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ABSTRACT

To meet the requirements of specifications, intelligent optimization of steel bar blanking can improve resource
utilization and promote the intelligent development of sustainable construction. As one of the most important
building materials in construction engineering, reinforcing bars (rebar) account for more than 30% of the cost
in civil engineering. A significant amount of cutting waste is generated during the construction phase. Excessive
cutting waste increases construction costs and generates a considerable amount of CO2 emission. This study aimed
to develop an optimization algorithm for steel bar blanking that can be used in the intelligent optimization of steel
bar engineering to realize sustainable construction. In the proposed algorithm, the integer linear programming
algorithm was applied to solve the problem. It was combined with the statistical method, a greedy strategy was
introduced, and a method for determining the dynamic critical threshold was developed to ensure the accuracy
of large-scale data calculation. The proposed algorithm was verified through a case study; the results confirmed
that the rebar loss rate of the proposed method was reduced by 9.124% compared with that of traditional
distributed processing of steel bars, reducing CO2 emissions and saving construction costs. As the scale of a project
increases, the calculation quality of the optimization algorithm for steel bar blanking proposed also increases, while
maintaining high calculation efficiency. When the results of this study are applied in practice, they can be used as
a sustainable foundation for building informatization and intelligent development.
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1 Introduction

As societies and economies advance, China has proposed a goal to reach the peak of its total CO2

emissions by 2030, to become carbon neutral by 2060, and to advance new infrastructure development
strategies [1]. These objectives promote the development of the construction industry, while proposing
higher requirements for sustainable development in the construction industry. Simultaneously, the
construction industry, as a pillar industry in the national economy, and the concept of sustainable
development is essential. In 2017, building construction and operation accounted for 36% of the
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global final energy use and nearly 40% of the related CO2 emissions [2]. As the most important
building material in construction engineering, steel bars and concrete account for approximately 65%
of building greenhouse gases—40% of which are CO2 emissions from concrete [3].

Clark and Bradley’s survey showed that the embodied CO2 (ECO2) contained in an average
building is 340 kg-CO2/m2, of which the structure accounts for approximately 60% [4]. In a report by
Lee, 95 kg-ECO2/ton for C25/30 concrete was suggested, but the reinforcing bar generated an ECO2

of 872 kg-ECO2/ton. This shows that reducing the ECO2 in the structural framework directly leads to
a reduction in greenhouse gases. In addition, in terms of the carbon footprint, reducing the number
of steel bars is extremely important because their ECO2 is approximately 9.2 times that of concrete
per unit weight [5]. The most effective way to lower carbon emissions is to reduce the steel material
from the source. Begum [6] eliminated many problems related to waste disposal. However, steel bar
processing and blanking are only combined in a single component at this stage. Workers carry out
simple manual control to unload the materials in sequence. Such a method results in low processing
efficiency, generates a considerable amount of steel bar waste, causes serious waste of steel bar raw
materials. Generally, the steel cutting waste is approximately 3%–5% [7–10] in the design stage, but
more than 5% occurs in the construction stage [11–15]. This results from the lack of optimization of
cutting technology at the construction site to achieve sustainable construction.

Early research on cutting-stock problems can be traced back to 1939. Based on the cutting-stock
problem, economists of the former Soviet Union proposed a mathematical model that uses linear
programming to model and solve it by multiplication. Although the method is immature and cannot
guarantee an optimal solution, it has far-reaching guiding significance for the solution. Gilmore and
Gomory [16] used linear programming methods to build mathematical models. The postponed column
generation method, improved in 1963 [17] and 1965 [18], is also applicable to the problem of two-
dimensional plate cutting problems and even multidimensional problems.

In particular, for large-scale optimization problems, most linear programming algorithms have
low computational efficiency and are difficult to solve. It has been proposed that these problems can
be solved using heuristic algorithms. Haessler [19] proposed a new method—the sequential heuristic
method, which comprehensively considers loss, consumables, and cutting modes to solve multiple
optimization objectives. Haessler et al. [20,21] introduced the variable of the trimming method,
and applied it to the “first applicable” first-fit-decreasing and “best applicable” best-fit-decreasing
algorithms. For the one-dimensional cutting problem, Wagner [22] proposed adding constraints, such
as cutting loss and inventory, and using a genetic algorithm to solve it.

For the one-dimensional cutting problem, Yang et al. [23] improved the tabu search algorithm,
solved part of the problem with mixed objective functions, and achieved good results. Moreover, the
algorithm can avoid the common defects of traditional heuristic algorithms, i.e., falling into a local
optimal situation. Araujo et al. [24] set the objective function as the least remaining material, and used
a new heuristic algorithm for the optimization calculation. For small- and medium-scale problems,
it has been proposed [25] that simulated annealing algorithms can be used. Cui [26] summarized
the one-dimensional cutting problem from the sequential heuristic algorithm, and increased the
constraint conditions by setting primary and secondary goals. Based on this method, a computer-
aided layout system was developed. Based on the genetic algorithm, Gracia et al. [27] considered the
least surplus material as the objective function, and introduced different search strategies to solve the
one-dimensional cutting-stock problem. This method sets the cutting from the surplus material to a
higher priority. When surplus material is unavailable, a material with a fixed length is considered.
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In 2015, Nereu et al. [28] proposed an approach wherein surplus material can be used for other
purposes instead of becoming waste. In 2016, Poldi et al. [29] proposed solving the cutting problem
using a residual heuristic algorithm. Although various cutting optimization algorithms have been
proposed, most are unstable when tested. Most data in reinforcement engineering are extensive and
irregular. It is easy to produce nondeterministic polynomial (NP) complete problems when these
data are directly used in linear programming and cannot be solved in a feasible amount of time.
If other heuristic algorithms are used, it is difficult to set parameters, premature algorithms, and
local optimizations. Therefore, it is necessary to study in depth the cutting optimization algorithms
suitable for reinforcement engineering. An optimization algorithm for steel bar cutting that can meet
the engineering requirements in terms of calculation efficiency and calculation quality is required to
improve the application of the material utilization ratio in reinforcement engineering, reduce inefficient
labor, and achieve sustainable construction.

In this study, a mathematical model is proposed for minimizing the use of steel materials. An
integer programming model is used to solve the problem, and a greedy algorithm is introduced to
improve the linearized algorithm to optimize the large-scale steel bar calculation problem. The final
design calculation accuracy and calculation efficiency provide an intelligent optimization algorithm
for steel bar blanking, and the minimum steel loss is calculated using the cutting plan to achieve
sustainable construction.

2 Methodology

To design an optimization algorithm for steel bar blanking, the characteristics of the data in
reinforcement engineering were analyzed comprehensively, and the objective function and constraint
conditions were defined. A high-quality and high-efficiency solution for rebar blanking was achieved.

2.1 Parameters and Decision Variables
In the case of the same steel bar strength grade and diameter, the essence of the steel-bar-blanking

optimization problem is to use the least raw material for the steel bar (i.e., lowest cost) to solve the
project planning problem of different lengths and different quantities of blanks. In the optimization
model for this type of planning problem, the parameters in Table 1 are used.

Table 1: Parameters

Parameter Description Unit

ϕ Reinforcement strength grade MPa
d Steel bar diameter mm
L Reinforcement cut-lengths m
m Total number of embryo types 1
li Length of type i embryo m
bi Number of the i embryo 1

Owing to the definite length of the reinforcement, the raw materials of the reinforcement should
be minimized (minimum cost). It is necessary to fully utilize the raw materials of each steel bar; i.e., the
length of the surplus material after cutting should be less than the shortest length of the blank material.
Research has shown that this cutting method is effective. Each effective cutting method uses a steel bar
raw material. Steel cutting can be regarded as a combination of many effective cutting methods. The
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number of times the effective cutting method is used corresponds to the total number of raw materials
in this problem. Therefore, the decision variables can be set as in Table 2.

Table 2: Decision variables

Decision variables Data type Description Unit

xj Integer Use times of the j effective cutting method 1

2.2 Model Formulation
2.2.1 Objective Functions

This study aims to meet the requirements of engineering embryo materials, while minimizing cost.
For the setting of the objective function, two aspects are considered: minimization of raw material
number and loss.

From the perspective of the number of raw materials, the ultimate goal is to minimize the total
number of raw materials. To minimize Z (which denotes the total number of raw materials) based on
the previously set decision variables, the objective function can be expressed follows:

Min Z = x1 + x2 + x3 + · · · + xn (1)

Z ≥ 0, x ≥ 0

where Z is the total number of steel bars.

The mathematical model for minimizing raw material demand uses the total number of raw
materials required for the final calculation as the objective function to evaluate the blanking plan. The
mathematical method for minimizing loss summarizes all the remaining material lengths obtained
from cutting, sets the remaining material length as an index, and evaluates the cutting plan. The
corresponding objective function is as follows:

Min S = LZ −
n∑

i=1

(libi) (2)

where S is the total length of remaining material.

The analysis shows that, if both reach the optimal solution, the material utilization rates corre-
sponding to the two different objective functions are equal. Therefore, the number of raw steel bars
used is equal to the material loss. Because the calculation amount of the objective function set by the
minimization of raw materials is smaller, in the follow-up study, the number of raw materials is selected
to minimize the objective function.

2.2.2 Constraints

Although there exist several objective functions, the final model constraints are mainly based on
the number of roots that meet the engineering requirements. Steel bar blanking can be regarded as
a combination of multiple effective cutting methods. Each effective cutting method involves blanks
of different lengths. The combination of effective cutting methods ensures that the number of blanks
with different lengths is equal to the number of blanks required by the project.

For the calculation of effective cutting, the following methods are used [30].

S1: Processing of the blank length set li : {l1, l2, · · · , lm} in descending order, make l1 > l2 > · · · > lm;
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S2: n = 1, where n is the number of cutting methods;

an1 = min{b1, [L/l1]},
an2 = min{b2, [(L − an1l1)/l2]}, . . .
anm = min{bm, [(L − ∑m−1

i=1 anili)/lm]},
The function represents Gaussian rounding, that is, rounding down.

S3: Integrated cutting plan: [an1, an2, · · · , anm];

S4: Iteration based on S3 cutting plan. If there is ani > 0 at 1 ≤ i ≤ m − 1, let k be equal to the
maximum value of all i that meet the condition ani. If there is no ani > 0 at 1 ≤ i ≤ m−1, the algorithm
ends;

S5: n = n + 1an1 = a(n−1)1, an2 = a(n−1)2, · · · , an(k−1) = a(n−1)(k−1),

ank = a(n−1)k − 1

an(k+1) = min{bk+1, [(L − ∑k

i=1 anili)/lk+1]} . . .

anm = min{bm, [(L − ∑n−1

i=1 anili)/ln]]} to S2

Numbered lists can be added as follows.

It is assumed that bi steel bar blanks with a length of li m are required. In the first effective cutting
method, a1i steel bars with a length of li meters can be cut. In the second effective cutting method, a2i

steel bars with a length of li meters can be cut, and so on. In the n effective cutting method, ani steel
bars with a length of li meters can be cut. The following constraints can be obtained.

a1ix1 + a2ix2 + . . . + anixn = bi (3)

Assuming that m different lengths of steel bar blanks are required, there are n effective cutting
methods, and x1, x2, . . . , xn represents the number of raw steel bars in the corresponding plan. For all
steel bars with different lengths, the following constraints can be obtained.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a11x1 + a21x2 + . . . + an1xn = b1

a12x1 + a22x2 + . . . + an2xn = b2

. . .

a1mx1 + a2mx2 + . . . + anmxn = bm

(4)

x1, x2, . . . , xn ≥ 0

where a is the number of steel bars of a certain length that can be cut by various schemes.

2.3 Optimal Algorithm Design of Rebar Cutting
2.3.1 Integer Linear Programming Application

Under the above objective function and its constraints, a mathematical programming algorithm
was used to determine the optimal solution. Mathematical planning is an important branch of
operations research, and an important branch of mathematical programming is integer programming.
Integer linear programming limits the decision variables in linear programming to integers, and its
standard form can be expressed as follows:

Min f = cTx (5)
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s.t.

⎧⎪⎨
⎪⎩

Ax = b
xj ≥ 0 (j = 1, 2, 3, · · · n)

xj (j = 1, 2, 3, · · · n; xjis an integer.)
(6)

where c = (c1, c2, · · · , cn)
T , x = (x1, x2, · · · , xn)

T .

For the mathematical model of rebar cutting, the decision variable represents the number of raw
materials to be cut, which must be an integer. This exactly matches the principle and idea of integer
linear programming, so the integer linear programming algorithm can be used to solve the scheme
first.

At this stage, there are mainly exhaustive methods and branch-and-bound methods for solving
integer linear programming. Although the exhaustive method is theoretically feasible, it is far greater
than the other two algorithms under the same calculation scale. A new method for solving the fully
fuzzy system of linear equations using the linear programming problem approach is used.

The branch-and-bound method is one of the main methods for solving integer linear programming
problems. It has been widely used in the fields of mixed-integer programming and pure integer
programming. The branch-and-bound method first relaxes the original problem into a linear program-
ming problem. Then, it iteratively corrects situations wherein the optimal solution is not all integers.
When the algorithm starts to search, the optimal solution currently found is ∅. During solving, the
solution space is gradually reduced. At any time, the solution space comprises a subset of the solution
space that has not been explored and the optimal solution found thus far. The unsearched subspace
is represented as a node in the dynamically generated search tree. The search tree includes only the
root node before the algorithm starts. Each iteration of the branch-and-bound method processes a
node. The iteration has three parts: branching, boundary calculation, and screening. The branch is
generally based on the principle of selecting variables that do not meet the integer constraint, and pick
a non-integer variable xn = bn. Let [bn] be an integer rounded down to bn, and the original feasible
region is R. R is divided into R1 and R2 by xn = [bn] and xn = [bn] + 1. The non-integer area between
[bn] and [bn] + 1 in R is eliminated to reduce feasible domain. The current value divides it into two
subproblems for the solution. The boundary calculation aims to solve the subproblems generated by
the branch. According to its optimal objective function value, the upper and lower bounds before
branching are updated. Screening is based on the relationship between the optimal function value of
the branch subproblem and the preset upper and lower bounds. It deletes or rebranches the branch
until the optimal objective function value is obtained.

The solution process is as follows.

IL is an integer programming problem that needs to be solved. The linear programming problem
corresponding to this problem is called L.

The problem is solved in two stages.

First, to solve problem L, one of the following situations can be obtained.

(1) If there is no feasible solution for L, and there is no feasible solution for the IL, then stop.

(2) There is an optimal solution for L. The solution variables are all integers, so it is also the
optimal solution of IL. Then stop.

(3) An optimal solution for L exists. However, it does not meet the integer condition in the IL.
Then, f0 is the value of the objective function. If this happens, it must be f ≥ f0.

Second, iterative operations are performed for the (3) situation in the first stage.
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(1) Branch. In the optimal solution of L, a variable is chosen that does not satisfy the integer
condition. Assuming that its value is lj, two constraints, xj ≤ [

lj

]
and xj ≥ [

lj

] + 1, are
established. These conditions are added to question L, and L is divided into two subproblems,
L1 and L2. Regardless of the integer condition requirements, L1 and L2 are solved.

(2) Boundary. Each successor subproblem is a branch and indicates the result of the solution.
Similar to other results, the smallest value of the optimal objective function is found as the
new lower bound, and f0 is replaced simultaneously. From the branches that met the integer
condition, the smallest value of the objective function is found as the new upper bound f ∗,
which is f ∗ ≥ f ≥ f0.

(3) Comparison and pruning. If the optimal objective function of each branch is greater than f ∗, it
is cut off. If it is less than 1 and does not meet the integer condition, branching steps is repeated
until the optimal objective function value f = f ∗ is finally obtained. Thus, the optimal integer
solution is x∗

j (j = 1, 2, 3, · · · , n).

The algorithms were tested. Considering a sample project as an example, the representative data
of different scales in the steel bar schedule were extracted. The length of the steel bar raw material was
12 m; there were 23 types of blank that needed to be cut; the length was set li {10.772, 9.888, 9.36, 8.14,
7.66, 6.56, 6.05, 5.82, 5.73, 5.722, 5.684, 3.165, 2.96, 2.885, 2.67, 2.59, 2.565, 2.25, 2.22, 2.146, 1.946,
1.726, 1.44}; and the corresponding quantity set was ai {2, 2, 4, 8, 8, 16, 21, 18, 21, 2, 16, 34, 912, 17,
76, 8, 17, 18, 912, 68, 68, 66, 36}.

An integer linear programming algorithm is used to build the mathematical model. First, it is
necessary to calculate all feasible blanking schemes. According to the calculation in Section 2.2.2,
there are 3226 feasible blanking methods.

A mathematical model is established based on the cutting method. Solving it by an integer linear
programming algorithm took 15.138 s. Finally, 539 12-m-long raw materials were used, with a total
length of 12 × 539 = 6468 m. The total length of the blank material required by the project was∑23

i=1 liai = 6397.22 m. The overall utilization rate of the materials was 98.906%. The specific blanking
plan is presented in Table 3.

Table 3: Reinforcement requirement of material warehouse

No. l1 a1 l2 a2 l3 a3 l4 a4 Remaining Quantity

1 2.22 2 2.146 1 1.946 1 1.726 2 0.016 1
2 2.22 3 1.946 2 1.44 1 0.008 18
3 2.565 3 2.146 2 0.013 3
4 2.59 3 2.22 1 1.946 1 0.064 1
5 2.67 2 2.22 3 0 37
6 2.885 2 2.22 2 1.726 1 0.064 9
7 2.96 1 2.22 4 0.16 131
8 2.96 1 2.25 1 2.22 3 0.13 1
9 2.96 1 2.25 2 2.22 2 0.1 8
10 2.96 1 2.25 4 0.04 1
11 2.96 4 0.16 182
12 3.165 1 2.22 3 2.146 1 0.029 28

(Continued)
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Table 3 (continued)

No. l1 a1 l2 a2 l3 a3 l4 a4 Remaining Quantity

13 3.165 2 2.96 1 2.67 1 0.04 1
14 5.684 1 2.22 1 2.146 1 1.946 1 0.004 16
15 5.722 1 2.565 1 2.22 1 1.44 1 0.053 1
16 5.722 1 2.59 1 2.22 1 1.44 1 0.028 1
17 5.73 1 2.22 2 1.726 1 0.104 13
18 5.73 1 2.565 1 2.22 1 1.44 1 0.045 7
19 5.73 1 2.67 1 2.146 1 1.44 1 0.014 1
20 5.82 1 2.22 2 1.726 1 0.014 18
21 6.05 1 2.96 2 0.03 21
22 6.56 1 1.946 1 1.726 2 0.042 12
23 6.56 1 3.165 1 2.22 1 0.055 4
24 7.66 1 2.146 2 0.048 8
25 8.14 1 2.22 1 1.44 1 0.2 8
26 9.36 1 2.59 1 0.05 4
27 9.888 1 1.946 1 0.166 2
28 10.772 1 1.228 2

Total Raw materials used: 539. Material loss rate: 1.094%

The test calculations revealed that the integer linear programming algorithm could obtain the
global optimal solution for small-scale optimization problems. To determine the global optimal
solution, it is necessary to enumerate all possible cutting solutions. Thus, the number of cutting plans
is equal to the dimensions of the corresponding mathematical model. Numerous blanking options
for large-scale optimization problems lead to several mathematical models. The algorithm cannot be
solved in polynomial time. Therefore, one of the problems to be solved is how to ensure the calculation
effect of the integer programming algorithm as much as possible, while considering the calculation
efficiency.

2.3.2 Algorithm Improvement

The cutting-stock problem is an NP problem. It has been shown [31] that no algorithm guarantees
the solution of problems of different scales [32]. Approximation algorithms are more suitable for
determining acceptable solutions within a reasonable time. Here, it is proposed that the problem of
steel bar blanking can be solved by introducing a greedy strategy. A greedy strategy is introduced to
solve this problem. Unlike integer programming calculations, this method does not need to calculate
all the blanking plans. First, the current optimal blanking plan is calculated. The plan is then reused
to the greatest extent, and the completed workload is removed from the engineering requirements.
Finally, iteration is performed based on the updated demand cycle. An iteration comprises three parts:
calculating the optimal plan, reusing the plan to the greatest extent, and updating the engineering
requirements. The original problem is solved when the updated demand is empty. In each sequence,
the optimal solution to the original problem is the set of optimal solutions.
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Because the number of blanks for each blanking is limited, there is no exponential increase in
the number of solutions. The optimal blanking method for each subsequence can be solved using an
integer linear programming algorithm. The mathematical model is as follows:

max
m∑

i=1

aili subject to
{

0 ≤ ai ≤ bi ai is an integer∑m

i=1 aili ≤ L (i = 1, 2, · · · , m)
(7)

The optimal cutting method is calculated as a subroutine of the multilevel sequential linear
optimization method, which can be used repeatedly. The overall process is as follows:

S1: Calculate the optimal cutting method.

S2: Calculate the number of repetitions of the cutting method d = Min[ b1
a1

, b2
a2

, · · · , bm
am

].

S3: Update the remaining engineering requirements.

S4: If the updated engineering requirement is empty, the calculation is completed; if it is not empty,
then cycle steps S1 to S3.

S5: Summarize the optimal cutting method and number of repetitions for each sequence, which is
the optimal solution to the original problem.

Introducing a greedy strategy enables the original optimization problem to be divided into multiple
sequences, and optimization calculations can be performed sequentially. In the calculation, the scale of
the problem is reduced. As the scale of the problem shrinks, the advantages of the greedy strategy are
reduced accordingly. Fig. 1 shows the calculation of this case. The integer programming algorithm and
introduction of the greedy strategy are used to compare the remaining materials of all the solutions
solved by the algorithm. The figure shows that the results based on the greedy strategy are mostly
better than the integer programming solution in the initial stage. However, as the data size shrinks,
after the 11th solution, the disadvantages of the greedy strategy gradually become apparent. The
difference between the quality of the calculation result of the greedy strategy and that of integer
programming increase continuously. The main reason for this is analyzed, and the solution is based
on the greedy strategy. Although it seems that the optimal solution is selected at each stage, owing
to the lack of overall consideration in the early stage to improve the quality of the solution, several
short embryos that can be used to fill the gap are employed. Most remaining blanks in the middle and
late stages can be optimized to a low degree, resulting in the poor quality of the blanking methods
calculated in the middle and later stages, and more surplus materials are generated. However, the
integer linear programming algorithm calculates all possible blanking methods in the mathematical
model establishment stage. In the solution, one can comprehensively consider the combination of all
blanking methods, and the quality of the overall blanking method is relatively average. As shown in
Fig. 1, the integer programming algorithm uses a blanking method with a remaining material length
of less than 0.2. The only solution with a residual material of 1.228 is when the longest blank is
10.772 and the shortest is 1.44 in the calculation example, which cannot be optimized further. The
integer programming algorithm uses less leftover material, which ensures that the quality of the final
optimization result of the algorithm is better.

When solving large-scale problems using the greedy strategy, there are serious losses in the later
stages of the calculation, as shown in Fig. 1. To consider the efficiency and quality of calculation, a
new approach is proposed, combining an integer linear programming algorithm with a greedy strategy.
For small-scale problems, the integer programming algorithm is used; for large-scale problems, the
greedy strategy is employed first. When the problem size is reduced to a certain extent, an integer
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programming algorithm is used to solve the cutting problem of the remaining blanks. Finally, the two
components are integrated. The phase solution results are the final result.
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Figure 1: Comparison of the remaining material between the two algorithms

2.3.3 Critical Threshold Setting

An integer linear programming algorithm is used later. This can compensate for the serious loss
in the later calculation of the blanking plan based on the greedy strategy design.

As mentioned above, the quality of the cutting method is directly related to the quality of the final
calculation result of the algorithm. The calculation is based on the greedy strategy, and the loss of the
scheme used in the early stage is low. The loss of the calculation scheme of this algorithm mainly occurs
in the middle and later stages, such as the stage after the 14th scheme in the above calculation example.
The greedy algorithm provides a solution every iteration, so the loss is serious after 14 iterations.
However, the integer programming algorithm cannot be used to solve the remaining blanks directly
after the 14th iteration. The reason for the serious loss is that, in the early stage, to improve the quality
of the plan, several short blanks that can be used to fill the gaps are used, and most remaining blanks
are in the middle and late stages. The degree of optimization is not high. Therefore, it is necessary to
start using the integer linear programming algorithm to solve the problem a few rounds in advance to
ensure that the short blanks are included in the blanks that must be cut at that time.

Through calculation, the loss gradually increases after 14 iterations. An integer programming
algorithm is used after 6–16 iterations. The raw material consumption of the steel bars is shown in
Table 4.

Table 4: Calculation effect statistics under different iteration times

No. of iterations 6 7 8 9 10 11 12 13 14 15 16

No. of original rebar 539 539 540 540 540 541 545 551 551 552 552
Calculation time/s 1.593 1.603 1.624 1.643 1.611 1.544 1.564 1.592 1.649 1.687 1.727

Fig. 2 shows that, after the 14th iteration, if the integer linear programming algorithm is used to
solve the problem, 551 raw steel bars are used. Compared with the 552 bars of the greedy algorithm,
the optimization effect is not apparent. If seven rounds in advance, after the seventh round, the integer
linear programming algorithm is used to solve the problem, and only 539 are required. Consistent with
the direct use of the integer programming algorithm, the global optimal solution is calculated, and the
calculation efficiency is much higher than that of the integer programming algorithm.
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From the actual engineering, 300 groups of steel engineering data of different scales were selected.
For the case wherein a cutting method with a serious loss occurs in the Nth round under a different
number of advance iterations, the optimal data volume achieved in 300 sets of test data is shown in
Fig. 3. The number of early iterations concentrated in interval [7,21] has the most data, accounting
for approximately 90%. Therefore, the value range of the final threshold T can be selected in interval
[N−20, N−6]; that is, the integer linear programming algorithm is used to solve the problem after the
Tth iteration, which can achieve better results.
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Figure 3: Optimal test data statistics under different number of iterations in advance

2.3.4 Algorithm Flow Setting

Based on the above research and considering the characteristics of steel engineering data, an
optimization algorithm for steel blanking is proposed. The specific steps are as follows:

S1: Judge the scale of the problem of rebar blanking.

S2: If it is a small-scale problem, directly call the integer linear programming algorithm to solve
it, output the optimization result, and end the algorithm.

S3: If it is a large-scale problem, solve it based on a greedy strategy, and record all the cutting
methods used and the number of repetitions, as well as the remaining blank length li and the number
of required roots ai after each iteration.
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S4: Comprehensively analyze all blanking methods, screening the number of iterations N, where
serious losses begin to appear.

S5: Based on the critical threshold setting method, select an appropriate critical threshold T within
the threshold interval.

S6: Based on the remaining blank length lis and the number of demand roots ais after the Tth
iteration in S3, call the integer linear programming algorithm.

S7: Base synthesis S3 on the greedy strategy to solve the blanking plan before the Tth iteration; S6

uses the integer linear programming algorithm to solve the blanking plan, which is the final blanking
plan of the original steel-bar-blanking problem.

The specific algorithm flow chart is shown in Fig. 4.

Figure 4: Algorithm flow

3 Algorithm Example Analysis
3.1 Brief Description of the Case Project

The newly built Beijing–Zhangjiakou High-Speed Railway Beijing North EMU is located in the
triangle enclosed by the Beijing–Baotou Line, Huanqing Line, and Northeast Ring Line, as shown in
Fig. 5. It includes related projects, such as houses behind the station, lighting, HVAC, water supply
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and drainage, EMU supporting facilities, road pipelines (ditches), communication information, and
power. The building area is 59,712 m2, of which the building area of the six-line inspection warehouse
is 29,292 m. The length is 492 m, and the width is 61.1 m.

Figure 5: Engineering location map

For the steel bar processing, a centralized processing and distribution method was used. An
intelligent centralized processing plant was built near the construction site, and building information
modeling technology, computer technology, two-dimensional code technology, and other information
technology were used for intelligent processing of steel bars. The number of steel bars in the project was
5764 tons. Because of space limitations, at the focus was on the material warehouse, the comprehensive
building of the mechanical engineering area, and the garbage building. Steel bars with a steel bar grade
of HRB400 and diameter of 25 were studied for testing.

3.2 Algorithm Application
(1) Engineering requirements

Data extraction was performed on steel bars with grade HRB400 and diameter 25 in the three
monomers of the material library, the comprehensive building of the mechanical engineering area,
and the garbage building.

The total length of steel bars shown in the design of the material library was 566.43 m, and the
total weight was 2180.55 kg. The total length of the steel bars in the design of the comprehensive
building in the mechanical engineering area was 4042.922 m. The total weight was 15565.25 kg. The
total length of the steel bars in the design of the garbage building was 1266.689 m, and the total weight
was 4876.753 kg. The total length of the steel bars in the figure was 5876.041 m, and the total weight
was 22,622.758 kg. The specific requirements are presented in Table 5.

Table 5: Reinforcement requirement of engineering

Building Type No. Length (m) Quantity

Material warehouse 6 566.430 85
Complex building 93 4042.922 1220
Garbage building 20 1266.689 320

(2) Rebar cutting optimization algorithm test
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Through the proposed optimization algorithm for steel bar blanking, the three monomers of the
material warehouse, the comprehensive building of the mechanical work area, and the garbage building
were cut separately. The calculation results of the blanking plan are as follows.

The material library used 57 steel bars with a length of 12 m. The total length was 12 × 57 =
684 m. The total length of the billet required by the project was 566.43 m. The overall utilization rate
of the steel bar raw material was 82.811%. The specific cutting plans are shown in Table 6.

Table 6: Cutting plan for material warehouse

No. l1 a1 l2 a2 l3 a3 l4 a4 l5 a5 Remaining length No. of rebar

1 4.127 2 2.088 1 1.658 4
2 8.606 1 2.088 1 1.306 19
3 8.606 1 2.963 1 0.431 8
4 8.606 1 3.252 1 0.142 8
5 9.21 1 2.088 1 0.702 18

Total No. of steel bars used: 57, Loss rate:17.189%

The comprehensive building of the mechanical engineering zone used 342 steel bars with a length
of 12 m. The total length was 12 × 342 = 4104 m. The total length of the billet required by the project
was 4042.922 m. The overall utilization rate of the steel bar raw material was 98.512%. A part of the
blanking plan is shown in Table 7.

Table 7: Cutting plan of comprehensive building in mechanical work area

No. l1 a1 l2 a2 l3 a3 l4 a4 l5 a5 Remaining length No. of rebar

1 3.2 1 3.135 1 3.101 1 2.326 1 0.238 1 0 2
2 2.237 1 1.402 1 1.047 7 0.172 6 0 2
3 2.33 1 1.402 2 1.113 3 1.068 2 1.047 1 0 1
4 2.522 3 2.327 1 1.935 1 0.172 1 0 1
5 2.33 1 2.325 1 2.11 2 1.935 1 0.238 5 0 2
6 4.08 1 1.943 1 1.935 3 0.172 1 0 1
7 2.81 2 2.585 1 2.51 1 1.113 1 0.172 1 0 2
8 3.002 1 2.81 1 2.505 1 1.113 1 1.047 2 0 1
9 3.155 3 2.535 1 0 5
10 3.235 1 2.605 1 1.935 1 1.71 1 1.468 1 0 3

. . . 1

87 8.1 1 3.208 1 0.692 1
88 8.1 1 3.38 1 0.52 3
89 8.455 1 3.235 1 0.31 6
90 10.21 1 1.79 2
91 10.26 1 1.74 2
92 11.217 1 0.783 2

(Continued)
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Table 7 (continued)

No. l1 a1 l2 a2 l3 a3 l4 a4 l5 a5 Remaining length No. of rebar

93 11.241 1 0.759 1

Total No. of steel bars used: 342, Loss rate: 1.488%
Note: 1Part of the plan omitted due to space limitation. See the appendix for detailed calculation results.

The garbage building used 107 12-m steel bars. The total length was 12 × 107 = 1284 m. The
total length of the billet required by the project was equal to the total design length of 1266.689 m.
The overall utilization rate of the steel bar raw materials was 98.652%. The specific blanking plans are
shown in Table 8.

Table 8: Cutting plan for garbage building

No. l1 a1 l2 a2 l3 a3 l4 a4 l5 a5 Remaining length No. of rebar

1 3.143 1 2.94 3 0.037 3
2 3.143 2 2.94 1 2.67 1 0.104 8
3 3.948 3 0.156 1
4 4.702 1 2.67 2 1.795 1 0.163 9
5 4.702 1 3.815 1 3.143 1 0.34 1
6 4.702 1 4.2 1 2.94 1 0.158 4

. . . 1

17 5.9 1 3.143 1 2.94 1 0.017 8
18 6.373 1 3.815 1 1.795 1 0.017 2
19 6.373 1 5.577 1 0.05 18
20 9.21 1 2.67 1 0.12 10
21 9.62 1 1.795 1 0.35 1 0.235 6
22 9.62 1 2.065 1 0.315 2

Total No. of steel bars used: 107, Loss rate: 1.348%
Note: 1Part of the plan omitted due to space limitation. See the appendix for detailed calculation results.

If the three monomers were comprehensively cut, 494 raw materials with a length of 12 m were
used. The total length was 12 × 494 = 5928 m. The total length of the billet required by the project
was equal to the total design length of 5876.041 m. The overall utilization rate of the materials was
99.124%. A part of the blanking plan is presented in Table 9.

For the three monomers, the results of the calculation of the cutting plan and comprehensive
cutting are shown in Table 10.
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Table 9: Comprehensive cutting plan

No. l1 a1 l2 a2 l3 a3 l4 a4 l5 a5 Remaining length No. of rebar

1 3.188 2 2.343 1 1.468 1 1.113 1 0.35 2 0 1
2 2.94 1 2.67 3 0.35 3 0 1
3 2.33 2 1.468 5 0 2
4 4.6 1 2.238 1 1.468 2 1.113 2 0 1
5 1.402 3 1.068 2 0.35 4 0.238 15 0.172 4 0 1

. . . 1

124 9.21 1 2.67 1 0.12 8
125 9.62 1 2.11 1 0.27 1
126 9.62 1 2.329 1 0.051 7
127 10.21 1 1.79 2
128 10.26 1 1.74 2
129 11.217 1 0.783 2
130 11.241 1 0.759 1

Total No. of steel bars used: 494, Loss rate: 0.876%
Note: 1Part of the plan omitted due to space limitation. See the appendix for detailed calculation results.

Table 10: Cutting plan results statistics

Description Unit Material
warehouse

Complex
building

Garbage
building

SUM Comprehensive
cutting

Design
length

m 566.43 4042.922 1266.689 5876.041 5876.041

Design
weight

kg 2180.755 15565.25 4876.753 22622.758 22622.758

Usage
amount

/ 57 342 107 506 494

Used length m 684 4104 1284 6072 5928
Used weight kg 2633.4 15800.4 4943.4 23377.2 22822.8
Utilization
rate

% 82.811% 98.512% 98.652% 96.773% 99.124%

Loss rate % 17.189% 1.488% 1.348% 3.227% 0.876%
Calculation
time

s 0.861 2.465 1.058 4.384 3.196

(3) Analysis of calculation results

Different scales are formed by different combinations. The calculation results are also different.
The three projects were individually tailored. To complete the three projects, 506 raw steel bars
were required, and the corresponding material loss rate was 3.227%. Compared with the loss rate
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of approximately 10% of traditional steel bar dispersion processing, the 3.227% loss rate was largely
optimized. However, comprehensive tailoring was performed for the data of the three individual
projects. The corresponding material loss rate was reduced to 0.876% when using 494 steel bars.
These data show that, as the scale of the project increases, the calculation quality of the optimization
algorithm for steel bar blanking proposed also increases, while maintaining high calculation efficiency.
Overall, the algorithm proposed has a good effect on the optimization of large-scale data.

4 Conclusions

The characteristics of steel engineering data were analyzed comprehensively. An optimization
algorithm for steel bar blanking that considers both calculation and calculation efficiency was
designed. By using the algorithm influence factors, problems, constants, and variables were defined,
and appropriate cutting method calculation methods were set. The integer linear programming
algorithm and linear optimization algorithm with a greedy strategy were adopted to solve the problem.
To improve the performance of the two algorithms under different data backgrounds, ideas for an
optimization algorithm for steel bar cutting were proposed. Based on the number of iterations of
the sudden change in loss, the appropriate critical threshold was determined, and the calculation
of the steel-bar-blanking plan was divided into two stages. The first stage was solved using the
linear optimization method with the greedy algorithm, while reducing the problem scale. The integer
programming algorithm was used for subsequent calculations when the number of iterations reached
the threshold. A case study involving engineering tests showed that the proposed algorithm is both
optimized and time sensitive. It outperforms a single traditional optimization algorithm and is highly
applicable to the problem of steel bar cutting.
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