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ABSTRACT

In this article, to reduce the complexity and improve the generalization ability of current gesture recognition
systems, we propose a novel SE-CNN attention architecture for sEMG-based hand gesture recognition. The
proposed algorithm introduces a temporal squeeze-and-excite block into a simple CNN architecture and then
utilizes it to recalibrate the weights of the feature outputs from the convolutional layer. By enhancing important
features while suppressing useless ones, the model realizes gesture recognition efficiently. The last procedure of
the proposed algorithm is utilizing a simple attention mechanism to enhance the learned representations of sEMG
signals to perform multi-channel sEMG-based gesture recognition tasks. To evaluate the effectiveness and accuracy
of the proposed algorithm, we conduct experiments involving multi-gesture datasets Ninapro DB4 and Ninapro
DB5 for both inter-session validation and subject-wise cross-validation. After a series of comparisons with the
previous models, the proposed algorithm effectively increases the robustness with improved gesture recognition
performance and generalization ability.
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1 Introduction

Hand gesture recognition is one of the most important perceptual channels in human-computer
interaction. It is widely used in many fields, such as virtual reality, intelligent sign language translation
for deaf-mute, rehabilitation therapy and assessment, bionic prosthesis, etc., and shows a broad
potential in different applications [1]. However, hands are the most flexible parts of humans, so it
is extremely challenging to examine, track, classify, or recognize various hand gestures.
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Various research [2–5] has been done so far while hand gesture recognition based on vision is
the first to bring up [2,6]. For the vision-based gesture recognition approach, usually, one or more
cameras capture hand gesture images and videos for recognition, which is largely affected by the
surrounding elements such as obstacles, sunlight, and even complex background [7]. To solve this
problem, scholars have come up with hand gesture recognition based on electromyography (EMG).
EMG is a physiological signal produced by skeletal muscles and provides sufficient information
in muscle activities and function in neuroelectrophysiology. EMG is used for gesture recognition
in human-computer interaction without potential interferences (obstacles, sunlight, and complex
background, etc.) [8]. There are two main types of EMG recording electrodes [9]: surface electrodes
and inserted electrodes. Inserted electrodes collect intramuscular EMG signals, providing more stable
data but requiring invasive insertion that is not suitable for human-computer interaction. The non-
invasive surface electrodes mainly collect surface EMG (sEMG) signals without harm. Therefore,
it quickly catches the attention of scholars and is widely used in many aspects with high demands
in gesture recognition. With high precision, easy wearing, and non-invasive properties, sEMG-based
gesture recognition has become a hot spot in the research area [10–12].

Early studies of sEMG gesture recognition focus on combining artificially designed EMG signal
features and machine learning classification methods. After many years of study, features that properly
represent sEMG signals covering time, frequency, and time-frequency domains have been well designed
and examined [12–14]. In terms of machine learning classification algorithms for sEMG, models
including k-nearest neighbors (KNN), support vector machine (SVM), linear discriminant analysis
(LDA), random forest (RF), and artificial neural network (ANN) have been well studied and achieved
relatively high classification accuracy [15–18]. Despite the advantages of traditional methods, some
useful information is still missing in the process of feature extraction and combination when a large
amount of computation is required, which makes it difficult to improve the functionality and capability
of gesture recognition based on sEMG [19].

With the development of science and technology, deep learning is well established and equipped
with the ability of modeling and feature extraction [20]. It has been applied to and achieved break-
through outcomes in many fields such as image processing [21] and speech recognition [22]. Recently,
sEMG-based gesture recognition by deep learning starts to raise attention. Park et al. [23] firstly come
up with an end-to-end CNN model capable of classifying six gesture categories in the Ninapro dataset.
Compared to traditional SVM models, the end-to-end convolutional neural network (CNN) model has
a significantly higher recognition rate, showing that deep learning has played an efficient role in sEMG-
based gesture recognition. Atzori et al. [24] proposed a modified version of LeNet for the classification
of multiple Ninapro datasets, each containing 50 hand gestures on average. After comparing with early
classification models, this new simple network shows better results than KNN, SVM, and LDA yet
has a lower accuracy than that of RF. Based on a simple network model, Wei et al. [25] come up with a
new strategy by dividing raw EMG signals into small sections with the same duration (e.g., 200 ms per
section) in a multi-stream stage. Then each section is trained with a CNN model and convoluted at the
fusion stage to get the final classification results. This method achieves a nearly 85% recognition rate on
the NinaPro DB1 dataset. Meanwhile, inspired by Atzori et al. [24], Tsinganos et al. [26] added dropout
layers to the simple network model and replace the average pooling with max pooling. The changes
finally help them achieve a 3% higher recognition rate than the old one. Ding et al. [19] proposed a
parallel multi-scale convolution architecture to extract EMG signal features by different blocks and
discriminate the gestures by grouping these features. In this case, they achieve the highest recognition
rate of 78.86% on the NinaPro DB2 dataset for all gestures.
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From the previous work, gesture recognition based on the integration of deep learning and
sEMG signal features including time, frequency, and time-frequency domains is widely proposed
by scholars. Hu et al. [27] introduced a CNN-recurrent neural network (RNN) model based on an
attention mechanism to extract features from each sEMG channel with the Phinyomark feature. They
report that the model obtains 87% and 82.2% of recognition rates on NinaPro DB1 and NinaPro
DB2 datasets, respectively. Côté-Allard et al. [28] extended the model of Atzori et al. [24] with a
new architecture composed of three combinations: 1) ConvNet with Spectrograms, 2) ConvNet with
Continuous Wavelet Transforms, and 3) ConvNet with raw EMG signals. The model is jointly trained
with transfer learning to improve the recognition rate. They finally achieve a 68.98% recognition rate in
the wrist gestures recognition task using NinaPro DB5. Wei’s group proposes a multi-view CNN model
by combining 11 classical sEMG feature sets [29]. The multi-CNN model finally achieves a 90% of
recognition rate by simply using sEMG signals. Chen et al. [30] came up with a compact Convolution
Neural Network (EMGNet) jointly with Continuous Wavelet Transforms (CWT) for hand gesture
recognition. They finally obtain 69.62%, 67.42%, and 61.63% of recognition rates for finger gestures,
wrist gestures, and functional gestures, respectively.

Despite all the advantages from the previous work, several problems need to be taken into
consideration: 1) simple architecture always results in a low recognition rate; 2) algorithms with high
recognition rates have relatively poor real-time inference ability and usually require extremely complex
architecture; 3) few groups do the “subject-wise [31]” study while those who do only have unsatisfied
results. To solve these concerns, Josephs et al. [32] proposed a simple model based on an attention
mechanism with a good real-time data analysis. This model uses the 1st, 4th, and 6th samples in every
repeated move as the training set, the 3rd sample as the validation set, and the 5th as the testing set.
This approach achieves a recognition rate of 87.09% on NinaPro DB5, 74.88% on NinaPro DB4, and
62.96% on NinaPro DB5 after the “subject-wise” cross-validation. Even if Josephs et al. [32] achieved
pretty good results, we find that the model shows weak generalization ability.

To solve the mentioned problems as well as increase the recognition rate and generalization ability,
we propose a novel squeeze-and-excite CNN (SE-CNN) attention architecture for sEMG-based hand
gesture recognition. The main contributions to this paper are as follows:

• The introduction of the temporal squeeze-and-excite block into the CNN frame is to establish
the possible relations between channels and enhance important features while suppressing
useless ones. Therefore, the robustness and recognition rate of the model can be sufficiently
improved. A simple attention mechanism is added to the end of the model to capture space
relations between features and enhance the learned representations of multi-channel signals.

• Batch normalization (BN) and parametric rectified linear unit (PReLU) are added to the CNN
model to approximate any arbitrary function. This will also accelerate the convergence, prevent
gradient explosion and vanishing, avoid overfitting, and enhance further expression of CNN,
and therefore, improve the model’s generalization ability.

• To the best of our knowledge, the proposed hybrid strategy in combination with SE, CNN, and
attention mechanism is the first to be applied to the sEMG-based hand gesture recognition
field.

The organization of the rest of the paper is as follows. The details of the hybrid model are fully
described in Section 2. More information on the experimental environment and data processing is
in Section 3. Section 4 mainly covers the final experimental results, comparisons between previous
studies, and discussion. Section 5 comes with the conclusion.
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2 Methodology

The proposed SE-CNN attention architecture is composed of three parts as illustrated in Fig. 1:
1) a basic CNN architecture, 2) a temporal Squeeze-and-Excite block, and 3) a simple attention
mechanism.
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Output gesture labels

SE-CNNSE Attett ntion ArchitecAttet ntion A

Figure 1: Schematic diagram of the proposed end-to-end framework (SE-CNN attention architecture).
It enhances the generalization ability and provides a higher recognition rate for sEMG-based gesture
recognition

2.1 The Basic CNN Architecture
The proposed basic CNN architecture consists of three components:

• Three Conv1D layers: The main parameters of the first Conv1D layer are: filter = 128,
kernel_size = 8, padding = ‘same’, and kernel_initializer = ‘he_uniform’. The second Conv1D
layer’s parameters are: filters = 256, kernel_size = 5, padding = ‘same’, and kernel_initializer =
‘he_uniform’. The third Conv1D layer’s parameters are: filters = 512, kernel_size = 3, padding
= ‘same’, and kernel_initializer = ‘he_uniform’.

• Batch Normalization [33,34]: BN was first introduced by Google in 2015. It is a technique for
training deep neural networks. BN accelerates the convergence, and more importantly, alleviates
the vanishing gradient problem. It simplifies the neural network model and stabilizes the inputs
of a layer for each mini-batch. Therefore, BN has become the standard technology for almost



CMES, 2023, vol.134, no.1 161

all CNN models. The training procedure is as follows:
First, we compute the average of a mini_batch with input x: B = {x1,...,m} as follows:

μB ← 1
m

∑m

i=1
xi. (1)

Then, we calculate the variance of the mini-batch with:

δ2
B ← 1

m

∑m

i=1
(xi − μB)

2, (2)

and followed by normalization:

x̂i ← xi − μB√
δ2

B+ ∈ . (3)

Then scaling and migration are applied to Eq. (4) as follows:

yi ← γ x̂i + β = BNγ ,β(xi), (4)

where γ and β are the learned parameters. Finally, the normalized network response is returned
as yi = BNγ ,β(xi).

• Parametric Rectified Linear Unit [35,36]: PReLu was introduced by He et al. in 2015 [35],
PReLu. The authors declare that PReLU plays a key role in classification on ImageNet, which is
way beyond manual classification. PReLU is an unsaturated activation function that generalizes
the traditional rectified unit with a slope of negative values. It shows great advantages in 1)
resolving the gradient vanishing problem, and 2) accelerating the conjugation process. The
definition of PReLU is as follows:

f (yi) =
{

yi, if yi > 0
aiyi, if yi ≤ 0 , (5)

where yi is the input of the nonlinear activation f on the i-th channel; ai is the parameter
that dominates the partial gradient. The subscript i represents the variance of the nonlinear
activation on different channels.

2.2 Temporal Squeeze-and-Excite
Squeeze-and-Excite Network [37] was developed by the auto-driving company Momenta in 2017.

It is a novel image recognition architecture and is designed to improve accuracy by modeling the
correlation between feature channels as well as enhancing the representation of the key features. SENet
is modified as Fig. 2 when dealing with temporal sequence data. The transformation function Ftr

transforms the input X to feature U, where U = [u1, u2, . . . , uC] and uc (c = 1, 2, . . . , C) is calculated as
follows:

uc = vc ∗ X =
C′∑

s=1

vs
c ∗ xs, (6)

where vs
c denotes the 1D spatial kernel; ∗ denotes the convolution operation. U passes through two

different branches and reaches X̃ = [X̃1, X̃2, . . . , X̃C] as shown in Fig. 2. For the lower branch, U firstly
goes through a squeeze operation to produce a channel descriptor as follows:

zc = Fsq(uc) = 1
T

T∑
t=1

uc(t), (7)
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where z ∈ RC and T denotes the temporal dimension. After the excitation operation, each channel is
added with produced weights as follows:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)), (8)

where Fex is parameterized as a neural network; σ is the sigmoid activation function; δ is the ReLU
activation function. The learnable parameters of Fex are W1 ∈ R C

r ×C and W2 ∈ R C
r ×C, where r denotes

the reduction ratio.

Figure 2: The computation of the temporal squeeze-and-excite block

At last, the resulting weight multiplies with the feature U from the upper branches to obtain the
SE block output as follows:

X̃c = Fscale(uc, sc) = sc · uc. (9)

Then, we get X̃ = [X̃1, X̃2, . . . , X̃C] as the final result.

2.3 Attention Mechanism
The schematic diagram of the attention mechanism in this article is shown in Fig. 3. The output

of the previous neural network is h ∈ RC×T , where C represents the number of channels and T is
the number of features. h is then transformed into a T × C matrix. The softmax activation function is
applied to get a T×C attention matrix by inserting each row from h into a standardized fully connected
layer as follows:

α = Softmax(WhthC + bct), (10)

where the learned weight is Wht ∈ RC×C and b ∈ R denotes the biases across the channel. Based on
these, we can get the learned temporal mask αC for every feature. Hadamard product is applied to αC

with h afterward to get g as follows:

g = αC ◦ h, g ∈ RC×T , (11)
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Figure 3: The attention mechanism

Finally, the output c ∈ R1×T of the attention mechanism is calculated through cross-channel
summation as follows:

c =
C∑

t=1

g, c ∈ R1×T . (12)

3 Experimental Configurations
3.1 Datasets

For a fair comparison of existing models, we use the same datasets from reference [32] as our test
set: the Cometa + Dormo dataset (known as Ninapro DB4) and the Double Myo dataset (known as
Ninapro DB5) [38].

The Ninapro DB4 dataset has collected signals from muscle activities through 12 active single-
differential wireless electrodes of Cometa. Corresponding to the brachioradialis joint, 8 electrodes are
placed around the forearm and evenly distributed. Another 2 electrodes are placed at the joint’s main
movement points of the finger flexor and extensor muscles. The last 2 are placed on the main movement
points of the biceps and triceps. 10 testers with 52 gesture movements, including an additional rest
condition, are included in the Ninapro DB4 dataset. The sampling frequency of surface EMG is 2 kHz
during data collection. Each movement is repeated 6 times.

The Ninapro DB5 dataset has collected muscle activity signals through two Thalmic Myo
armbands which contain 16 active single-differential wireless electrodes. The first Myo armband is
placed close to the elbow with the first transducer placed on the humeral joint. Closer to the hand, the
second Myo armband is placed after the first one with a 22.5-degree angle. The sampling frequency
is 200 Hz when collecting surface EMG signals. 10 testers with 52 gesture movements, including an
additional rest condition, are included in the dataset. Each movement is repeated 6 times.
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3.2 Preprocessing
Based on the algorithm by Josephs et al. [32], the raw data is separated into 260 ms windows with

235 ms of overlap at first. Then, a 20 Hz high-pass Butterworth filter is applied to get rid of the artifacts
[39]. Finally, a moving average filter smooths the signal. These approaches reduce the windows’ time
step T from 52 to 38 for Ninapro DB5 and from 520 to 371 for Ninapro DB4.

3.3 Training Environment and Details
• Training Environment: All the experiments are implemented in Python 3.7, Tensorflow_gpu

2.4, and Keras 2.4 on WIN 64 with Intel® Core™ i7-8700H CPU @3.2 GHz 3.19 GHz, 64G
RAM, NVIDIA GeForce GTX 1080Ti 11 GB, CUDA 10.1.243, and CuDNN v7.6.3.30.

• Training Details: The batch size is set to 128 and the learning rate anneals from 10−3 to
10−5 during the training process. As the accuracy decreases after 80–100 epochs with no
further improvement as shown in Fig. 4, we stop early at 100 epochs. The Ranger optimizer
is implemented in the proposed algorithm for network optimization. It combines two newly
developed variants, RAdam and Lookahead [40], into a single optimizer. RAdam provides the
best starting point for the optimizer at the early stage of training. It uses a dynamic rectifier
to adjust Adam’s adaptive momentum according to the variance and then comes up with an
effective automatic warm-up procedure for the current dataset to ensure a steady training start.
LookAhead is inspired by the recent understanding of the deep neural network’s lost surface. It
helps achieve a stable and effective exploration during the training process. Both RAdam and
LookAhead provide great breakthroughs in different aspects of deep learning optimization, so
the combination is highly synergistic.

Figure 4: The model learning curve

4 Results and Discussion
4.1 Intra-Session Validation

The details of experimental specifications for Ninapro DB4 and Ninapro DB5 datasets are
presented in Table 1. For comparison, referring to Josephs et al. [32], this article takes each gesture
movement’s 1st, 2nd, 4th, and 6th repetitions as the training set, the 3rd repetitions as the validation
set, and the 5th as testing set since the 5th repetitions are commonly used for testing [24,29,32,38]. We
report the performance of our model in recognition of all hand gestures in Ninapro DB4 and Ninapro
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DB5 datasets, wrist and functional gestures in Ninapro DB5, and just wrist gestures in Ninapro DB5.
The results and comparisons with previous studies are shown in Table 2.

Table 1: Specifications of the sEMG datasets

Dataset Number
of
gestures

Number
of
finger
gestures

Number
of
wrist
gestures

Number
of
functional
(grasping)
gestures

Intact
subjets

Number
of
sEMG
channels

Number
of
trials

Trials
for
training

Trials
for
validation

Trials
for
testing

Sampling
rate

Ninapro
DB4

53 12 17 23 10 12 6 1, 2, 4, 6 3 5 2000 Hz

Ninapro
DB5

53 12 17 23 10 16 6 1, 2, 4, 6 3 5 200 Hz

Table 2: The comparison between the proposed model and baseline models

Database Method Accuracy

Ninapro DB5, all gestures Proposed method 87.42%
Josephs et al. [32] 87.09%
Shen et al. [41] 72.09%

Ninapro DB5, wrist and functional gestures Proposed method 87.80%
Josephs et al. [32] 87.13%
Wei et al. [29] 90%

Ninapro DB5, just wrist gestures Proposed method 89.54%
Josephs et al. [32] 89.18%
Chen et al. [30] 67.42%
Wu et al. [42] 62%

Ninapro DB4, all gestures Proposed method 77.61%
Josephs et al. [32] 74.88%
Pizzolato et al. [38] 69.01%
Wei et al. [29] 60%

From Table 2, we can see that the proposed model achieves an accuracy of 87.42% for classifying
all gestures in the Ninapro DB5 dataset. It is 0.33% higher than the best performance demonstrated by
Josephs et al. [32] and 15.33% higher than Shen et al. [41]. The proposed model achieves a recognition
rate of 87.80% in the wrist and functional gestures in the Ninapro DB5 dataset, only 2.2% lower than
Wei et al. [29]. Yet compared with Josephs et al. [32], the recognition rate of our model increases by
0.67%. Also, it is not difficult to find that the proposed model achieves the highest recognition rate
of 89.54% among all the related algorithms on just wrist gestures in the Ninapro DB5 dataset, which
is 0.36% higher than Josephs et al. [32], 22.12% higher than Chen et al. [30], and 27.54% higher than
Wu et al. [42]. Table 2 also indicates that the proposed model achieves the best performance among
all models and has a recognition rate of 77.61% for all gestures in the Ninapro DB4 dataset, which is
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2.73% higher than Josephs et al. [32], 8.6% higher than Pizzolato et al. [38], and 17.61% higher than
Wei et al. [29].

Accuracy is the most straightforward and efficient metric to evaluate a model. However, some-
times, accuracy can be misleading, especially for imbalanced datasets. As shown in Fig. 5 and Table 3,
Category 0 has more samples than others. Therefore, accuracy may cause unsatisfied results even
if it is high. The trained model is meaningless if the prediction is always 0 regardless of inputs.
To avoid this, additional evaluation metrics need to be involved, such as precision, recall, and F1-
score. Precision evaluates the percentage of true positive examples in all predicted positive examples.
Recall tells the possibility of how many positive examples are successfully retrieved. F1-score is the
combination of precision and recall. In this case, higher precision and recall (higher F1-score) indicate
better performance.

Ninapro DB4
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Figure 5: The distribution of experiment datasets: (a) The numbers of test samples in different
categories in the Ninapro DB4 dataset; and (b) The numbers of test samples in different categories
in the Ninapro DB5 dataset
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Table 3: The number of test samples per category in Ninapro DB4 and Ninapro DB5 datasets

Category 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ninapro
DB4

87936 1916 1733 1905 1712 1859 1669 1855 1718 1650 1398 1426 1660 1502 1391 1471 1416 1243 1589 1089 1431 1518 1495 1631 1596 1711

Ninapro
DB5

129146 1763 1238 1606 1190 1458 1515 1591 1507 1119 1289 1087 1310 1640 1298 1290 1254 1271 1197 1461 1160 1377 1322 1528 1297 1374

Category 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Ninapro
DB4

1396 1170 1685 1746 1660 1535 1692 1868 1745 1933 1742 1853 1697 1574 1700 1731 1687 1777 1794 1652 1789 1782 1711 1700 1626 1848 1699

Ninapro
DB5

1177 1120 1573 1465 1296 1385 1349 1340 1466 1660 1240 1337 1388 1382 1449 1374 1357 1553 1679 1466 1508 1648 1507 1476 1527 1741 1745

Fig. 6 shows the comparison of precision, recall, and F1-score between the proposed algorithm
and Josephs et al. [32] (with the best performance so far) for all gestures in the Ninapro DB5 dataset.
We find that both algorithms have close performance. Also, they both show poor performance in
gesture categories 22, 23, and 24 (known as the 10th, 11th, and 12th categories in wrist gestures), as
well as 30, 31, and 32 (knowns as the 1st, 2nd, and 3rd categories in functional gestures), resulting
in relatively low precision, recall, and F1-score. Further experiments indicate that the 10th, 11th, and
12th gesture categories are wrist pronation (axis: middle), wrist supination (axis: little finger), and wrist
pronation (axis: little finger). They are all related to muscle activities and cause poor performance
in gesture recognition. There is also a strong correlation between muscle activity in the 9th (Wrist
supination, axis: middle finger) and 10th (Wrist supination, axis: middle finger) gesture categories.
Similarly, the 1st, 2nd, and 3rd categories in functional gestures, known as the large diameter grasp,
the small diameter grasp (power grip), and the fixed hook grasp, are also somehow affected by muscle
functions, and therefore, causing incorrect prediction. This may explain the reason why the precision,
recall, and F1-score are low when testing the proposed model.
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Figure 6: (Continued)
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Figure 6: The performance of the algorithms for all gestures from this article and Josephs et al. [32] on
the Ninapro DB5 dataset: (a) Precision; (b) Recall; (c) F1-score

Fig. 7 shows the comparison of the performance between the algorithm from this article and
Josephs et al. [32] in the wrist and functional gestures in the Ninapro DB5 dataset. We analyze the
precision, recall, and F1-score for both algorithms, and find that the performance of the proposed
model is superior to Josephs et al. [32]. We also notice that both algorithms show poor performance
in wrist gestures in terms of the 10th, 11th, and 12th categories, and functional gestures in terms of
the 1st, 2nd, and 3rd categories based on their precision, recall, and F1-score.
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Figure 7: (Continued)
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Figure 7: The performance of the algorithms for wrist and functional gestures from this article and
Josephs et al. [32] in the Ninapro DB5 dataset: (a) Precision; (b) Recall; (c) F1-score

Fig. 8 shows the normalized confusion matrix of the algorithms from this article and Josephs et al.
[32] in just wrist gestures in the Ninapro DB5 dataset. The proposed algorithm has better performance
than Josephs et al. [32]. Similarly, we notice that it is highly possible to misidentify the 10th gesture
as the 9th by both algorithms. The 11th gesture is more likely to be misidentified as the 10th, and the
12th gesture has the highest probability of being misidentified as the 11th.

(a)

Figure 8: (Continued)
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(b)

Figure 8: The performance of the algorithms for just wrist gestures from this article and Josephs et
al. [32] in the Ninapro DB5 dataset: (a) the normalized confusion matrix of Josephs et al. [32]; (b) the
proposed method’s normalized confusion matrix

Fig. 9 shows the comparison of precision, recall, and F1-score between the algorithm from this
article and Josephs et al. [32] in all gestures in the Ninapro DB4 dataset. The proposed algorithm has
better precision, recall, and F1-score compared to Josephs et al. [32].

Based on Table 2 and Figs. 6–9, we can conclude that:

• The proposed algorithm achieves a relatively high recognition rate in all experiments. The
recognition rate for all gestures in Ninapro DB5 is 87.42%, for wrist and functional gestures in
Ninapro DB5 is 87.80%, for just wrist gestures in Ninapro DB5 is 89.54%, and for all gestures
in Ninapro DB4 is 77.61%.

• Compared to the algorithm proposed by Josephs et al. [32], the proposed algorithm has a better
performance in precision, recall, and F1-score. Also, we find that relative muscle activities
affect the model recognition rate. The 9th, 10th, 11th, and 12th categories in wrist gestures,
known as wrist supination (axis: middle finger), wrist pronation (axis: middle), wrist supination
(axis: little finger), and wrist pronation (axis: little finger), have similarities in muscle activities.
The 1st, 2nd, and 3rd categories in functional gestures, known as large diameter grasp, small
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diameter grasp (power grip), and fixed hook grasp, also share similarities in muscle movements.
Therefore, it leads to a certain decrease in the recognition rate of the above gestures.
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Figure 9: The performance of the algorithms for all gestures from this article and Josephs et al. [32] in
the Ninapro DB4 dataset: (a) Precision; (b) Recall; (c) F1-score

4.2 Subject-Wise Cross-Validation
Poor generalization has always been an obstacle to the development of gesture recognition

techniques. To further improve the generalization ability of the proposed algorithm, we include data
from different subjects for training and testing. The details are shown in Fig. 10. First, ten subjects
of the Ninapro DB5 dataset are divided into five groups by ordinal number. Then five-fold cross-
validation is applied to verify the performance of the proposed algorithm.
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Figure 10: Division of training (green boxes), validation (yellow boxes), and testing sets (blue boxes)
for five-fold cross-validation across individual subjects

From Table 4, we can find that the proposed algorithm has an average recognition rate of 65.74%
for all gestures in the Ninapro DB5 dataset, 2.78% higher than Josephs et al. [32]. The average
recognition rate of the proposed algorithm for wrist and functional gestures in Ninapro DB5 is 66.67%,
2.24% higher than Josephs et al. [32]. The average recognition rate of the proposed algorithm for just
wrist gestures in Ninapro DB5 is 69.47%, 3.11% higher than Josephs et al. [32]. Fig. 11 gives the results
of five-fold cross-validation. In contrast to Josephs et al. [32], the proposed algorithm has a higher
average recognition rate with less recognition dispersion in five-fold cross-validation. In other words,
the proposed algorithm has better generalization ability.

Table 4: Performance of the proposed method

Dataset Method Accuracy

Ninapro DB5, all gestures Proposed method 65.74%
Josephs et al. [32] 62.96%

Ninapro DB5, wrist and functional gestures Proposed method 66.67%
Josephs et al. [32] 64.43%

Ninapro DB5, just wrist gestures Proposed method 69.47%
Josephs et al. [32] 66.36%

4.3 Discussion
This article introduces a novel SE-CNN attention architecture for hand gesture recognition

based on surface EMG signals. Adding the temporal SE module to the output of convolutional
layers can efficiently highlight the expression of significant features, establish relationships among
different channels, as well as illustrate the model’s ability to extract features. Additionally, the
attention mechanism greatly assists in capturing spatial relationships between features and enhancing
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the learning ability in terms of multi-channel expression, which further boosts its robustness and
recognition rates. The results of the experiments indicate that the proposed algorithm is valuable in
gesture recognition systems. Based on the results above, our algorithm shows good performance in
various datasets, including all gestures in Ninapro DB5 (recognition rate: 87.42%), wrist and functional
gestures in Ninapro DB5 (recognition rate: 87.80%), just wrist gestures in Ninapro DB5 (recognition
rate: 89.54%), and all gestures in Ninapro DB4 (recognition rate: 77.61%). The proposed algorithm
has achieved the best performance compared to previous studies on Ninapro BD4. Ninapro DB5 and
Ninapro DB4 datasets are two datasets from completely different sources in both data acquisition
methods and sampling frequencies, but our algorithm still achieves relatively good outcomes on them.
Moreover, the proposed algorithm performs well in evaluation metrics including precision, recall, and
F1-score, which proves that our model has better adaptability when applying to different datasets,
more relaxed requirements for data collection programs, and relatively fine classification performance
when dealing with imbalanced data, ensuring the success in developing gesture recognition systems.

Figure 11: The performance comparison between the algorithms proposed by this article and Josephs
et al. [32] in inter-subject five-fold cross-validation

Poor generalization is one of the important factors in slowing down the development of recog-
nition systems. Herein, we conduct an inter-subject validation on all gestures, wrist and functional
gestures, and just wrist gestures from Ninapro DB5 respectively. 10 subjects from either dataset
are collected and divided into independent training, testing, and validation sets by five-fold cross-
validation method with corresponding recognition rates of 65.74% (53 gestures), 66.67% (41 gestures),
and 69.47% (18 gestures). Compared with Josephs et al. [32], our algorithm performs better in various
aspects, proving its excellent generalization ability.

Meanwhile, we interestingly find that the gestures involving similar muscle activities lead to unsat-
isfied performance and confusion classification results, such as wrist pronation (axis: middle finger)
in wrist gestures, wrist supination (axis: little finger), and wrist pronation (axis: little finger). More
experiments need to be done in the future, including further analysis on sEMG signals from gestures
that share similar muscle activities. Also, the neural network needs to be further optimized for better
classification in gestures involving the same muscle movement by investigating the characteristics of
corresponding sEMG signals. In inter-subject validation, though the proposed algorithm has achieved



174 CMES, 2023, vol.134, no.1

a better result compared to previous studies, the recognition rate is still not very high. Therefore,
further investigation is required to achieve better inter-subject validation performance.

5 Conclusion

In this article, we propose a novel SE-CNN attention architecture for sEMG-based hand gesture
recognition. It consists of a basic CNN architecture, a temporal squeeze-and-excite architecture,
and an attention mechanism. The main advantage of the proposed algorithm is the introduction
of the temporal squeeze-and-excite block into a CNN-based gesture recognition architecture using
sEMG signals. The temporal squeeze-and-excite block enhances important features by suppressing
meaningless ones. Therefore, the model’s feature extraction is improved. Also, an attention mechanism
is added at the end of the model to enhance the capability of representation learning of multi-channel
signals. We conduct two experimental paradigms: 1) intro-session validation, and 2) subject-wise
cross-validation. The results from intra-session validation using Ninapro DB5 and Ninapro DB4
datasets indicate that the proposed algorithm has improved the system robustness in hand gesture
recognition tasks with a better recognition rate. Further analysis using subject-wise cross-validation
in all gestures, wrist and functional gestures, and just wrist gestures in the Ninapro DB5 dataset
shows that the proposed algorithm has better stability and generalization ability in multi-gesture
recognition, facilitating the promotion of intelligent interactive systems based on surface EMGs in
practical applications. However, the algorithm proposed in this article still has limitations, especially
when classifying gestures with similar muscle activities, which demotes the application of EMG gesture
recognition. Therefore, the proposed algorithm still has a lot of room for improvement. Further
investigation is required in the future in terms of individual myoelectricity differences during gesture
recognition.
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