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ABSTRACT

To solve the distributed hybrid flow shop scheduling problem (DHFS) in raw glass manufacturing systems, we
investigated an improved hyperplane assisted evolutionary algorithm (IhpaEA). Two objectives are simultaneously
considered, namely, the maximum completion time and the total energy consumptions. Firstly, each solution
is encoded by a three-dimensional vector, i.e., factory assignment, scheduling, and machine assignment. Subse-
quently, an efficient initialization strategy embeds two heuristics are developed, which can increase the diversity of
the population. Then, to improve the global search abilities, a Pareto-based crossover operator is designed to take
more advantage of non-dominated solutions. Furthermore, a local search heuristic based on three parts encoding
is embedded to enhance the searching performance. To enhance the local search abilities, the cooperation of the
search operator is designed to obtain better non-dominated solutions. Finally, the experimental results demonstrate
that the proposed algorithm is more efficient than the other three state-of-the-art algorithms. The results show that
the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multi-
objective algorithm in terms of diversity and convergence of the solution.

KEYWORDS
Distributed hybrid flow shop; energy consumption; hyperplane-assisted multi-objective algorithm; glass manufac-
turing system

1 Introduction

The hybrid flow shop scheduling problem (HFS) has been investigated and employed in lots of
realistic industrial applications [1], such as glass-making systems [1–3] and steelmaking systems [4]. In
the classical HFS process, there are several jobs, machines, and stages. A certain number of parallel
machines are in each stage, where each arriving job should choose exactly one available machine. And
each job follows the same processing route with machine selection flexibility. Therefore, compared with
the classical flow shop scheduling problem, in HFS, an additional task is selected to suit machines for
each operation, which has been proven to be an NP-hard problem [1].
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With the development of industries, more and more researches have focused on distributed
scheduling problem, including the distributed flow shop scheduling problem (DFSSP) [5], as well
as distributed hybrid flow shop scheduling problem (DHFS) [6]. However, there is less literature
for DHFS, compared with the works in solving flow shop or distributed flow shop. Pan et al.
[7] studied a distributed flowshop group scheduling problem (DFGSP), where the families are
considered in manufacturing cells. Huang et al. [8] proposed three constructive heuristics and an
effective discrete artificial bee colony (ABC) algorithm to solve the distributed permutation flowshop
scheduling problem. Meng et al. [9] introduced the lot-streaming and carryover sequence-dependent
setup time in the distributed permutation flowshop scheduling problem (DPFSP) with non-identical
factories. Ying et al. [10] developed a hybrid algorithm with three versions of iterated greedy (IG)
algorithm in order to minimize the makespan of the DHFS. Hao et al. [11] considered a DHFS
with a brain storm optimization (BSO) algorithm, where the makespan is minimized. Cai et al. [12]
proposed a new shuffled frog-leaping algorithm (SFLA) with memeplex quality (MQSFLA), which
was used to minimize total tardiness and makespan simultaneously. Shao et al. [13] proposed a multi-
neighborhood IG algorithm so as to solve the problem. Li et al. [14] investigated an improved IG
algorithm to solve the DPFSP with both robotic transportation and order constraints. Jiang et al. [15]
studied the energy-aware DHFS with multiprocessor tasks with considering total energy consumption
and makespan. Niu et al. [16] developed an improved NSGA-II algorithm to solve an energy-efficient
distributed assembly blocking flow shop problem. Qin et al. [17] utilized a realistic DHFS where a
novel integrated production and distribution scheduling problem is focused.

In realistic industry system, including the glass manufacturing system, the improvement of glass
raw materials processing has been studied by many researches [18–20], and therefore, the scheduling
efficiency has become increasingly important [21]. Na et al. [22] addressed the glass optimization prob-
lems by using heuristic methods. Lozano et al. [23] proposed a two-phase heuristic that combines exact
methods and searching heuristics. Wang et al. [24] proposed two heuristics based on decomposition
idea to minimize total electricity cost and makespan. Wang et al. [25] formulated a mixed integer
programming (MIP) for the problem. Typically, a highly energy-consuming stage (i.e., depreciation
of machinery) exits in glass making process, which takes up a large part of the production cost. As a
result, considering energy consumption in glass manufacturing system is practical as well as necessary.

Recently, multiobjective optimization algorithms have been applied and considered in many
domains [26–31]. Shahvari et al. [32] considered a tabu search (TS) algorithm to minimize two different
objectives. Zhang et al. [33] proposed a novel multiobjective multifactorial immune algorithm with a
novel information transfer method to deal with multiobjective multitask optimization problems. Wang
et al. [34] improved the overall efficiency of optimizing multiple tasks simultaneously by reusing the
learned knowledge. Li et al. [35] solved flow shop scheduling problems with a novel multiobjective local
search framework-based decomposition. Li et al. [36] developed a knowledge-based adaptive reference
points multi-objective algorithm (KMOEA) to solve a DHFS with variable speed constraints. Du et al.
[37] proposed a hybrid multi-objective optimization algorithm based on an estimation of distribution
algorithm (EDA) and deep Q-network to solve a flexible job shop scheduling problem (FJSP) with
time-of-use electricity price constraint. Mou et al. [38] developed an effective hybrid collaborative
algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Li et al. [39]
proposed an improved artificial immune system (IAIS) algorithm to solve a special case of the FJSP in
flexible manufacturing systems. However, less literature investigated the multi-objective optimization
in glass manufacturing systems.

Therefore, to solve DHFS in glass manufacturing systems, we propose an improved hyperplane
assisted evolutionary algorithm (IhpaEA). The main contributions of this study are as follows: (1) each
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solution is represented with a three-dimensional vector, including the factory assignment, machine
assignment, and operation scheduling; (2) an efficient initialization strategy is developed to increase
the diversity of the population (3) an improved crossover operator is designed to enhance the global
search abilities of the proposed algorithm; and (4) a cooperative search method is designed to enhance
the local search abilities of the proposed algorithm deeply.

The structure of the rest paper is as follows. The problem descriptions are given in Section 2. Next,
the developed IhpaEA framework is presented in Section 3. Then, the detailed components of the
imposed algorithm are discussed in Section 4. Section 5 illustrates the experimental results to show
the advantages of the algorithm. Finally, the last section shows the conclusion and future research
directions.

2 Problem Description

The DHFS addressed in this study can be described as follows. There are n independent jobs to be
assigned to f factories. Each factory consists of a series of πi production stages (or processing centers)
where there are k parallel machines in each stage. Moreover, each job can be completed in any factory
with the same sequence. Each operation can be processed on any selected machine at the corresponding
stage.

2.1 Problem Formulation
1) Assumptions:

• Each job should be released at time zero and be operated from the first stage to the next stage;

• All machines are available at time zero and remain continuously available over the entire
production horizon;

• A job can be processed on exactly one machine at a time, and a machine can process exactly
one job at a time;

• At each stage, one job can select one suitable machine from the parallel machine;

• There is unlimited buffer between stages;

• All machines belonging to the same stage have similar processing abilities.

2) Notations and variables:

Indices:

i Index of the machines.

j Index of the jobs.

f Index of the factories.

k Index of the stages

Parameters:

n Number of jobs.

m Number of machines.

w Number of stages.

h Number of factories.

mk Number of machines in k th stage, for k = 1, 2, . . . , w.
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Jj Job j, for i = 1, 2, . . . , n.

Mi Machine i, for i = 1, 2, . . . m.

Oij ith operation of job j.

ni Number of jobs that are processed on Mi. i = 1, 2, . . . m.

Jir rth job that is processed on Mi. i = 1, 2, . . . m, r = 1, 2, . . . , m.

Variables:

S
(
Oij

)
Starting time of Oij. i = 1, 2, . . . , m, j = 1, 2, . . . , n.

C
(
Oij

)
Completion time of Oij. i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Cmax Makespan, i.e., the maximum completion time.

PMfki Machine power of Mi in stage k of factory f , k = 1, 2, . . . , w, i = 1, 2, . . . , m,
f = 1, 2, . . . , h.

TMfki Machine working time of Mi in stage k of factory f , k = 1, 2, . . . , w, i = 1, 2, . . . , m,
f = 1, 2, . . . , h.

TEC Total energy consumption.

Decision Variables:

xjf A binary decision variable, which equals to 1 when job Jj is assigned to factory f and otherwise
equals to 0.

zij A binary decision variable, which equals to 1 when job Jj is processed on Mi and otherwise
equals to 0.

3) Objective functions:

The makespan (Cmax) and TEC are considered as two objectives. The first objective is to min-
imize makespan where Cmax = max

(
CJjk

)
. The second objective is to minimize TEC where

TEC =
h∑

f =1

w∑

k=1

m∑

i=1

PMfki · TMfki, i.e., the total energy consumptions during the processing time

for all machines.

2.2 Realistic Problem Example
A detailed illustration of the considered realistic DHFS is presented in a glass manufacturing

casting system in Fig. 1. A specified quantity of molten glass can be provided by three processing
stations. Many beam carriers (BCs) are used to transport those pouring molten glass. Each job or BC
is transported to an available factory. The molten glass transported by BC will be operated through
at least two stages in each factory: 1) glass forming; and 2) heat treatment stages. The processing
operations are the same in all the factories for each BC. After processing in the designated factory, BC
will be moved to the next stage, in which one machine will be selected for continuous casting procedure.
The specified amount of charging shall be handled for each assigned machine. Fig. 1 presents that the
complete working flows in the basic glass manufacturing casting system which can be considered as
a typical DHFS with several stages in the last part. Moreover, the realistic processing systems should
consider the deteriorating job constraint [33,34].
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Figure 1: Realistic DHFS problem in a glass manufacturing system

A common production flow is shared by different glass manufacturing systems, i.e., raw glass
should experience preprocessing, melting, and forming processes in sequence, as shown in Fig. 2.
Specific processing requirements or features are in individual manufacturing systems with the con-
sidering that various types of glass are provided by different manufacturers. The detailed processing
characteristics of this study are as below:

(1) Raw material preprocessing: Crush large raw materials (soda, quartz sand, feldspar, limestone,
etc.) to dry raw materials which are wet, and then remove iron from raw materials to ensure
glass quality.

(2) Compound preparation.

(3) Glass melting: In order to make the glass raw materials meet the forming requirements of
uniform, bubble free and molten liquid glass, the glass raw materials need to be placed in the
pool kiln or crucible kiln and heated at high temperature (1500–1600 degrees).

(4) Glass forming: Liquid glass is processed into the required shape of the specific products.

(5) Heat treatment: Through annealing, quenching and other processes to change the structural
state of glass.

Raw 
class

Raw material 
preprocessing

Compound 
preparation

Glass melting Glass forming Heat treatment
Raw 
material

Figure 2: General procedure of a raw glass manufacturing system
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3 Methodology

In this section, the proposed IhpaEA algorithm is presented to solve the considered DHFS
problem. The first part describes the main framework of the proposed IhpaEA. Then the encoding,
decoding, initialization, crossover, and other problem-specific heuristics are presented, respectively.

3.1 Framework of the Proposed IhpaEA
The main framework of the proposed IhpaEA algorithm is an enhanced inverted GA (genetic

algorithm) indicator based hpaEA [40]. In IhpaEA, the main components, including the uniform
reference point, mating selection and the environmental selection functions are directly included from
hpaEA. The prominent solutions are retained by the environment selection strategy of hyperplane
assisted evolutionary algorithm. Besides, it uses two criteria to select the size of population and the
non-dominated solutions.

Algorithm 1: Framework of IhpaEA
Input: Objective optimization problem; maximum evaluations (MES);

Population size N;
Output: Produce N unit vectors as V ← {

v1, v2, . . . , vN
}

;
1 The final population P;
2 The evaluation number is recorded as FEs ← N;
3 Population is randomly initialized as P and z ← zmax;
4 The total number of prominent solutions are initialized as K ← 0;
5 while FEs < MEs do
6 I ← Randomly produce N − K integers between I and |P|; (c.f. [41])
7 I ← I ∪ {1, 2, . . . , K} ; The elements in I ; (c.f. [41])
8 P′ ← GenerateOffsprings (P (I)); (c.f. Sections 3.5-3.7)
9 Q ← P ∪ P′; (c.f. [41])
10 The solutions which cannot dominate z will be deleted; (c.f. [41])
11 The evaluations will be updated as FEs = FEs + N and the z ← min {z, zmax} ; (c.f. [41])
12 [P, K] ← popSelectionStrategy (Q, V , N) .(c.f. Algorithm 4)

End
Return P

Algorithm 1 represents the framework of IhpaEA, where the first step is to initialize four
parameters (1) an initial population P (line 1); (2) vectors V (line 2); (3) the number of prominent
solutions (line 3) and (4) the evaluation functions (line 4); and the loop of IhpaEA (lines 5–12).
Each generation performs three steps in the algorithm: (1) mating selection; (2) offspring population
generation, and (3) environmental selection. The mating selection tries to assign more evolutionary
results to the prominent solutions, and select better solutions. The set {1, 2, . . . , K} represents the
prominent solutions where K standing for the number of prominent solutions, which will be firstly
chosen and located in the front of the population for environmental selection. The indexes of the
solutions selected for mating are denoted as tan array I . N − K solutions are first randomly selected
(line 6) in the current populations to form the mating pool. Although some of the prominent solutions
have been selected randomly in the former step, and all K promising solutions are chosen (line 7).
Finally, rearrange all the elements in the array I (line 7). Next, an Improve Similar Job Order Crossover
I (ISJOXI) is used by the proposed IhpaEA to produce the offspring population (line 8), which is
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different from the studies [40]. Besides, population Q (line 12) performs the environmental selection
strategy.

3.2 Representation and Encoding
Each solution is represented by a three-dimensional vector as follows.

The first dimensional vector is called scheduling vector, and the length of it equals to the total
number of operations � = {π1, π2, .., πn}. Each job number represents an element of the scheduling
vector πi, and the order of arrangement is the sequencing order.

The name of the second dimensional vector is called the machine assignment vector δ =
{δ1, δ2, . . . , δk}, element δi of the vectors is represented by a machine number which tells the machine
assigned to the corresponding job.

The third dimensional vector is named as the factory assignment vector, and the length of factory
assignment vector equals to the total number of jobs ϕ = {ϕ1, ϕ2, . . . , ϕn}, Each element of the
factory assignment vector ϕi is represented by a factory number, which tells the factory assigned to
the corresponding job.

Fig. 3a gives a solution representation example, where there are five jobs. The total number of
stages for each job is 2. The factory assignment vector tells the factory number for each job, the routing
vector reports the machine number. Then, the scheduling vector represents the scheduling sequence
for each job.

Factory assignment 
vector

Scheduling vector

Machine assignment 
vector

2 12 12

3 41 52

J1 J2 J3 J4 J5

1 11 21 2 12 12

J1 J1 J2 J2 J3 J3 J4 J4 J5 J5

(a) Encoding 
Time

Factory 1

Stage 1

Stage 2

5 10 15

Factory 2

Stage 2

Stage 1

J5

J5

J4

J4

J1 J2

J3

J3

J1

J2M2

M1

M1

M2

M1

M2

M2

M1

(b) Decoding Gantt chart

Figure 3: Solution representation

3.3 Decoding Heuristic
Fig. 3b shows the Gantt chart. The detailed decoding introduces are described as follows:

Step 1: The assigned jobs are scheduled based on the sequence in the scheduling vector which is
the first stage of each factory.

Step 2: After determining the factory, each job should select a suitable machine following the
earliest available time rule.

Step 3: For the other stages, each job is scheduled as soon as possible after completing its previous
operations. The first available suitable machine is also selected.
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3.4 Initialization
To solve the considered problem, a solution is encoded with two dispatching rules. The longest

processing time at the first stage (LPTF) rule, and the shortest processing time at the first stage (SPTF)
rule. Based on the non-increasing total processing times, LPTF generates a permutation. Meanwhile,
based on the non-decreasing total processing times, SPTF produces a permutation by sorting the jobs.

To produce an effect initial population, the following technique is used. Suppose the population
size is N, the detailed steps are given as follows:

(1) The first N −2 individuals are generated by a random way. For the factory assignment vector,
each job is assigned to a random selected factory. For the scheduling vector, all the jobs are
sequenced in a random order.

(2) One individual is generated by LPTF. First, all the jobs’ processing time are calculated in
each stage. Then, every job in every stage has a processing time and the summation of these
time is called total processing time. Finally, the individual is generated by permuting the total
processing time in non-increasing order.

(3) SPTF generates the last individual. The first two steps are the same with LPTF. However, the
third step is to permute the processing time in a non-decreasing order.

3.5 Crossover
Based on the encoding representation, we proposed a novel crossover heuristic including two

parts.

(1) PTL crossover

The first type of crossover is PTL, which can be described as follows:

Step 1: Randomly select two different elements from the first parent.

Step 2: Copy the block of jobs which are cut by the two points from the first parent. And then
move the block to the rightmost or leftmost part of the offspring.

Step 3: Place the empty elements of jobs which are remaining from the second parent.

The process of PTL for generating offspring is depicted in Fig. 4. Table 1 provided an example
which can figure out the way element are updated.

5 2 7 1 4 3 6

1 2 6 4 5 3 7

1 2 3 7 7 1 4Offspring 

Parent 2

Parent 1

Figure 4: PTL crossover operator
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Table 1: An example of PTL crossover operator

Two-cut PTL crossover Two-cut PTL crossover Two-cut PTL crossover

P1 5 1 4 2 3 P1 5 1 4 2 3 P1 5 1 4 2 3
P2 3 5 4 2 1 P2 5 1 4 2 3 P2 3 5 4 2 1
O1 3 5 2 1 4 O1 5 2 3 1 4 O1 5 1 3 4 2
O2 1 4 3 5 2 O2 1 4 5 2 3 O2 3 5 1 4 2

(2) ISJOXI crossover

The second type of crossover operator is Improve Similar Job Order Crossover I or ISJOXI, with
which the building blocks of jobs are directly copied to the offspring. In Fig. 5a, a point is randomly
selected and the elements before this cut point is copied to the offspring directly, shown in Fig. 5b.
Furthermore, in order to maintain feasibility of the job sequence, the ISJOXI crossover operator
copies the missing elements of each offspring which are in the relative order of the other parents,
shown in Fig. 5c. Lastly, other elements which are not assigned are obtained by performing single
point crossover operator on P1 and P2 which is chose a crossover point randomly between elements 2
and 3. In this example, r1 and r2 are selected as crossover points. Then, the elements between r1 and r2

are copied from P1, and the elements after r2 are copied from P2. However, since J5 is absent, and J1
appears twice, J1 in offspring1 should be substituted with J5. As a result, offspring1 will be (1, 2, 5, 7,
4, 3, 6) and offspring 2 is generated in the same way, which is (5, 2, 4, 1, 7, 3, 6), as shown in Fig. 6.

P1

Offspring 1

Offspring 2

P2

8 14 16

1 14 16

18 15 5 1 13 8 14 19 12204 10 7 6 17 11 9163

2 1 13 8 14 6 17 916

2 1 13 8 14 6 17 916

52 4 20 1 13 8 14 18 15117 19 10 6 17 3 91612

r1 r2

(a). Copy operator

Figure 5: (Continued)
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8 14 16

1 8 14 16

2 15 5 1 13 8 14 19 12204 10 7 6 17 11 9163

182 15 5 1 13 88 14 6 17 916

52 4 20 1 13 88 14 6 17 916

52 4 20 1 13 8 14 18 15117 19 10 6 17 3 91612P2

Offspring 2

Offspring 1

P1

Crossover point

Crossover point

(b). Randomly cut operator 

8 14 16

1 14 16

182 15 5 1 13 8 14 19 12204 10 7 6 17 11 9163

152 12 18 1 13 8 14 5 20419 10 7 6 17 11 9163

202 5 10 1 13 8 14 4 11718 15 19 6 17 3 91612

52 4 20 1 13 8 14 18 15117 19 10 6 17 3 91612P2

Offspring 2

Offspring 1

P1

(c). Copy missing elements

Figure 5: Process of performing ISJOXI

1 2 6 4 5 3 7

1 2 3

5 2 7 1 4 3 6

5 2 1 3 6

1 2 5 7 4 3 6

555 2 4 1 7 3 6
Offspring 2

Temporary
individual

Offspring 1

1 2 6 4 5 3 7

3

4 5 2 1 7 3 6

5 2 7 1 4 3 6

1 3 6

P1

P2

Figure 6: ISJOXI
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The main steps of ISJOXI crossover are described in Algorithm 2.

Algorithm 2: ISJOXI crossover
Input: The current Pareto Set, the current population;
Output: Two newly-generated solutions c1 and c2 ;
1 Calculate the occurrence number of each job at each scheduling position;
2 Find the job with the maximum occurrence number at each scheduling position;
3 Generate a new vector πi , by using the job number with the maximum occurrence times at

each position;
4 for ind = 1 to PS do
5 Randomly select two parent individuals, named p1 and p2 from the current population;
6 Randomly generate two positions for the scheduling vector, named r1 and r2;
7 For each position r between r1 and r2 of child individual c1, let c1 [r] = πt [r], and the

repeated elements are ignored. Note that c1 [r] represents the element at the r th position in
c1;

8 For each position r between r1 and r2 of child individual c2, let c2 [r] = πt [r], and the
repeated elements are ignored. Note that r′ represents the blank position between r1 and r2

of c2 from left to right;
9 The blank positions before r1 of the individuals c1 and c2 are collected directly from p1 and

p2, respectively;
10 For each position r before r1 and after r2, let c1 [r] = c2 [r] = p [r], if p [r] = p2 [r];
11 For the remaining blank positions of c1 and c2, fill it with the nonscheduled job number one

by one from p1 and p2.
end for

3.6 Mutation
Suppose Fc is the factory with the maximum makespan, and Fe is the factory with the maximum

TEC. The mutation method for the DHFS problem is described as follows:

(1) Mutation for the factory assignment

FAcs: Select two jobs J1 and J2 randomly, where J1 from Fc and J2 from a different factory, then
swap the two positions of them.

FAes: Select two jobs J1 and J2 randomly, where J1 from Fe and J2 from a different factory, then
swap two positions of them.

FAci: Randomly insert a job which is removed from Fc into a location in a randomly selected
factory.

FAei: Randomly insert a job which is removed from Fe into a location in a randomly selected
factory.

(2) Mutation for the scheduling vector

JScs: Randomly choose two different jobs from Fc and then swap them.

JSes: Randomly choose two different jobs from Fe and then swap them.

JSci: Insert a job which is randomly selected into a random location in Fc.

JSei: Insert a job which is randomly selected into a random location in Fe.
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(3) Mutation for the machine vector

The procedure of the mutation operator is as follows. Firstly, a position r1 is randomly selected in
the machine vector. Then for the element in r1, select a different machine.

3.7 Local Search
The following multi-objective cooperation local search operator is embedded to achieve good

diversity and convergence.

First, in each generation, the maximum completion time of solution a is denoted as
C̄max (a) = (

Cmax (a) − Cmin
max

)
/
(
Cmax

max − Cmin
max

)
and the TEC of each solution a is denoted as TEC (a) =

(TEC (a) − TECmin) / (TECmax − TECmin) where TECmin, TECmax, Cmin
max, and Cmax

max represent the
minimum TEC, maximum TEC, minimum makespan and maximum makespan of the solutions in
current population.

Second, the value γ (a) = TEC (a) /C̄max (a) is used to calculate each solution. Then, the
population is divided into two sets Pc and Pe according to the γ which are sorted in an ascending
order. And the size of Pc is the same with Pe. The search operators related to Fc (factory Fc with the
maximum completion time) are used because the maximum completion time of solutions in Pc (small
γ ) are large. The search operators related to Fe (factory Fe with the maximum TEC) are used because
TEC of solutions in Pe (large γ ) are large. The detailed process is described in Algorithm 3.

Algorithm 3: Cooperative Search
For k = 1 to PS

Calculate C̄max (ak) and TECmax (ak);
Calculate γ (ak) = TECmax (ak) /C̄max (ak);

End For
For k = 1 to PS

If γ (ak) is smaller than the median of all γ

Set ak ∈ Pc;
If energy consumption of Fc is the largest among all factories

Perform FAcs (ak) and FAci (ak);
Else Perform JScs (ak) and JSci (ak);

End If
Else If γ (ak) is larger than the median of all γ

Set ak ∈ Pe;
If makespan of Fe is the largest among all factories

Perform FAes (ak) and FAei (ak);
Else Perform JSes (ak) and JSei (ak);

End If
End For

An example is provided in Table 2, where the objective values of a population with four solutions
are listed, including the Cmax and TEC of each solution. According to the γ , these solutions are divided
into Pc and Pe. From Table 2, a1 and a3 are put into Pc, a2 and a4 are put into Pe. For solution a1, Fe = 1
and the makespan of Fe is medium among all factories. As a result, it performs JSes and JSei in turn
for solution a1. For solution a2, Fc = 3 and the TEC of Fc is the largest among all factories. Thus, it
performs FAcs and FAci in turn for solution a2.
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Table 2: Example for collaborative search

Solutions Objective f = 1 f = 2 f = 3 Cmax TEC γ

a1 Makespan 66 98 117 117 8936 76.3760
TEC 1265 1648 6023

a2 Makespan 122 102 94 122 22144 181.5081
TEC 9744 11984 416

a3 Makespan 290 64 71 290 26339 90.8241
TEC 24784 532 1023

a4 Makespan 98 152 154 154 18502 120.1428
TEC 3728 5112 9662

4 Experimental Results

The computational experiments to test the performance of IhpaEA algorithm is discussed in this
section. The improved algorithm was implemented in the PlatEMO v3.0 on an Intel Core i7 3.4-
GHz PC with 16 GB of memory. To test the performance of IhpaEA algorithm, 20 different scales
of instances are generated according to the realistic flow shop.

All the compared algorithms are used to solving the considered problem, including the encoding,
and decoding method, and the initialization procedure. The parameters are set according to their
literatures. For each instance, the stop condition is set to 3000 iterations.

30 independent runs are used to test the performance of the proposed algorithm, the results
of non-dominated solutions found by all the compared algorithms were collected for performance
comparisons. The relative percentage increase (RPI) is used for the ANOVA comparison, which is
formulated as follows:

RPI (c) = Cc − Cb

Cb

∗ 100%

where Cb represents the best solution that has been calculated by all the compared algorithms and Cc

is the best solution to the tested algorithm.

4.1 Experiment Parameters
20 large-scale test instances of DHFS problem are randomly generated to solve the DHFS problem

and test the validity of the hpaEA algorithm based on the actual production data. For example,
instance 1 can be denoted with 20 jobs, 2 stages, as well as 3 parallel machines in the first stages as
well as 5 parallel machines in the second stages wherein the index of jobs are {20, 30, 50, 80, 100}, the
parameter of machines are {2, 3, 4, 5}, the parameter of stages are {2, 3, 5, 10}, and the parameter of
factories are {2, 3, 4, 5, 6}, respectively. The four algorithms ran 30 times.
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4.2 Efficiency of the Initialization Heuristic
Two types of IhpaEA algorithms are coded to test the initialization heuristic discussed in

Section 3.4: a random initialization heuristic named IhpaEA -NI, and IhpaEA with all components.
All other components of the two comparison algorithms are the same.

Table 3 reports the comparison results between IhpaEA -NI and IhpaEA. Instance numbers are
given in the first column, the HV results collected from the two compared algorithms are listed in the
following two columns, respectively. The last two columns illustrate the IGD values by IhpaEA -NI
and IhpaEA, respectively.

Table 3: Comparisons between IhpaEA –NI and IhpaEA

Instances HV IGD
IhpaEA –NI IhpaEA IhpaEA –NI IhpaEA

Instance 1 0.4931 0.5036 14.2508 12.2757
Instance 2 0.5198 0.5428 3.3700 1.8011
Instance 3 0.5002 0.5218 90.9069 2.9069
Instance 4 0.5113 0.5236 38.6131 8.6444
Instance 5 0.4811 0.4809 8.5562 2.2810
Instance 6 0.4642 0.4973 8.8448 8.7355
Instance 7 0.4989 0.4964 2.8100 2.0933
Instance 8 0.5209 0.5715 844.9814 116.680
Instance 9 0.5029 0.5238 11.5812 9.9977
Instance 10 0.5250 0.5373 176.0458 3.2249
Instance 11 0.5116 0.5018 34.5704 13.1165
Instance 12 0.4981 0.5148 398.4254 58.8273
Instance 13 0.4963 0.5077 13.5969 1.70870
Instance 14 0.5081 0.5205 166.6750 37.9270
Instance 15 0.5037 0.5381 6.7975 0.0000
Instance 16 0.5034 0.5259 263.8726 63.1717
Instance 17 0.5075 0.5463 125.8685 14.2800
Instance 18 0.5029 0.5232 205.5073 10.8245
Instance 19 0.4954 0.5168 112.0908 26.2619
Instance 19 0.4926 0.5137 169.1495 97.1709
Instance 20 0.5229 0.5247 3.9088 0.0000
Mean 0.502852 0.520595 128.5916 23.4251

It can be concluded from the comparison results that: (1) IhpaEA algorithm obtains 16 better
results by considering the HV values of the IhpaEA-NI algorithm, and the slightly worse results for
the other two instances; (2) for the IGD values, IhpaEA obtains 20 better results out of the given
20 different scale instances; and (3) from the average performance in HV and IGD given in the last
line and the ANOVA results from Fig. 7a, it can be seen that IhpaEA is significantly better than the
IhpaEA -NI algorithm, which verify the efficiency of the proposed initialization heuristic.
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4.3 Efficiency of the Crossover Operator
In order to test the performance of the crossover operators discussed in Section 3.5, two different

types of IhpaEA algorithms are coded, i.e., the IhpaEA-NC algorithm with the classical two-point
crossover, and the IhpaEA algorithm with all the two crossover operators.

(a) ANOVA results for IhpaEA-NC and IhpaEA (b) ANOVA results for IhpaEA-NI and IhpaEA

(c) ANOVA results for IhpaEA-NS and IhpaEA (d) ANOVA results for IhpaEA -NL and IhpaEA

Figure 7: Means and 95% LSD interval for pairs of compared algorithms

From the comparison results given in Table 4, it can be observed that: (1) Compared with the
IhpaEA -NC, IhpaEA algorithm obtains 17 better results based on the HV values; (2) the ANOVA
results from Fig. 7b shows that the IhpaEA obtains significant better results based on the HV results,
where the p-value equals to 4.30527e-06 (3) for the IGD values, IhpaEA obtains 18 better results; and
(4) from the average performance in HV and IGD given in the last line, the efficiency of the proposed
crossover heuristic can be verified.
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Table 4: Comparisons between IhpaEA -NC and IhpaEA

Instances HV IGD

IhpaEA -NC IhpaEA IhpaEA -NC IhpaEA

Instance 1 0.6534 0.5563 8.2956 0.0000
Instance 2 0.4924 0.5647 7.5307 3.2319
Instance 3 0.5455 0.6110 10.1593 7.7628
Instance 4 0.4209 0.5236 25.0598 20.0341
Instance 5 0.4673 0.5437 32.3624 8.3308
Instance 6 0.5931 0.6582 19.3699 0.0000
Instance 7 0.6289 0.6964 14.6482 9.8876
Instance 8 0.5275 0.5209 10.6421 5.2935
Instance 9 0.6565 0.6259 60.2584 9.9977
Instance 10 0.5350 0.5670 30.1638 3.2249
Instance 11 0.5316 0.5918 10.1558 13.1165
Instance 12 0.4381 0.5648 38.4254 58.8273
Instance 13 0.4963 0.5277 7.2531 1.7087
Instance 14 0.5081 0.5565 12.5093 37.927
Instance 15 0.5437 0.5928 5.1988 0.0000
Instance 16 0.5345 0.6289 11.2876 5.2110
Instance 17 0.4715 0.5636 13.9689 14.2800
Instance 18 0.5295 0.5902 12.3323 9.8783
Instance 19 0.4485 0.5593 7.0617 2.3466
Instance 19 0.5265 0.5673 2.1003 0.0000
Instance 20 0.6565 0.6747 15.3439 0.0000
Mean 0.5335 0.5850 16.8632 10.05041

4.4 Efficiency of the Mutation Operator
Two different types of IhpaEA algorithms are coded to test the performance of the mutation

operator discussed in Section 3.6, i.e., the proposed IhpaEA-NS algorithm without mutation operator,
and the IhpaEA algorithm with all the components.

From the comparison results given in Table 5, it can be concluded that: (1) compared with the
IhpaEA-NS algorithm, IhpaEA obtains 18 better results, based on the HV values; (2) the ANOVA
results from Fig. 7c shows that the IhpaEA obtains significant better results based on the HV results,
where the p-value equals to 0.0009; (3) for the IGD values, IhpaEA obtains 18 better results; and (4)
from the average performance in HV and IGD given in the last line, the efficiency of the proposed
mutation operator can be verified.



CMES, 2023, vol.134, no.1 257

Table 5: Comparisons between IhpaEA -NS and IhpaEA

Instances HV IGD

IhpaEA -NS IhpaEA IhpaEA -NS IhpaEA

Instance 1 0.5757 0.5258 12.0756 6.5329
Instance 2 0.5801 0.6379 54.039 4.3242
Instance 3 0.4906 0.6012 10.6876 3.4552
Instance 4 0.6444 0.6131 23.2886 12.0974
Instance 5 0.4281 0.5562 16.7376 0.0000
Instance 6 0.5355 0.5448 7.0794 5.9346
Instance 7 0.5933 0.6381 13.0640 28.934
Instance 8 0.4768 0.5981 4.0355 2.7526
Instance 9 0.5997 0.6312 15.6516 0.0000
Instance 10 0.5249 0.5758 20.4162 3.5004
Instance 11 0.6165 0.5704 4.5155 3.1654
Instance 12 0.6273 0.6544 18.0674 3.8187
Instance 13 0.5708 0.5969 11.6355 0.0000
Instance 14 0.5927 0.6775 10.4286 3.8125
Instance 15 0.5975 0.6289 9.0578 4.3771
Instance 16 0.6717 0.6926 8.0385 3.4569
Instance 17 0.5728 0.5868 4.0471 7.1544
Instance 18 0.4824 0.5673 2.9527 0.0000
Instance 19 0.6619 0.5908 5.0999 4.8534
Instance 19 0.5709 0.6495 2.0368 2.6596
Instance 20 0.5088 0.6587 6.3669 5.6507
Mean 0.5677 0.6093 12.3486 5.0704

4.5 Efficiency of the Local Search Operator
To evaluate the performance of the local search heuristic discussed in Section 3.7, two types of

IphaEA algorithms are coded: IhpaEA-NL without the local search heuristic and IhpaEA with all
components that mentioned in Section 3.7.

From the comparison results given in Table 6, it can be observed that: (1) considering the HV
values, compared with the IhpaEA -NL algorithm, IhpaEA obtains 18 better results; (2) the
ANOVA results from Fig. 7d shows that the IhpaEA obtains significant better results considering
the HV results, where the p-value equals to 3.56712e-06 (3) for the IGD values, IhpaEA obtains 20
better results; and (4) from the average performance in HV and IGD given in the last line, the efficiency
of the proposed heuristic can be verified.
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Table 6: Comparisons between IhpaEA -NL and IhpaEA

Instances HV IGD

IhpaEA -NL IhpaEA IhpaEA -NL IhpaEA

Instance 1 0.6162 0.6416 14.2508 12.2757
Instance 2 0.5895 0.6158 3.3700 1.8011
Instance 3 0.5879 0.6721 90.9069 2.9069
Instance 4 0.6068 0.6479 38.6131 8.6444
Instance 5 0.5673 0.5970 8.5562 2.2810
Instance 6 0.5932 0.6547 8.8448 8.7355
Instance 7 0.5489 0.6817 2.8100 2.0933
Instance 8 0.5526 0.6148 844.9814 116.680
Instance 9 0.6048 0.5766 11.5812 9.9977
Instance 10 0.6107 0.6890 176.0458 3.2249
Instance 11 0.6015 0.6557 34.5704 13.1165
Instance 12 0.6049 0.6580 398.4254 58.8273
Instance 13 0.6523 0.6861 13.5969 1.70870
Instance 14 0.5873 0.6204 166.6750 37.9270
Instance 15 0.5671 0.6993 6.7975 0.0000
Instance 16 0.6040 0.6429 263.8726 63.1717
Instance 17 0.5722 0.6242 125.8685 14.2800
Instance 18 0.6153 0.6337 205.5073 10.8245
Instance 19 0.5942 0.5585 112.0908 26.2619
Instance 19 0.5798 0.6173 169.1495 97.1709
Instance 20 0.6544 0.6747 3.9088 0.0000
Mean 0.0606 0.3911 128.5916 23.4251

4.6 Comparisons of the Efficient Algorithms
Three algorithms are selected, namely, NSGAII [37], GFMOEA [38], BiGE [39], to test the effec-

tiveness of the IhpaEA algorithm. Table 7 presents the HV and IGD results after 30 independent runs.

Table 7: Comparisons results of the HV values (NSGAII, BiGE, GFMMOEA, IhpaEA)

Instance HV
NSGAII BiGE GFMMOEA IhpaEA

Instance 1 0.0653 0.0000 0.0653 0.4763
Instance 2 0.0432 0.0118 0.0440 1.8447
Instance 3 0.0345 0.0000 0.0387 12.1810
Instance 4 0.1209 11.0856 0.1288 6.5236
Instance 5 0.1673 0.0000 0.1795 7.2437

(Continued)
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Table 7 (continued)

Instance HV
NSGAII BiGE GFMMOEA IhpaEA

Instance 6 0.0593 0.0000 0.0594 0.2582
Instance 7 0.0289 0.0000 0.0340 17.6964
Instance 8 0.0275 7.6034 0.0255 0.0000
Instance 9 0.1565 0.0000 0.1648 5.3259
Instance 10 0.035 14.3026 0.0306 0.0000
Instance 11 0.0316 0.0000 0.0341 7.9018
Instance 12 0.0381 0.3611 0.0374 2.0480
Instance 13 0.1163 0.0000 0.1168 0.4277
Instance 14 0.0381 6.312 0.0358 0.0000
Instance 15 0.0437 0.0118 0.0468 0.0000
Instance 16 0.0345 0.0000 0.0345 2.8302
Instance 17 0.0715 5.0329 0.0681 0.9585
Instance 18 0.0295 2.8113 0.0303 0.0000
Instance 19 0.0485 0.0000 0.0489 12.6747
Instance 20 0.0265 0.0000 0.0258 0.0000
Mean 0.063269 2.4609 0.064 3.8171

Figs. 8a–8c shows the Pareto front charts for solving three different problem scale instances, i.e.,
“Instance 1”, “Instance 5”, and “Instance 20”. It can be observed from Fig. 8 that, the solutions
obtained by the IhpaEA algorithm are close to the Pareto front and well-distributed.

(a)  Pareto front for “Instance 1” (b) Pareto front for “Instance 5”

Figure 8: (Continued)
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(c) Pareto front for “Instance 20”

Figure 8: Pareto front results

Table 7 reports the comparison results of the HV values for the given 20 different scale instances.
The first column represents the number of the instances. Then, the results collected by NSGAII,
GFMMOEA, BiGE, and IhpaEA, are illustrated in the following four columns, respectively. Table 8
reveals that: (1) 13 better values obtained by the proposed IhpaEA algorithm for the given 20 instances
perform significantly better than other 3 comparison algorithms; and (2) the average values of the last
line further evaluate the efficiency of the IhpaEA. In addition, from the compared results of the IGD
values reported in Table 8, it can be known that the proposed IhpaEA algorithm gets 19 better values,
which further test the superiority of the IhpaEA algorithm.

Table 8: Comparisons of the IGD values (NSGAII, BiGE, GFMMOEA, IhpaEA)

Instance IGD
NSGAII BiGE GFMMOEA IhpaEA

Instance 1 116.2298 158.8989 36.7109 0.0000
Instance 2 8.1941 34.8277 32.5033 0.0000
Instance 3 83.8725 22.5379 0.0000 59.8702
Instance 4 19.8748 94.4182 31.8385 10.8258
Instance 5 47.9635 179.0395 273.2809 3.0955
Instance 6 12.8869 170.6979 36.779 1.2823
Instance 7 19.4737 18.5112 277.2231 4.7008
Instance 8 75.6480 67.4810 28.3924 25.1631
Instance 9 73.9556 70.0808 265.1931 53.1107
Instance 10 64.1465 41.8955 16.3510 1.4966
Instance 11 53.4103 24.1171 81.9518 8.2834
Instance 12 19.5608 36.0141 112.583 0.0000
Instance 13 41.2228 33.5263 96.2000 20.7798
Instance 14 93.9044 78.7471 137.8545 38.0666

(Continued)
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Table 8 (continued)

Instance IGD
NSGAII BiGE GFMMOEA IhpaEA

Instance 15 57.8876 50.251 98.1652 4.2185
Instance 16 13.8127 8.3406 56.0629 5.8542
Instance 17 80.9432 79.2301 41.8200 40.6400
Instance 18 83.1895 31.1598 18.7015 3.4795
Instance 19 23.9740 43.5960 157.5631 23.2828
Instance 20 37.4045 16.7215 29.9731 0.0000
Mean 51.3776 63.0046 91.4573 15.2074

A multifactor analysis of variance (ANOVA) is also performed to verify the difference from the
above tables, based on three compared algorithms namely, NSGAII, GFMMOEA and BiGE. Fig. 9
reveals the means and the 95% LSD (Fisher’s Least Significant Difference) intervals for the best values
of the three compared algorithms. The result of the three comparison algorithms shows statistically
significant difference. From Fig. 9 we can conclude that the IhpaEA algorithm performs better than
other three compared algorithms obviously.

Figure 9: Multi-compare results for NSGAII, GFMMOEA, BiGE, and IhpaEA

Fig. 10 shows the Gantt chart for one of the optimal solutions for “Instance 7”. It can be
concluded from Fig. 10 that the proposed algorithm can obtain some feasible and efficient solutions
for the considered problem.
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Figure 10: Gantt charts for instance 7
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4.7 Experimental Analysis
From the above discussed comparison results, the efficient performance of the proposed IhpaEA

algorithm has been tested. The main advantages of IhpaEA are as follows: (1) the proposed initializa-
tion heuristic, which can enhance the population diversity and quality; (2) the Pareto-based crossover
operator enhance the global search abilities; (3) the mutation operator enhance the convergence of
optimization process; and (4) a cooperation of search operators improve the local search abilities.

5 Conclusion

This paper studies a DHFS problem with makespan and total energy consumption. To solving
the problem, a multiobjective optimization algorithm is proposed. The contributions are as follows:
(1) an efficient encoding and decoding mechanism is embedded; (2) in the initialization phase of
the algorithm, considering the constraints in the model, two heuristics are developed; (3) a Pareto-
based crossover operator is designed; and (4) a cooperation of search operator is developed to further
improve the quality of the solution and accelerate the convergence speed of the algorithm. To further
illustrate the effectiveness of the proposed algorithm, IhpaEA is compared with three other multi-
objective algorithms, including NSGA-II, BiGE, and GFMMOEA, The Pareto frontier is closer to
the optimal solution than the other three algorithms.

We test the IhpaEA algorithm with different scales and compare several efficient algorithms with
the IhpaEA algorithm. The robustness as well as efficiency is shown by experimental results. There
are some works need to be focused as follows: (1) to improve the search capabilities, more local
optimization methods or other efficient heuristics need to be introduced; (2) some useful dynamic
and rescheduling strategies should be considered in flow shop scheduling problem; (3) more conflict
objectives such as maximum workload and parallel batch workload need to be focused on.
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