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Abstract: Medical image compression is one of the essential technologies to
facilitate real-time medical data transmission in remote healthcare applica-
tions. In general, image compression can introduce undesired coding artifacts,
such as blocking artifacts and ringing effects. In this paper, we proposed a
Multi-Scale Feature Attention Network (MSFAN) with two essential parts,
which are multi-scale feature extraction layers and feature attention layers
to efficiently remove coding artifacts of compressed medical images. Multi-
scale feature extraction layers have four Feature Extraction (FE) blocks. Each
FE block consists of five convolution layers and one CA block for weighted
skip connection. In order to optimize the proposed network architectures,
a variety of verification tests were conducted using validation dataset. We
used Computer Vision Center-Clinic Database (CVC-ClinicDB) consisting
of 612 colonoscopy medical images to evaluate the enhancement of image
restoration. The proposedMSFAN can achieve improved PSNR gains as high
as 0.25 and 0.24 dB on average compared to DnCNNandDCSC, respectively.
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1 Introduction

In the telemedicine field, a large number of medical images are produced from endoscopy,
Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). As these medical images
have to support high quality to identify more accurate medical diagnoses, image compression
is one of the essential technologies to facilitate real-time medical data transmission in remote
healthcare applications. Although the latest image compression method can provide powerful
coding performance without noticeable quality loss, both diagnostic uncertainty and degradation
of subjective quality can be caused by image compression from a low bitrate environment with
limited network bandwidth. In general, image compression can introduce undesired coding arti-
facts such as blocking artifacts and ringing effects primarily due to block-based coding to remove
high-frequency components [1]. Because these artifacts can decrease perceptual visual quality, there
is a need to reduce them on compressed medical images.
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Deep learning methods using Convolutional Neural Network (CNN) have brought great
potentials into low-level computer vision applications such as Super Resolution (SR) [2–8], image
denoising [9–16], and image colorization [17,18]. In particular, these applications have been
developed by CNN-based image denoising methods with deeper and denser network architec-
tures [19,20]. Recently, these methods tend to be more complicated network architectures with
enormous network parameters, excessive convolution operations, and high memory usages. In
addition, most networks were initially designed to remove coding artifacts of natural images,
so direct applications of them to medical images will lead to unsatisfactory performance. In
this paper, we proposed a novel CNN structure to efficiently improve the quality of compressed
medical images as shown in Fig. 1. The main contributions of this paper are summarized as
follows:

• In order to reduce coding artifact of compressed medical image, we proposed a Multi-
Scale Feature Attention Network (MSFAN) with two essential parts, which are multi-scale
feature extraction layers and feature attention layers.

• Through a variety of ablation works, the proposed network architecture was verified to
guarantee its optimal performance for coding artifact reduction.

• Finally, we evaluated the performance of image restoration on natural images as well as
medical images to demonstrate versatile applications of the proposed MSFAN.

Figure 1: CNN-based image restoration for coding artifact reduction in compressed medical
images

The remainder of this paper is organized as follows. In Section 2, we review the previous
CNN-based image restoration methods to remove the coding artifacts. Then, the proposed method
is then described in Section 3. Finally, experimental results and conclusions are given in Sections
4 and 5, respectively.

2 Related Works

With the advancement of deep learning algorithms, the researches of low-level computer
vision such as SR and image denoising has been combined with various CNN architectures to
achieve higher image restoration. In the area of SR, Dong et al. have proposed a Super Resolution
Convolutional Neural Network (SRCNN) [2] consisting of three convolutional layers. SRCNN can
learn end-to-end pixel mapping from an interpolated low-resolution image to a high-resolution
image. Since the advent of SRCNN, CNN-based image restoration methods have been reported
with various deep learning models [21–27].

In terms of artifact reduction of compressed images, those methods can be applied to com-
pressed images to reduce coding artifacts. As SR networks have generally up-sampling layers, the
size of the output image is larger than that of the input image. On the other hand, the size
of the output image is the same as that of the input image in the image denoising networks.
Dong et al. have also proposed an Artifacts Reduction CNN (ARCNN) to reduce the coding
artifacts compressed by Joint Photographic Experts Group (JPEG) [9]. Chen et al. addressed a
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Trainable Nonlinear Reaction Diffusion (TNRD) for a variety of image restoration tasks, such as
Gaussian image denoising, SR, and JPEG deblocking [10]. Zhang et al. have proposed a Denoising
CNN (DnCNN) utilizing residual learning [21] and batch normalization [27] to enhance network
training as well as denoising performance [11]. Fu et al. have proposed a Deep Convolutional
Sparse Coding (DCSC) [13] to exploit multi-scale image features using three different dilated
convolutions [25].

In terms of artifact reduction of compressed video sequences, CNN based video restoration
methods show better performance than the conventional method. Lee et al. have proposed an
algorithm to remove color artifacts using block-level quantization parameter offset control in
compressed High Dynamic Range (HDR) videos [28]. On the other hand, Dai et al. have proposed
CNN based video restoration, namely Variable-filter-size Residue-learning CNN (VRCNN) [14],
which can be applied to compressed images by High Efficiency Video Coding (HEVC) [29].
Compared to ARCNN, this method can improve PSNR and reduce the number of parameters
using small filter size. Meng et al. have proposed a Multi-channel Long-Short-term Dependency
Residual Network (MLSDRN), which updates each cell to adaptively store and select long-term
and short-term dependency information in HEVC [15]. Aforementioned image and video denoising
networks can be deployed in the preprocessing of various high-level computer vision applications,
such as object recognition [30–32] and detection [33,34] to achieve higher accuracy.

As depicted in Fig. 2, Hu et al. have presented a Channel Attention (CA) block, namely
Squeeze-and-Excitation Network (SENet), which adaptively recalibrates channel-wise feature
responses to represent interdependencies between feature maps [26], where GAP, Fi, and FCAi
indicate global average polling operation, input feature maps of CA block and output feature
maps, respectively. Zhang et al. have proposed a very deep Residual Channel Attention Network
(RCAN), which deploys a CA block to adaptively rescale channel-wise features for improving SR
performance [8]. Ding et al. have proposed a Squeeze-and-Excitation Filtering CNN (SEFCNN)
to fully explore the relationship between channels in HEVC in-loop filter [16].

Figure 2: Architecture of the CA block [26] to assign different weights for each feature map

3 Proposed Methods

3.1 Overall Architecture of MSFAN
Fig. 3 shows the overall architecture of the proposed Multi-Scale Feature Attention Network

(MSFAN) to remove coding artifacts in compressed medical images. It consists of an input layer,
multi-scale feature extraction layers, feature attention layers, and an output layer. The convolu-
tional operation of MSFAN calculates output feature maps (Fi) from previous feature maps (Fi−1)
as expressed in Eq. (1):
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Fi = δi(Wi ∗Fi−1+Bi) (1)

where δi(·), Wi, Bi, and ‘∗’ represent Parametric Rectified Linear Unit (PReLU) function as
an activation function, filter weights, biases, and convolutional operation, respectively. For fast
and stable network training, the proposed MSFAN uses a residual learning scheme with skip
connections [21]. Specifically, the input image is added to the feature map of the output layer
using a skip connection to learn the residual image. In addition, output feature maps of the input
layer are added to output feature maps of feature attention layers using CA-based weighted skip
connections [26].

Figure 3: Overall architecture of the proposed MSFAN where symbol ‘⊕’ indicates element-wise
sum

As shown in Fig. 4a, the CA block consists of GAP and two convolutional layers. Because
the CA block can emphasize more important feature maps for better network training, it assigns
weights (HCA

i ) to each channel of input feature maps to adaptively control channel-wise feature
response as expressed in Eq. (2):

HCA
i = σ(W2 ∗ (W1 ∗GAP(Fi)+B1)+B2) (2)

where σ(·) indicates sigmoid function. Then, output feature maps (FCAi ) of the CA block are
generated from channel-wise product operations ‘⊗’ as shown in Eq. (3).

FCAi = Fi⊗HCA
i (3)
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Figure 4: Structures of the (a) CA block and (b) FE block where symbols ‘σ ’ and ‘⊗’ indicate
sigmoid function and channel-wise product, respectively

Multi-scale feature extraction layers have four Feature Extraction (FE) blocks. Each FE block
consists of five convolution layers and one CA block for weighted skip connection as shown in
Fig. 4b. In the FE blocks, we used dilated convolutional operations with three different dilation
facors (DF) to extract multi-scale features, as depicted in Fig. 5. Because large-size of filters will
cause substantial increases for the number of parameters, we deployed dilated convolution to allow
a wide receptive field without additional network parameters [25]. Note that CA-based weighted
skip connection was also implemented on each FE block to train interdependencies between multi-
scale channels.

Figure 5: 3 × 3 dilated filters with different dilation factors to allow a wide receptive field without
additional network parameters [25]. (a) 3 × 3 filter with dilation factor 1 (b) 3 × 3 filter with
dilation factor 2 (c) 3 × 3 filter with dilation factor 3

In the feature attention layers, concatenated feature maps from all FE blocks (F2) are used
as the input of the next CA block. After generating output feature maps (FCA2 ) by CA block,
they are fed into a bottleneck layer in order to reduce the number of output feature maps. It
means that the bottleneck layer has a role in decreasing the number of filter weights as well as
compressing the number of feature maps. Output feature maps (F3) of the feature attention layers
are computed by element-wise sum between FCA1 and the output of the bottleneck layer. Finally,
the output layer generates a predicted residual image (F4) between the input and original images.
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Note that we used zero padding to allow all feature maps to have the same spatial resolution
between different convolutional layers, and the padding size is determined by Eq. (4):

Padding Size= �(FilterW ×DF − (DF − 1))/2� (4)

where FilterW and �·� indicate the width of the filter and rounding down operation, respectively.

3.2 MSFAN Training
In order to find optimal network parameters, various hyper parameters are set as presented in

Tab. 1. We used the loss function as expressed in Eq. (5) which represents regularization as well
as Mean Square Error (MSE) as a data loss.

L(θ)= 1
N

N−1∑

i=0

||Oi−Yi||22+
1
2
λ||θ ||22 (5)

Table 1: Hyper parameters used in the proposed MSFAN

Hyper parameter Options

Loss function Mean Square Error (MSE)
Optimizer Adam [35]
Number of epochs 100
Batch size 128
Learning rate 10−4 to 10−6

Weight decay factor 10−6

Activation function PReLU
Padding mode Zero padding
Initial weight Orthogonal [36]

In Eq. (5), θ , N, Oi, Yi, and λ denote the set of network parameters (filter weights and
biases), batch size, original image, restored image, and weight decay factor, respectively. Note that
the proposed MSFAN used a weight decay scheme for network training to ensure generalization
performance on various test datasets. In the training stage, the set of network parameters θ

is updated using Adam optimizer [35] with a batch size of 128. In addition, filter weights are
initialized by orthogonal normalization [36].

4 Experimental Results

All experiments were performed on an Intel Xeon Gold 5120 (14 cores @ 2.20 GHz) with
177 GB RAM and two NVIDIA Tesla V100 GPUs under the experimental environment described
in Tab. 2. For performance comparison, the proposed MSFAN was compared with ARCNN [9],
DnCNN [11], and DCSC [13] in terms of image restoration and network complexity.

4.1 Performance Comparisons for Medical Images
In order to evaluate the enhancement of image restoration, we used Computer Vision Center-

Clinic Database (CVC-ClinicDB) [37] consisting of 612 colonoscopy medical images. We randomly
divided CVC-ClinicDB into a training dataset (315 images), a validation dataset (103 images), and
a test dataset (194 images). Note that all images were converted from the YUV color format into
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only Y component and compressed by JPEG codec under four different quality factors (10, 20,
30, and 40) to produce various coding artifacts. As a pre-processing of the training dataset, we
cropped edges of each training image to remove unnecessary boundaries and extracted training
images with a size of 32× 32 without overlap. As a result, we collected 96,768 patches from the
training dataset.

Table 2: Experimental environment of the proposed MSFAN

Environment Options

Input image size 32× 32× 1
Output image size 32× 32× 1
Operating system version Ubuntu 16.04
CUDA version 10.1
Deep learning framework Pytorch 1.4.0

To evaluate the enhancement of image restoration, we measured Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) [38] between original and restored
images. As measured in Tabs. 3 and 4, the proposed MSFAN can achieve the improved PSNR
gains as high as 0.25 and 0.24 dB on average compared to DnCNN and DCSC, respectively. In
addition, the proposed MSFAN showed better SSIM result on average than the other methods.
Fig. 6 shows examples of visual comparisons between the proposed MSFAN and previous meth-
ods using test datasets. For each image in Fig. 6, images of the second row represent the zoom-in
for the area indicated by the red box. These results verified that the proposed network could
recover structural information effectively and find more accurate textures than other methods.

Table 3: Average PSNR (dB) on CVC-ClinicDB test dataset where the best results of PSNR are
shown in bold

Quality factor JPEG [1] ARCNN [9] DnCNN [11] DCSC [13] MSFAN

10 33.42 33.98 35.36 35.13 35.54
20 36.34 36.89 37.79 38.09 38.04
30 37.81 38.47 39.32 39.21 39.52
40 39.08 39.34 39.98 40.06 40.36
Average 36.66 37.17 38.11 38.12 38.36

Table 4: Average SSIM on CVC-ClinicDB test dataset where the best results of SSIM are shown
in bold

Quality factor JPEG [1] ARCNN [9] DnCNN [11] DCSC [13] MSFAN

10 0.857 0.882 0.903 0.904 0.906
20 0.910 0.921 0.932 0.934 0.933
30 0.932 0.942 0.946 0.947 0.948
40 0.945 0.953 0.954 0.956 0.956
Average 0.911 0.925 0.934 0.935 0.936
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Figure 6: Visual comparisons of medical images where figures of the second row represent the
zoom in for the area indicated by the red box of the first row
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4.2 Performance Comparisons for Natural Images
We further evaluated the proposed MSFAN for natural images to demonstrate versatile appli-

cations of our network. For training the MSFAN with the natural image dataset, we used 400
images from BSD500 [39]. Similar to medical images, all training images were converted into
YUV color format and only Y components were extracted with a size of 32 × 32 using data
agumentation including rotation and flip. For the test image dataset, we used Classic5 which
commonly used as testing dataset in various image restoration studies [19,20]. Tabs. 5 and 6 show
average PSNR and SSIM results on Classic 5, respectively. While the proposed MSFAN had
marginally lower PSNR values than DnCNN on average, these SSIM results were superior to
those of comparison networks except that JPEG quality factor was 10.

Table 5: Average PSNR (dB) on Classic5 dataset where the best results of PSNR are shown in
bold

Quality factor JPEG [1] ARCNN [9] DnCNN [11] DCSC [13] MSFAN

10 27.82 29.03 29.40 29.25 29.39
20 30.12 31.15 31.63 31.43 31.55
30 31.48 32.51 32.91 32.68 32.85
Average 29.81 30.90 31.31 31.12 31.26

Table 6: Average SSIM on Classic5 dataset where the best results of SSIM are shown in bold

Quality factor JPEG [1] ARCNN [9] DnCNN [11] DCSC [13] MSFAN

10 0.769 0.792 0.886 0.803 0.811
20 0.845 0.852 0.861 0.860 0.868
30 0.876 0.881 0.886 0.885 0.893
Average 0.830 0.842 0.878 0.849 0.857

4.3 Ablation Studies
In order to optimize the proposed network architecture, we conducted a variety of verification

tests using the validation dataset. First, we performed tool-off tests to verify the effectiveness of
essential parts of the proposed network, as shown in Tab. 7. According to the results of tool-
off tests confirmed that both FE and CA blocks have an effect on the performance of image
restoration. Additionally, we investigated two verification tests to determine optimal number of
channels and 1× 1 convolutional layers in the CA block. Tabs. 8 and 9 show that the proposed
MSFAN has an optimal network architecture.

4.4 Computational Complexity
In order to investigate network complexity, we analyzed the number of parameters, total

memory size, and inference speed using the test dataset. Note that the total memory size denotes
the amount of memory required to store both network parameters and feature maps. As shown
in Tab. 10, the proposed MSFAN has smaller total memory size than both DnCNN and DCSC,
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while it has more network parameters than other methods. In addition, Fig. 7 shows that the
inference speed of our network is almost similar to that of DCSC using the CVC-ClinicDB test
dataset.

Table 7: Verification tests for the effectiveness of FE blocks, CA block, and skip connection

Category PSNR (dB)

MSFAN 35.81
FE block (1) off 35.57
FE block (2) off 35.63
FE block (3) off 35.64
FE block (4) off 35.71
CA block off 35.72
Skip connection off 35.10

Table 8: Verification tests for the number of channels of the output feature map

Category PSNR (dB)

64 channels (MSFAN) 35.81
32 channels 35.60
128 channels 35.60
192 channels 35.70

Table 9: Verification tests on the number of 1× 1 convolutional layers in the CA block

Category PSNR (dB)

2 layers (MSFAN) 35.81
3 layers 35.63
4 layers 35.60

Table 10: Comparisons of network complexity between the proposed MSFAN and previous
methods

ARCNN [9] DnCNN [11] DCSC [13] MSFAN

Number of parameters 106,561 667,072 93,697 765,587
Total memory size (MB) 2.17 30.56 67.60 29.45
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Figure 7: Comparisons of inference speed between the proposed MSFAN and previous methods

5 Conclusions

Medical image compression is one of the essential technologies to facilitate real-time medical
data transmission in the remote healthcare applications. In general, image compression is known
to introduce undesired coding artifacts, such as blocking artifacts and ringing effects. In this
paper, we proposed a Multi-Scale Feature Attention Network (MSFAN) with two essential parts,
which are multi-scale feature extraction layers and feature attention layers to efficiently remove
the coding artifacts of compressed medical images. Multi-scale feature extraction layers have four
Feature Extraction (FE) blocks, and each FE block consists of five convolution layers and one
CA block for weighted skip connection. In order to optimize the proposed network architecture,
we conducted a variety of verification tests using the validation dataset. We used Computer Vision
Center-Clinic Database (CVC-ClinicDB) consisting of 612 colonoscopy medical images to evaluate
the enhancement of image restoration. The proposed MSFAN can improve PSNR gains as high
as 0.25 and 0.24 dB on average compared to DnCNN and DCSC, respectively.
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