.91, MAPE = 1.15), three evaluation criteria of GARF-
SVR model (RMSE = 10.08, MAE = 7.34, MAPE = 0.95) only increased by 0.18, 0.12, −0.04 (1.7%,
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1.7%, −5%) and 0.79, 0.57, 0.20 (7.3%, 7.2%, 1.7%), respectively. The RMSE and MAE criteria only
increased by less than 2% compared with the SVR, and the MAPE even decreased by 5%.

From the Fig. 5, it can be seen that the combined prediction results in the GARF-SVR mainly
depend on the SVR, and the weight coefficient of GARF, which cannot provide much useful
information for the final forecast result, is only 0.25 while the coefficient of SVR is 0.75. BPNN-GARF
is a typical superior combination model. Compared with BPNN and GARF, the performance of
BPNN-GARF (RMSE = 10.22, MAE = 7.24, MAPE = 1.01) is increased by 1.94, 0.09, −0.03 (16.0%,
11.3%, −3.0%) and 0.65, 0.68, 0.14 (6.0%, 8.6%, 1.3%), respectively, at least to the extent of SVR.
BPNN-GARF combination model can be depicted as an excellent combination that achieve better
results than a single model by combining a better model with a poorer model. The other two combined
models BPNN-GARF-SVR and BPNN-XGBoost-SVR are basically similar in performance, because
the most useful information of these two models is contributed from SVR, and GARF and XGBoost
only provide a little effective information, which can be seen from the weighting coefficients. In the
BPNN-GARF-SVR combination model, the weight coefficients of BPNN, GARF, and SVR are 0.30,
0.18, and 0.52, which are the same as the BPNN, XGBoost, and SVR weight coefficient bases in the
BPNN-GARF-SVR model, 0.32, 0.09, and 0.59. Since XGBoost is inferior to GARF, the latter has
a higher weighting coefficient than the former. Compared with the SVR model, the BPNN-GARF-
SVR model has improved by 0.57, 0.63, 0.53, (5.5%, 8.4%, 5.9%). For the BPNN and GARF models,
the improvement of the combined model is more obvious that the performance is increased by −2.46,
−1.32, −0.12% (20.2%, 16.1%, 12.2%) and −1.17, −1.078, −0.29 (10.8%, 13.6%, 25.6%), respectively.
From the above conclusions, by combining a plurality of individual prediction models, an integrated
model with better performance can be obtained.

Figs. 7a–7c show the relationship between prediction accuracy and prediction step size. It can
be observed that when the prediction step size is less than 10, the BPNN effect is the best an as the
prediction step size increases, the SVR and GARF models gradually achieve better results. GARF
model is significantly better than RF, but the optimization effect gradually decreases with time. This is
because the genetic algorithm optimization result is adopted as a fixed parameter for RF model which
does not change with the prediction step size increases. The prediction result curve from GARF-SVR
also concludes that this is a redundant prediction model because the performance curve of GARF-
SVR almost coincides with the curve of SVR.

Figure 7: (Continued)
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Figure 7: The curve of prediction accuracy and forecast step size

In the BPNN-GARF/XGBoost-SVR model, the performance is always superior to the current
single prediction model. When the prediction step is small, BPNN is better than SVR and GARF and
the combined model is better than BPNN. With the increase of the prediction step size, SVR is better
than BPNN and GARF, and the combined prediction model is superior to SVR. Compared to BPNN
and SVR, GARF and XGBoost have small weight coefficients in combined forecasting, but they also
provide some useful information to the final result.

The Fig. 8 shows the variation of the weight coefficient with the predicted step size. At the
beginning, BPNN’s weight coefficient is the highest, then gradually decreases and tends to stabilize,
while the SVR coefficient is gradually increasing. The coefficient of GARF is relatively low, and
sometimes close to zero. Therefore, SVR provides the main valid information, BPNN provides
secondary useful information, and GARF also provides useful information, but sometimes it may
be redundant.

Figure 8: The curve of BPNN-GARF-SVR weight coefficients and forecast step size



1368 CMES, 2023, vol.134, no.2

The Fig. 9 shows the correlation coefficient between the predicted value and the real value, which
provides another perspective for evaluating the performance of the model, and the weight coefficient
in the combined model is also determined according to the correlation coefficient of each single model.
The correlation coefficient of the combined model is obviously higher than the single model, which is
consistent with the results of three evaluation criteria.

The Figs. 10a–10d show the correlation coefficients of BP, GARF, SVR and BPGARF when
predicting 50 steps. The correlation coefficient of the combined model is higher than the correlation
coefficient of the single model, which is consistent with the previous analysis.

Figure 9: The curve of correlation coefficient and forecast step size

(a) BPNN (b) GARF

Figure 10: (Continued)
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(c) SVR (d) BPNN-GARF-SVR

Figure 10: The correlation coefficient of the BPNN, GARF, SVR and BPNN-GARF-SVR when
forecast step is 50

4 Conclusion

In this paper, we proposed a hybrid forecasting method EEMD-BPNN-GARF-SVR for ship
motion. EEMD is used to remove high frequency noise components from the original sequence and
obtain reconstructed sequences. Three independent predictive models were first established based
on the reconstructed data, including BPNN, SVR and RF models. The final prediction results are
obtained by combining the prediction results of three independent prediction models. Experiments
show that for the measured data, when the prediction compensation is 50 steps, the RMSE, MAE and
MAPE of the BPNN-GARF-SVR model are 9.69, 6.84 and 0.85, respectively. The RMSE of the single
models is greater than 10, the MAE is greater than 8, and the MAPE is greater than 1. It can be seen
that through the combination of multiple models, the prediction result is improved compared to the
single prediction model.
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