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Abstract: Biomedical imaging is an effective way of examining the internal
organ of the human body and its diseases. An important kind of biomedical
image is Pap smear image that is widely employed for cervical cancer diagnosis.
Cervical cancer is a vital reason for increased women’s mortality rate. Proper
screening of pap smear images is essential to assist the earlier identificationand
diagnostic process of cervical cancer. Computer-aided systems for cancerous
cell detection need to be developed using deep learning (DL) approaches. This
study introduces an intelligent deep convolutional neural network for cervical
cancer detection and classification (IDCNN-CDC) model using biomedical
pap smear images. The proposed IDCNN-CDC model involves four major
processes such as preprocessing, segmentation, feature extraction, and classifi-
cation. Initially, the Gaussian filter (GF) technique is applied to enhance data
through noise removal process in the Pap smear image. The Tsallis entropy
technique with the dragonfly optimization (TE-DFO) algorithm determines
the segmentation of an image to identify the diseased portions properly. The
cell images are fed into the DL based SqueezeNet model to extract deep-
learned features. Finally, the extracted features fromSqueezeNet are applied to
the weighted extreme learning machine (ELM) classification model to detect
and classify the cervix cells. For experimental validation, the Herlev database
is employed. The database was developed at Herlev University Hospital (Den-
mark). The experimental outcomes make sure that higher performance of the
proposed technique interms of sensitivity, specificity, accuracy, and F-Score.
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1 Introduction

In recent times, biomedical imaging tools have become popular and widely employed to visu-
alize the internal parts of the body in the diagnostic process. Since it is non-invasive, biomedical
imaging provides accurate identification of metabolites which can be employed as a biomarker
for disease detection and classification. One among the biomedical image is pap smear images
that are used to diagnose cervical cancer and are the main reason for death from cancer in
women. Cervical Cancer is an anomalous growth of cells from the cervical portion of the female’s
body. It can be deliberated as second most popular type of cancer following breast cancer [1].
However, it is established to be higher risks compared to breast cancer since it possibly doesn’t
show other kinds of feasible symptoms till it attains the severe condition of the disease. The life
time of the cervical cancer person is based on the earlier stage of its recognition and henceforth
cervical cancer should be detected at the earlier stage via proper check-ups [2]. The significant
detecting test is certain to cervical cancers like pelvic analysis, colposcopy, Human Papillomavirus
investigation, Pap smear test [3]. Pap smear based screening tests is established to be substantial
between present cervical cancer detecting test presents in the medicinal field. In this Pap Smears
based screening test, the speculum is injected as to a vaginal portion of females for opening
wider the vagina and cervix in to collect cells for investigation [4]. The problem that rises in
the procedure of accurate diagnoses of Pap smear cell based cervical cancer recognition is poor
contrast and inconsistent stain of cell makes the extraction procedure on cervical cells are highly
complex. Despite huge amount of present commercial approaches to diagnose cervical cancer
anomalies, they are deliberated costly and require human expertise to operate [5]. Furthermore,
the instance smear is utilized to investigate that contains cell amount ranges from 1000 to 10000
that makes the procedure of automatic examination a difficult process.

The conventional diagnosis technique is to screen for cervical cancer using automatic exam-
ination. But, it has few drawbacks in this conventional technique. For instance, there are several
uncontrollable impact aspects and certain errors with automatic examinations. Simultaneously, AI
has established very quickly in the smart medicine field. Thus, an increased amount of researchers
have initiated to investigate the utilization of computer image processing techniques for detecting
cervical cancer. The DL, a significant technique of AI, was broadly utilized in image detection [6].
Further, the CNN attains outstanding efficiency in image classification between the many DL
techniques. The network could process directly the original image, avoid the requirement for
pre-processing complex images. It integrates the 3 factors of pooling, local receptive field, and
weight sharing that significantly decreases the training variables of NN [7]. Consequently, study
on utilization of CNN for diagnosing medical images is raising. Commonly artificial features are
utilized by researchers mostly consist of texture, colour, and morphology. Generally, the extraction
of colour features are depending upon RGB colour. Additionally, the HSI colour space is broadly
utilized. Afterward carefully monitoring of cervical cells, [8] presented twenty morphological
features, containing circumference, area, and nuclear cytoplasmic (N to C) ratio. The GLCM is a
technique often utilized if the researcher extracts texture feature of the cell that mostly includes
entropy, contrast, and energy [9].

This study introduces an intelligent deep convolutional neural network for cervical cancer
detection and classification (IDCNN-CDC) model using biomedical pap smear images. The pro-
posed IDCNN-CDC model involves four major processes like preprocessing, segmentation, feature
extraction, and classification. Primarily, the Gaussian filter (GF) technique is applied to enhance
data through noise removal process in the Pap smear image. The Tsallis entropy technique with the
dragonfly optimization (TE-DFO) algorithm determines the segmentation of an image to identify
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the diseased portions properly. The cell images are fed into the DL based SqueezeNet model to
extract deep-learned features. Finally, the extracted features from SqueezeNet are applied to the
weighted extreme learning machine (ELM) classification model to detect and classify the cervix
cells. For experimental validation, the Herlev database is employed.

2 Literature Review

Ghoneim et al. [10] presented cervical cancer cell classification and detection scheme depend-
ing upon CNN. The cell images are fed to CNN module for extracting DL features. Later, an
ELM based classification categorizes the input image. CNN module is utilized by fine tuning and
TL. Other AE, ELM, and MLP based classifications are examined. The goal of this work [11]
is the automated diagnosis of cervical cancer. Due to this, a dataset having thirty attributes, 668
instances, and four targeted parameters (Hinselmann, Citology, Schiller, and Biopsy) from UCI
database has been utilized in testing and training stages. Softmax classification with stacked AE,
most DL approaches were utilized for classifying datasets. Initially, with the utilization of stacked
AE to raw datasets, a dimensional reduction dataset is attained.

Dong et al. [12] presented a cell classification technique that integrates artificial features and
Inception v3 that efficiently enhances the accurateness of cervical cell detection. Additionally,
for addressing the under fitting problems and execute efficient DL training with comparatively
smaller number of medicinal data, this study inherits the robust learning capability in TL and
attains effective and accurate cervical cell image classification depending upon Herlev dataset.
Perlin et al. [13] presented a DL technique to detect cervix cancer in pap-smear images. Instead
of training and designing CNN from scratch, they display that it could utilize pre-trained CNN
framework as feature extractor and utilize output feature as input for training SVM Classification.

William et al. [14], unlike local adaptive histogram equalization, was utilized for image
improvement. Cell segmentation has been attained by Trainable Weka Segmentation classification,
and sequence rejection method has been utilized for debris elimination. The FS has been attained
by simulative annealing combined by wrapper filter, whereas classification has been attained by
fuzzy c-means technique. Alyafeai et al. [15] developed fully automated pipeline for cervical cancer
classification and cervix recognition from cervigram images. The presented pipeline contains 2
pretrained DL modules for automated cervical tumor classification and cervix recognition.

Devi et al. [16] emphases on the advantages of NGCS assisted on preprocessed cervical image.
This NGCS based segmentation is mostly utilized to investigate the overlapping context of cervical
smear preprocessed images for optimum classifier accurateness. This NGCS based segmentation is
in charge for separating input pre-processed image to differentiated amount of non-overlapping
areas that helps in optimum insight at ease. In William et al. [17], Scene segmentation has been
attained by y Trainable Weka Segmentation classification and sequence rejection method has
been utilized to debris elimination. The FS has been attained by simulative annealing combined
by wrapper filter, whereas classification has been realized by fuzzy C-means method. Though
several methods are available in the literature, it is still needed to explore the DL based cervical
classification process using pap smear images.

3 The Proposed Model

The working principle of the IDCNN-CDC model is illustrated in Fig. 1. The proposed
IDCNN-CDC method contains four major processes namely GF based preprocessing, TE-
DFO based segmentation, SqueezeNet based feature extraction, and WELM based classification.
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Primarily, GF approach is employed for enhancing the pap smear image quality by the reduction
of noise with no blurring of edges. These modules are elaborated in the succeeding sections.

3.1 Image Segmentation
Next to image pre-processing, the TE-DFO based segmentation technique is employed to

determine the infected regions in the pap smear image. Commonly, entropy is connected to a
disorder metric in this technique. But, Shannon modified the concept of entropy to measure
uncertainty depending upon data content of the system. It is further guaranteed that the Shannon
entropy retains the additive property as determined under.

S (X +Y )= S (X)+S (Y ) (1)

By the concepts of multiple fractals, the Tsallis entropy is extended to non-extensive module
using a general entropy formation:

Sq= 1−∑k
i=1 (pi)q

q− 1
(2)

where k denotes amount of likelihoods of the scheme and q represents degree of non-extensive
of the technique called Tsallis variable or entropic index [18]. The entropic scheme is changed to
a statistically independent module by a pseudo additive entropic rule:

Sq (X +Y )= Sq (X)+Sq (Y )+ (1− q) .Sq (X) .Sq (Y ) (3)

Figure 1: The overall process of IDCNN-CDC model
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This idea is currently used for thresholding images. Assume grayscale levels G in the input
image and they occur in the interval of {1, 2 . . .G}. Consider pi = p1,p2 . . .pG as likelihood distri-
bution of the grayscale values. The data measure between the 2 classes (backdrop and forefront)
endures maximization and the relevant grayscale level is preserved as the optimum threshold value.
It is obtained with the maximization of the objective function included for bilevel thresholding:

Topt = argmax
[
SXq (t)+SYq (t)+ (1− q) ·SXq (t) ·SYq (t)

]
(4)

Subject to the succeeding limitation of:∣∣∣PX +PY
∣∣∣− 1< S< 1−

∣∣∣PX −PY
∣∣∣

whereas

S (t)= S=
[
SXq (t)+SYq (t)+ (1− q) ·SXq (t) ·SYq (t)

]
(5)

It is noteworthy that the limitations are guaranteed in the proposed method to offer con-
sistency. An optimal threshold value ‘T ’ is the gray level utilized to maximize Eq. (4) subject
to the limitations of Eq. (5). It is determined as multilevel thresholding. The optimal multilevel
thresholding problem is denoted by m-dimension optimization problem. Attractively, ‘m’ optimal
threshold values [T1,T2, . . . ,Tm] for a given image is calculated to the maximization of objective
function:

[T1,T2, . . . ,Tm]= argmax
[
S1q (t)+S2q (t)+ . . .+SMq (t)+ (1− q) ·S1q (t) ·S2q (t) . . .SMq (t)

]
(6)

whereas

S1q (t)= 1−∑t1
i=1

(
pi/P1)q

q− 1

S2q (t)=
1−∑t2

i=t1+1

(
pi/P2

)q
q− 1

as well as

SMq (t)= 1−∑G
i=tm+1

(
pi/PM

)q
q− 1

,M =m+ 1

Subject to the group of limitations denoted by:∣∣∣P1 +P2
∣∣∣− 1< S1 < 1−

∣∣∣P1 −P2
∣∣∣∣∣∣P2 +P3

∣∣∣− 1< S2 < 1−
∣∣∣P2 −P3

∣∣∣ (7)∣∣∣Pm+Pm+1
∣∣∣− 1< SM < 1−

∣∣∣Pm−Pm+1
∣∣∣

where, P1,P2, . . . ,Pm+1 relates to S1,S2, . . . ,SM are defined by T1,T2, . . . ,Tm, respectively. Espe-
cially, the aim is the optimization of objective function denoted in Eq. (6) subject to the
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limitations given in Eq. (7) by dragonfly method. For selecting optimal threshold values, the DFO
algorithm is employed.

The DFO algorithm was established in Mirjalili [19]. Is method is a metaheuristic technique
depending upon swarm intelligence (SI), is stimulated using dynamic and static behaviors of
dragonflies in nature. It contains exploitation and exploration phases. These 2 stages have been
implemented using dragonflies, whether statically/dynamically seeking food/avoid the enemy.

It has 2 cases whereas SI develops in dragonflies: migration and feeding. Feeding is imple-
mented as static swarm from optimization; migration is implemented as dynamic swarm. Based on
this, the swarm contains 3 certain behaviors: cohesion, separation, and alignment. Now, the idea
of separation implies an individuals from the swarm avoids static collision with their neighbors
(Eq. (8)). Alignment indicates speed where the agents are coordinated using the neighboring
individual (Eq. (9)). Lastly, the idea of cohesion displays the propensity of individuals to the
center of herd (Eq. (10)).

The 2 further behaviors include these 3 fundamental behaviors in DA: moves to food and
avoids the enemy. The purpose to add this behavior to the method is a major aim of every swarm
to survive. Thus, if every individual is moving to food source (Eq. (11)), they should avoid the
enemy in similar time period (Eq. (12)). All these behaviors are arithmetically expressed by:

Si =−
N∑
j=1

X −Xj, (8)

Ai =
∑N

j=1Vj
N

, (9)

Ci =
∑N

j=1Xj
N

−X (10)

Fi =X+ −X (11)

Ei =X− +X (12)

In aforementioned equation, X denotes instant location of the individual, whereas Xj repre-

sents instant location of jth individual. N indicates amount of neighboring individuals, whereas yj
denotes speed of jth neighboring individual. X+ and X− represents position of food and enemy
sources, correspondingly [20].

For updating the location of artificial dragonflies in search space and simulated their move-
ment, 2 vectors are deliberated: step (X) and location (X). e step vector, that could be deliberated
as speed, denotes direction of dragonfly motion (Eq. (13)). Afterward evaluating the step vector,
the location vector is upgraded (Eq. (14)):

∇Xt+1 = (sSi+ aAi+ cCi+ fFi + eEi)+w∇Xt, (13)

Xt+1 =Xt+∇Xt+1 (14)

whereas values of s,a, and c in Eq. (13) signifies the cohesion, separation, and alignment coef-
ficients, correspondingly, and t,w, e , f , and values represent iteration number, inertia coefficient,
enemy factor, and food factor, correspondingly. These coefficients and stated factors enable to
execution of exploitative and exploratory behaviors in optimization.
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3.2 Feature Extraction
During feature extraction process, the SqueezeNet model is utilized on the segmented pap

smear image to generate feature vectors. Squeeze Net is a DL module that comprises 15 layers
with 5 different layers as 3 max pooling layers, 1 global average pooling layer, 8 fire layers,
one output softmax layer, and two convolution layers. The input of network contains 227 * 227
dimensional with RGB channel. The input image is generalized by max pooling and convolution
functions. The convolution layer would convolute between weight and small region in the input
volume with 3 * 3 kernel. It uses from fire layer which incorporates expansion and squeeze phases
amongst the convolutional layers. The input of the fire and output tensor scale is stable. The
squeeze phase utilizes the filters of size 1 * 1, whereas the expansion utilizes the size of the filters
of 1 * 1 and 3 * 3. Primarily, the input tensor H × W × C allows via squeeze and the amount of
convolutions are corresponding to C/4 of input tensor channel amount. Eventually, the expansion
results are arranged in the depth dimension of input tensor using concatenation operation.

3.3 Image Classification
At the final stage, the WELM technique is implemented to allocate proper class labels to the

input pap smear image. ELM is employed for classifying the balanced dataset where WELM is
utilized for classifying imbalanced dataset. The framework of ELM is illustrates in Fig. 2.

Figure 2: Structure of ELM

Hence, this segment defines the creation of WELM [21]. The trained dataset has N distinct
samples (xi, zi) , i= 1, 2, . . . ,N. The single hidden layer NN with L hidden layer node is given by:

L∑
i=1

βi · l
(
wi ·xj + bi

)= zj, j= 1, . . . ,N (15)

whereas wi denotes single hidden layer input weight, l() determines activation function, βi rep-
resents the outcome weight, and bi denotes single hidden layers bias. Depending upon ELM
benefits, the WELM with distributed weights to numerous instances could handle the imbalanced
classification problem. It can be given by:
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F(x)=

⎡
⎢⎣
K (x,x1)

...
K (x,xN)

⎤
⎥⎦
T (

1
C

+Wχ

)−1

WT (16)

W = diag(wii), i= 1, 2, . . . ,N (17)

whereas W denotes weight matrix. WELM has two weighting approaches, viz.

wii = 1
#(zi)

(18)

wii =
{

0618
#(zi)

, if zi > zi
1

#(zi)
, otherwise

(19)

where #(zi) denotes amount of instances that go to class zi, i = 1, . . . ,m. m denotes amount
of classes. zi indicates average of whole instance of all classes. In WELM, the regularization
coefficient C and bandwidths of RBF kernel γ are important to define the efficiency of WELM.

4 Performance Validation

For experimental analysis, Herlev database is utilized, which comprises 918 cells and 7 class
labels. Among the 7 classes, 3 classes come under normal class and 4 classes come under abnormal
class. Totally, 242 images fall into normal class and 675 images fall into abnormal class. Fig. 3
depicts the sample test images and the dataset details are provided in Tab. 1.

Figure 3: Sample test images
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Table 1: Dataset details

Herlev database Name of classes No. of images

Normal Superficial squamous epithelial 74
Intermediate squamous epithelial 70
Columnar epithelial 98

Abnormal Mild squamous non-keratinizing dysplasia 182
Moderate squamous non-keratinizing dysplasia 146
Severe squamous non-keratinizing dysplasia 197
Squamous cell carcinoma in situ intermediate 151

Total number of images 918

Tab. 2 examines the classification performance of the IDCNN-CDC with other ML models
under different folds of cross-validation (CV).

Table 2: Result analysis of various number of folds on proposed IDCNN-CDC model with
existing models

No. of folds IDCNN-CDC GBT XGBoost ELM

Precision
CV = 6 97.72 96.37 94.57 92.41
CV = 7 96.86 94.83 95.04 95.51
CV = 8 98.06 97.09 92.95 95.58
CV = 9 98.44 95.24 94.55 91.85
CV = 10 98.11 97.39 93.96 92.99
Average 97.84 96.18 94.21 93.67
Recall
CV = 6 98.01 98.07 94.75 96.13
CV = 7 97.76 97.37 95.22 96.61
CV = 8 99.02 95.79 97.22 97.47
CV = 9 98.37 97.02 98.15 94.6
CV = 10 97.84 96.68 97.82 95.16
Average 98.20 96.99 96.63 95.99
Accuracy
CV = 6 97.77 97.26 97.84 91.89
CV = 7 98.36 95.78 97.54 95.56
CV = 8 98.12 94.26 94.6 92.32
CV = 9 97.88 94.98 93.36 94.19
CV = 10 97.67 95.95 92.39 96.39
Average 97.96 95.65 95.15 94.07
F-score
CV = 6 96.53 96.79 96.6 94.67
CV = 7 98.91 96.76 95.94 94.25

(Continued)
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Table 2: Continued

No. of folds IDCNN-CDC GBT XGBoost ELM

CV = 8 98.09 96.64 96.14 95.02
CV = 9 98.11 94.58 96.36 97.97
CV = 10 97.4 97.01 93.81 94.10
Average 97.81 96.36 95.77 95.20

Fig. 4 demonstrates the precision analysis of the IDCNN-CDC model under distinct CV.
The figure exhibited that the IDCNN-CDC model has accomplished superior performance with
higher precision values. For instance, with CV = 6, the IDCNN-CDC model has attained a
higher precision of 97.72% whereas the GBT, XGBoost, and ELM approaches have reached a
lesser precision of 96.37%, 94.57%, and 92.41% respectively. Likewise, with CV = 8, the IDCNN-
CDC method has attained a maximal precision of 98.06% whereas the GBT, XGBoost, and
ELM approaches have reached a lesser precision of 97.09%, 92.95%, and 95.58% correspondingly.
Similarly, with CV = 10, the IDCNN-CDC manner has attained a superior precision of 98.11%
whereas the GBT, XGBoost, and ELM algorithms have obtained a minimal precision of 97.39%,
93.96%, and 92.99% correspondingly.
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Figure 4: Precision analysis of IDCNN-CDC model in distinct CV

Fig. 5 exhibits the recall analysis of the IDCNN-CDC method in different CVs. The figure
showcased that the IDCNN-CDC approach has accomplished maximum performance with supe-
rior recall values. For instance, with CV = 6, the IDCNN-CDC method has attained a maximal
recall of 98.01% whereas the GBT, XGBoost, and ELM approaches have reached a minimal recall
of 98.07%, 94.75%, and 96.13% correspondingly. At the same time, with CV = 8, the IDCNN-
CDC methodology has attained a maximal recall of 99.02% whereas the GBT, XGBoost, and
ELM techniques have obtained a lower recall of 95.79%, 97.22%, and 97.47% respectively. Finally,
with CV = 10, the IDCNN-CDC model has achieved a higher recall of 97.84% whereas the GBT,
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XGBoost, and ELM approaches have reached a minimum recall of 96.68%, 97.82%, and 95.16%
correspondingly.
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Figure 5: Recall analysis of IDCNN-CDC model in distinct CV

Fig. 6 showcases the accuracy analysis of the IDCNN-CDC technique under distinct CV.
The figure demonstrated that the IDCNN-CDC method has accomplished higher performance
with the maximum accuracy values. For instance, with CV = 6, the IDCNN-CDC manner has
obtained a superior accuracy of 97.77% whereas the GBT, XGBoost, and ELM methodologies
have achieved a minimal accuracy of 97.26%, 97.84%, and 91.89% correspondingly. Followed by,
with CV = 8, the IDCNN-CDC manner has achieved a maximal accuracy of 98.12% whereas
the GBT, XGBoost, and ELM techniques have reached a minimal accuracy of 94.26%, 94.6%,
and 92.32% correspondingly. Eventually, with CV = 10, the IDCNN-CDC method has achieved
a maximum accuracy of 97.67% whereas the GBT, XGBoost, and ELM algorithms have obtained
a lesser accuracy of 95.95%, 92.39%, and 96.39% respectively.
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Figure 6: Accuracy analysis of IDCNN-CDC model in distinct CV
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Fig. 7 portrays the F-score analysis of the IDCNN-CDC method in different CVs. The
figure outperformed that the IDCNN-CDC manner has accomplished higher performance with
the maximal F-score values. For instance, with CV = 6, the IDCNN-CDC method has reached
a superior F-score of 96.53% whereas the GBT, XGBoost, and ELM models have obtained a
lower F-score of 96.79%, 96.6%, and 94.67% correspondingly. On continuing with, with CV = 8,
the IDCNN-CDC approach has achieved an increased F-score of 98.09% whereas the GBT,
XGBoost, and ELM algorithms have reached a lesser F-score of 96.64%, 96.14%, and 95.02%
correspondingly. Concurrently, with CV = 10, the IDCNN-CDC manner has achieved a maximal
F-score of 97.4% whereas the GBT, XGBoost, and ELM methodologies have obtained a minimal
F-score of 97.01%, 93.81%, and 94.10% correspondingly.
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Figure 7: F-score analysis of IDCNN-CDC model in distinct CV

For highlighting the betterment of the IDCNN-CDC method, a brief comparison study is
made with different techniques in Tab. 3 and Fig. 8 [22]. From the results, it is evident that the
DLP-CC and DT models have demonstrated ineffective outcomes with accuracy values of 77.10%
and 78% respectively. Likewise, the LR method has gained slightly improved performance with
an accuracy of 82.80%. Followed by, the GBT, XGBoost, and ELM models have accomplished
considerable performance with the accuracy of 95.65%, 95.15%, and 94.07% respectively. At
last, the proposed IDCNN-CDC model has demonstrated better performance with the maximal
precision of 97.94%, recall of 98.20%, accuracy of 97.96%, and F1-score of 97.81%. By looking
into the above tables and figures, it can be verified that the IDCNN-CDC methodology is found
to be a proper tool for cervical cancer diagnosis and classification.

Table 3: Comparative analysis of proposed IDCNN-CDC model under different measures

Methods Precision Recall Accuracy F1-score

IDCNN-CDC 97.84 98.20 97.96 97.81
GBT 96.18 96.99 95.65 96.36

(Continued)
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Table 3: Continued

Methods Precision Recall Accuracy F1-score

XGBoost 94.21 96.63 95.15 95.77
ELM 93.67 95.99 94.07 95.20
DLP-CCC 78.00 75.20 77.10 76.30
Logistic regression 45.90 21.40 82.80 26.10
Decision tree 31.50 30.20 78.00 30.30
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Figure 8: Comparative analysis of IDCNN-CDC model with existing techniques

5 Conclusion

This paper has developed a new IDCNN-CDC technique to identify the cervix cells from pap
smear images. Primarily, GF technique is employed for enhancing the pap smear image quality
by the reduction of noise with no blurring of edges. Next to image pre-processing, the TE-
DFO based segmentation technique is employed to determine the infected regions in the pap
smear image. Afterward, the SqueezeNet model is utilized on the segmented pap smear image to
generate feature vectors. At the final stage, the WELM approach is applied to allocate proper
class labels to the input pap smear image. For experimental validation, the Herlev database is
employed. The experimental outcomes highlighted that the presented model has accomplished
improved diagnostic outcomes over the other compared methods. In future, the presented method
can be extended to the utilization of DL based instant segmentation techniques to boost the
diagnostic outcome.
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