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Abstract: Internet of things (IoT) field has emerged due to the rapid growth
of artificial intelligence and communication technologies. The use of IoT
technology in modern healthcare environments is convenient for doctors and
patients as it can be used in real-time monitoring of patients, proper admin-
istration of patient information, and healthcare management. However, the
usage of IoT in the healthcare domain will become a nightmare if patient
information is not securely maintainedwhile transferring over an insecure net-
work or storing at the administrator end. In this manuscript, the authors have
developed a secure IoT healthcare monitoring system using the Blockchain-
based XOR Elliptic Curve Cryptography (BC-XORECC) technique to avoid
various vulnerable attacks. Initially, thework has established an authentication
process for patient details by generating tokens, keys, and tags using Length
Ceaser Cipher-based Pearson HashingAlgorithm (LCC-PHA), Elliptic Curve
Cryptography (ECC), and Fishers Yates Shuffled Based Adelson-Velskii and
Landis (FYS-AVL) tree. The authentications prevent unauthorized users from
accessing or misuse the data. After that, a secure data transfer is performed
using BC-XORECC, which acts faster by maintaining high data privacy and
blocking the path for the attackers. Finally, the Linear Spline Kernel-Based
Recurrent Neural Network (LSK-RNN) classification monitors the patient’s
health status. The whole developed framework brings out a secure data trans-
fer without data loss or data breaches and remains efficient for health care
monitoring via IoT.Experimental analysis shows that the proposed framework
achieves a faster encryption and decryption time, classifies the patient’s health
statuswith an accuracy of 89%, and remains robust comparedwith the existing
state-of-the-art method.
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1 Introduction

An emerging trend for every future generation technology is deemed to be IoT [1]. It is the
interconnection of exclusively detected smart objects along with devices. For tracking data, IoT
is surrounded by disparate sensors that are linked to many objects, which are invisibly attached
all over the surroundings [2]. The highest ordinary research application in wearable electronics is
Health Monitoring (HM). The union of smart computing and remote HM with IoT is called
Smart HM [3].

Through HM, monitoring and caring for patients can be done outside of the traditional clin-
ical boundary (i.e., house, for instance). A particularly designed monitoring device for monitoring
and transmitting health data to smart contracts, a smartphone with internet connectivity, along
with an HM application, is the main component of an HM system [4]. Wearable devices and IoT
play a crucial part in HM and the current push for developing smart cities [5]. Wearable devices
gather patient health data, transmitting it to hospitals or medical institutions for facilitating
HM, disease diagnosis, and treatment. Thus, a Big Data situation is developed as every patient’s
data is examined and transmitted [6]. Furthermore, secure data sharing is demanded by such
infrastructure for handling patient data with other institutions [7].

One of the most crucial aspects of any system is security. Concerning security, disparate
perception is possessed by people, and thus, it is defined in multiple ways [8,9]. Generally, a notion
similar to the system’s safety as a whole is security. Nowadays, the communication in IoT-centered
HM is mainly wireless, which might cause different security threats to these systems [10,11]. Seri-
ous issues could be posed by these security problems to the wireless sensor devices [12,13]. Hence,
a vital necessity for safe and secure medical and health data management is the execution of data
security methods, namely lightweight block encryption techniques for medical IoT resources [14].

Data mining are extensively utilized in medical monitoring, including classification as well
as clustering methods [15], neural networks [16], together with other approaches centered on
disparate machine learning methods for attaining diagnostic information to envisage the patient’s
abnormal health changes from the IoT data [17,18]. For offering a safe data transfer and a
precise patient monitoring system, a safe patient HM system utilizing BC-XORECC and a patient
monitoring system utilizing LSK-RNN is formed by the work that benefits from clouds and IoT
technologies. In this, the patient could remotely be monitored via the medical squads for the early
diagnosis of their crucial conditions.

This paper is categorized as: Section 2 analyzes the associated studies, Section 3 surveys the
proposed work, Section 4 demonstrates the results along with discussion for the proposed method;
in addition, Section 5 offers the conclusion with future scope.

2 Literature Review

This section contains the details of security mechanisms proposed by different researchers for
IoT-based healthcare systems.

Gope et al. [19] have addressed the limitations in the present IoT-enabled healthcare system.
Authors have utilized an authentication technique that is based on a physical unclonable function.
In addition, to further strengthen security, the proposed decision-making scheme is fault-tolerant.

Seong-Kyu et al. [20] formed Artificial Intelligence (AI)-centered BlockChain (BC) algorithms
for ensuring safe corroboration of data (medical). The approach rendered an information security
BC-AI framework; it verified BC systems aimed at accurate extraction, storage, together with
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verification of data. Additionally, disparate verification and performance assessment indicators
were set to acquire the Translations Per Second (TPS) of data (medical) and for the standard-
ization work execution. As a result, the BC confidentiality, together with the AI sensitivity, was
maximized. However, it was susceptible to internal attacks.

Akhbarifar et al. [21] ascertained the patient’s health status through envisaging critical situ-
ations via data mining. It analyzed all through their data (biological ones) sensed using smart
medical IoT devices. For ensuring the security of patients’ private data, lightweight, safe block
encryption was employed. Next, centered on the K-Star classification, the patient’s health status
was classified. The K-star classification attainted the best outcomes amongst disparate classifiers;
it got 95% accuracy. Thus, the work attained an excellent accuracy; however, the approach lagged
to Security Level (SL).

Sarmah et al. [22] recommended a method, which encompassed ‘3’ steps: a) Authentication, b)
Encryption c) Classification. Initially, SHA-512 was employed as an authentication method. Next,
the wearable IoT device transferred the sensor data concurrently to the cloud. These devices were
installed on the patient’s body. Centered upon Patient and Doctor Id, along with Hospital Id-
Advanced Encryptions Standard (PDH-AES), the sensor data was encrypted as well as transmitted
securely to the cloud. Next, the encrypted data was decrypted, and also Deep Learning Modified
Neural Network performed the classification. The PDH-AES brought about 95.87% securities;
however, it encompassed computational intricacy for generating keys.

Mohame et al. [23] posited Deep-Q-Networks that lessened malware attacks when transmitting
medical data. As per the Q-learning conception, the technique scrutinized the medical details in
disparate layers that minimized intermediary attacks with lesser intricacy. The system’s efficiency
was assessed concerning experimental outcomes as well as discussions. As a result, the Deep-Q-
Network lessened the intermediary attacks; however, the data loss was higher.

Ramesh et al. [24] ameliorated a Role-centered Access Control with a ‘2’ fish algorithm for
protecting IoT health data on HC systems as a public cloud storage perception. It significantly
helped in the effectual storage of data (medical) on IoT applications and rendered safe storage of
data (medical) on the cloud on account of the role-centered access policies. Additionally, to dimin-
ish the waiting time for retrieving pertinent medical data, a clustering scheme was implemented.
However, the access process was complicated to utilize.

Kesavan et al. [25] posited a method that utilized ‘4’ disparate phases for transmitting the
data. Those are Data Acquisition (DA), Fog to Cloud (FC), Decision-Making (DM), together
with execution. The DA encompassed data storage as well as collection. Together with the cloud
layer, the fog layer is the ‘2’ disparate layers of the FC; it also described the safe integration of
FC. The DM involved feature extraction along with classification. For attaining the best optimum
solution, Adaptive Deep Convolution Neural Networks with the Levy Flight centered Grey Wolf
Optimization was utilized in the classification. Unfortunately, the developed technique had lagged
because of data breaches.

Khan et al. [26] have proposed a two-step security mechanism for IoT-based healthcare
systems. The first level of security is achieved through a combination of user names and passwords
with biometric credentials. The integrity of the authentication system is ensured by SHA-512
algorithm. At the second level, improved elliptical curve algorithm and substitution Ceaser cipher
algorithms are used to ensure the confidentiality of messages during transmission.
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Though different researchers have proposed different methodologies to make a secure IoT-
based healthcare system, limitations in the existing system have motivated authors to propose a
new security framework to make an IoT-based secure health monitoring system.

3 Proposed IoT Based Secure Patient Health Monitoring System

IoT-based patient monitoring system helps patients enjoy healthcare-related services sitting at
a remote location in their homes. Patient’s privacy, safety, and security, in this case, are very much
essential. Therefore, a secured IoT-based health monitoring system is a crucial scheme to provide
all kinds of shields against possible vulnerabilities. Various healthcare secure data monitoring has
been developed. However, still, the method fails to protect the data which is vulnerable to some
of the attacks, such as the denial-of-service attack, replay attack, man-in-the-middle attack, offline
password guessing attack, a smart card is stolen attack, forward secrecy attack, user anonymity
attack, mutual authentication attack, etc. The work has developed a secure Blockchain-based
healthcare monitoring system in IoT by addressing the vulnerability attacks, as illustrated in
Fig. 1.

Figure 1: Proposed framework for IoT based secure patient health monitoring system

3.1 Authentication
Authentication provides to get authenticated by its own identity before transferring data.

The authentication is provided to access the records or patients’ data to those permitted as
authenticated users. It conquers the internal attacks as well as the attacks during transit. The
authentication phase comprises three subphases:

1) Registration Phase

2) Login Phase

3) Verification Phase.
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3.1.1 Registration Phase
The registration phase provides with collecting the patient’s details, which consists of the

patient’s name, patient’s ID (PID), username
(
UNN

i

)
, password generation

(
PWN

i

)
, etc., that are

enrolled into the records of the hospitals. This phase is necessary to provide the patient with
hospital services and to monitor the various services that each patient receives. But storing patient
details may get attacked if it is stored without any security. Hence, to provide proper data security,
the work has been enhanced with token, key, and tag generation with its respective centers. Details
of the three processes are given below:

Token Generation Centre

Token generation center allows the user to verify their identity, and in return, they receive a
token to access the data. The user retains access as long as the token remains valid. Once the
user logs out or quits an app, the token is invalidated.

In a token generation, initially, the Server (SNi ) ask for access of the user to the protected data

by providing the username and password Zni =
(
UNN

i +PWN
i

)
details obtained during registration

as shown in (Eq. (1)).

UNN
i +PWN

i → SNi (1)

The center verifies the username and password i.e., SNi
Checks−→ Zni = PID and generates the token

after verification as shown in (Eq. (2)).

SNi
Verified−→
Zni =PID

TNi (2)

Finally, the token, username, and password are stored using the Length Ceaser cipher Pearson
hashing algorithm to secure the details confidentially and stored within the user browser while
the work continues. Initially, the Length Ceaser Cipher first transfers the letters into numbers.
Encryption of a letter can be described mathematically as shown in (Eqs. (3)–(5)):

ECP
(
UN
I

)
=

(
UN
I + n

)
mod26 (3)

DCP

(
UN
I

)
=

(
UN
I − n

)
mod26 (4)

n= len
(
PNID

)
, i= 1, 2, 3 . . . .n (5)

where, ECP denotes the encryption of attributes UN
I is the input attributes n is the shifting value,

which depends upon the length of each attribute, DCP is the decryption of attribute.

The L-Caesar Cipher algorithm encryption helps us secure the data by varying the shifting
value based on the length of the attribute. Now, the converted ciphertext (CPNi ) is converted into
hash code using the Pearson hashing algorithm. The PHA provides an output in which a single
byte of data is strongly dependent on every byte of the input. The algorithm computes the hash
code (λ) for the (CPNi ). Initially, the hash variable is initialized that is (λ : = 0), now, based on the
length of the ciphertext, the loop is continued until the ciphertext ends as given in (Eqs. (6)–(8)):

λ : = � [λXORc] (6)
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c= len
(
CPNi

)
(7)

� [i]= 255− i (8)

Finally, the hash value is obtained for the converted ciphertext, and any small changes in the
value make the developed algorithm generate a different hash algorithm.

Key Generation Centre

Key generation is an essential factor that generates the key, i.e., both the public and the
private keys that are used to encrypt and decrypt IoT sensing data. ECC is an asymmetric public
key-based encryption algorithm that provides high security even with small-length keys [27]. It is
based on the elliptic curves. For developing the key, the work has adopted an ECC algorithm
that allows the key size to remain shorter but provides a higher security level. Initially, the ECC
generates the ciphertext private key

(�CP
PRI

)
randomly using (Eq. (9)); after that, calculate the

ciphertext public key
(�CP

PUB

)
using (Eq. (10)). Finally, the shared secret key (�s)is calculated using

(Eq. (11)).

�CP
PRI = rand (KPRI ) (9)

�CP
PUB =�CP

PRI ∗G (10)

�s=�CP
PRI ∗KPUK (11)

G is the random number ranging between (1 to n− 1), KPUK denotes the public key, and
KPRI is the private key.

Tag Generation Centre

Tag is generated for the patient details to make it more secure. The tag generation is
performed using the Fisher–Yates shuffled AVL–Tree algorithm. The developed tag generation
provides the self-balancing binary tree for the patient details. For each node of the tree, the height
difference of its sub-trees is at most 1; therefore, it is also height-balanced. The tree formation is
based upon the shuffling provided by the fisher Yates. The fisher Yates provides the shuffling of
the entire data of individual patients until it gets finished. The AVL tag generation is illustrated
in Fig. 2.

Fig. 2 states the AVL tree generation for the details such as Patient ID (P001), Hospital ID
(H001), Patient Name (Alex), Hospital Name (Miot), Age (39), and Sex (male). According to
the developed Fisher-Yates shuffled AVL–Tree algorithm, the details are initially shuffled, such as
“mioth00139p001malealex”, and based on each character, the tree is constructed. Then, based on
the tree formation, the tag is generated.

3.1.2 Login

The user is logged in by inputting there UID
i Pwvi and TNi to Ri. After entering the details,

the Ri computes L∗
i = f

(
UID
i

∥∥Pwvi
∥∥TNi

)
and checks if L∗

i equals Ui. If the information entered
by the user is right, this request is preceded.
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Figure 2: Fisher–Yates shuffled AVL–tree algorithm

3.1.3 Verification
This phase checks whether the login user is registered or not, and after that, communicates

with the cloud environment, i.e., initially, the validity of the L∗
i is verified, and if the verification

output (VΘ = 1) is then the process continues by communicating with the cloud, or else change
of password is suggested for the user. Hence, all the authentication phase information is stored
in a blockchain (BCn

i ) to provide a secure data transfer.

3.2 Secure Data Transfer
Secure data transfer is the most crucial task, which provides the hackers with a comfort zone

to steal the data. Therefore, the data transfer has to be more robust to avoid malicious attacks.
The work has used a Blockchain mechanism to transfer the data, but it comprises data storage
(i.e.,) issue, storing big IoT data over the blockchain is not possible. Therefore, we use cloud
servers to store encrypted data blocks, which is performed by XORECC algorithm.

Initially, the blockchains perform various steps to process the patient health care details from
IoT. First, the user requests for a transaction in the blockchain as shown in (Eq. (12)):

Ui
request−→ BCN

i (12)

After that, the new transactions (Ui) are passed over to the individual peer network, including
the PC nodes. After the individual’s verification, a hash code is generated using SHA256. The
algorithm generates a unique hash code as shown in (Eqs. (13)) and ((14)):

BCN
i (Ui)=BCN

1 (Ui)+BCN
2 (Ui)+ . . . .BCN

n (Ui) (13)

BCN
i
verifies−→ Ui (14)

where BCn
i denotes the blockchain of i users that consists of n details of the individual users.

Now, the hash code is generated by the SHA 256, which undergoes a message block schedule and
compression function. Initially, the N-Bit user details get looped until it satisfies the (Eq. (15)):

Ui+ 1+ k= 448mod512 (15)
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where k, denotes the number of zero bit that is to get added up. The user details are converted
into 64 bits binary values and further added with 448-bit to obtain the 512-bit message block.
The block is further divided into sixteen 32-bit blocks, which are processed by compression to
finally form the hash values as shown in (Eq. (16)).

Hi

(
UN
i

)
=H0H1H2H3H4H5H6H7 (16)

Every generated hash code is linked with the previous hash code in the block, which makes
the blockchain mechanism an unbreakable network for transferring data. If someone tries to
attach a transaction, the network node or a smart agreement will validate it. Therefore, this
unchanging ledger cannot be modified. This process creates a decentralized system with secure and
reliable data transfer. Finally, it checks if the user is genuine with an algorithm. After verifying a
transaction, a new block in the network is added to the ledger. The block has an index structure,
timestamp, data, previous hash block, and current hash block. A new block is then added to the
blockchain, which remains to be unchanged and secure.

To avoid storage issues, each block is again encrypted using the developed XORECC crypto-
graphic algorithm, which uses the key generated by KGC to encrypt and decrypt the block and
performs the XOR of the hash code with the encryption and decryption key generated in TGC.
Thus, the encryption and decryption of the blocks are computed as:

(a) Encryption

The encryption of the (BCn
i ) is carried out by randomly selecting � from [1 to n− 1]. The

encryption is performed under two ciphertexts, �1 and �2 is shown in (Eq. (17)) and (Eq. (18)):

�1 = Γ ×P (17)

�2 =BCn
i + Γ ×KPUK + λ̄ (18)

where, λ̄ is the hash code generated by KGC. Thereafter, �1 and �2 will be sent further for
decryption.

(b) Decryption

We have to get back the message that was sent to us. Its formula is shown in (Eq. (19)):

BCn
i = �2 − KPRI ×KPUK

γGK ×ECP
+ λ̄ (19)

Thus, BCn
i is the original message decrypted using the distributed key. Thus, the secure data

transfer outline is illustrated in the form of pseudo-code stated in Fig. 3.

3.3 Patient Monitoring System
The secured data is now processed under health care monitoring to get the status of patient

health. However, before getting the patient’s health status, the collected IoT secure data is
preprocessed to improve the data quality.

3.3.1 Preprocessing
Preprocessing provides healthier data to avoid the chance of error. Preprocessing helps the

model to obtain better accuracy.
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Figure 3: Pseudo code for BC-XORECC

(a) Duplication Removal

It removes the entire repeated context from the database (λtext) that may not bring that much
change while training a model. The repeated data occupies the database space and also may lead

to more processing time. The repetition function (HRep
P ) is given by (Eq. (20)):

HRep =HRep
P [λtext] (20)

(b) Transformation

Transformation (HT
P ) provides converting of the characters into numeric values. It helps to

make the data more understandable and improve the precision of monitoring the patient’s status.
It is given in (Eq. (21)):

HMVT =HT
P [λtext] (21)

(c) Normalization

Normalization (Hnor) contributes towards scaling the data between 0 and 1. Normalization
provides the same units and helps to reduce the upcoming errors. Normalization is given by
(Eq. (22)):

Hnor= λ−λmin

λmax −λmin
(22)
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Thus, overall it obtains a clean text which is then preceded into the training process. The
preprocessed text is given by (Eq. (23)):

HPre = [λ1,λ2,λ3,λ4, . . . . . .λn] (23)

3.3.2 Classification
Classification provides the health status of the patient based on the preprocessed IoT Data.

Classification gets trained over the data. Let’s consider the liver dataset of the patients. Based on
the dataset, the classification gets trained, and the testing is done to analyze the patient’s health
status. The work has developed a linear spine kernel-based recurrent neural network (LSK-RNN),
which addresses vanishing gradient problems and the computational complexity during the train-
ing of the data. The LSK-RNN is performed on the input data HPre = [λ1,λ2,λ3,λ4, . . . ,λt] that
consists of a hidden vector sequence ℵhidden = [ℵ1,ℵ2,ℵ3,ℵ4, . . . ,ℵt] and output vector sequence
Θ = [Θ1,Θ2,Θ3,Θ4, . . . ,Θn]) by iterating the following sequence from t = 1 toT is given by
(Eqs. (24)–(26)):

ℵt =Φact [wλℵλt+wℵℵℵt−1+ b] (24)

Θt = σ [wλΘℵt+ b] (25)

λ=wλΘℵt+ b (26)

where the wi terms denote weight matrices (e.g., wλℵ is the input-hidden weight matrix), the b
terms denote bias vectors and Φact is the hidden layer activation function, which is computed
using line spine kernel function computed as (Eq. (27)):

Φact (λ,Θ)= 1+λΘ+λΘ min (λ,Θ)− λ+Θ

2
min (λ,Θ)2+ 1

3
min (λ,Θ) (27)

For output layer sigmoid activation (σ ) function is used, which is computed as given in
(Eq. (28)):

σ (λ)= 1
1+ e−λ

(28)

Hence, based on the predicted output, loss value is evaluated as shown in (Eq. (29)):

L=
(
λ− λ̂

)2
(29)

where, λ and λ̂ denotes the actual value and predicted value for the liver dataset. Now, if L=0 then
the model gives the exact true value, but if L �= 0 , then backpropagation is performed by updating
the weights. Thus, the proposed framework provides a secure data transmission by avoiding data
loss and data breaches and able to classify the patient’s health status based on the IoT data.

4 Result & Discussion

In this section, the proposed secured IoT-based health care monitoring framework is assessed
with various performance metrics and compared with the existing methodologies to analyze or
observe the proposed work efficiency. The results are evaluated based on the number of data
ranging from 100 to 500. The system is implemented in the working platform of JAVA with the
system configuration be Intel Core i7 processor, 3.20 GHz CPU speed, and 4GB RAM. The work
was carried out on publically available datasets.
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4.1 Performance Analysis
This section analyses the performance of the proposed method with existing methods. The

proposed LCC-PHA, BC-XORECC, and LSK-RNN for Hash code generation, secure data trans-
fer, and patient status classification are compared with the existing techniques regarding some
performance metrics.

4.1.1 Performance Evaluation of Proposed LCC-PHA for Hash Code Generation Based on Hash
Generation Time

Here, the analysis of time taken for generating the hash code for the data by the proposed
LCC-PHA method is contrasted with the existing RIPEMD, MD5, Spooky Hash, FNV method
and is illustrated in Tab. 1.

Table 1: Evaluation of the proposed LCC-PHA based on hash code generation

No of data/Techniques 100 200 300 400 500

RIPEMD 15.641 16.455 18.546 19.661 21.314
MD5 10.456 11.874 13.564 15.648 20.158
Spooky hash 10.254 13.569 17.889 18.654 19.854
FNV 9.879 11.247 13.568 14.587 15.649
Proposed LCC-PHA 2.789 3.879 4.895 5.798 6.667

Tab. 1 indicates the Hash code generation time for the existing and proposed system. The
table illustrates that the proposed method tends to achieve a hash code generation time ranging
between 2.789–6.667 s for the data ranging from 100–500. But the existing methodologies achieve
a hash generation time varying between 9.879–19.661 s, which is relatively high compared to
the proposed method. Therefore, for a hashing algorithm to be robust, it must constrain a low
hash generation time and increased security. Nevertheless, the proposed method remains faster
and highly secured due to the improvisation done using the Length Ceaser cipher in the Pearson
hashing algorithm that leads the existing methodologies.

Fig. 4 shows the Hash code generation time for the existing and proposed system. The
graphical analysis states that the proposed method performs a faster generation of hash code than
the current methodologies and avoids attacks by performing a highly secured hash code.

4.1.2 Performance Evaluation of Proposed BC-XORECC For Secure Data Transfer Based on
Encryption Time, Decryption Time, and Security Level

Here, the analysis of the time taken for the encryption and decryption of the data by the
proposed BC-XORECC method is contrasted with the existing Blowfish, DES, RC4, and AES.
The evaluation of the metrics is illustrated in Tab. 2.

Tab. 2 illustrates the evaluation of the encryption time and decryption time for the proposed
method along with the existing methods. To differentiate one encryption algorithm from another,
it should have the ability to secure the data against attackers and its speed and efficiency in doing
so. According to that, the proposed BC-XORECC can secure the data and maintain the speed
by performing faster encryption and decryption. The proposed method tends to achieve a low
encryption time ranging between 1.203–3.784 s for the data ranging from 100–500 and at the same
time maintaining a faster decryption time ranging between 1.201–4.124 s. But the existing methods
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tend to achieve an encryption time ranging between 3.456–14.897 s and decryption time ranging
between 2.489–16.457 s for the data ranging from 100–500. Thus, the proposed method remains
to be efficient in securing the data and the speed of the execution. The graphical analysis of the
proposed method is illustrated in Fig. 5.

Figure 4: Graphical representation of LCC-PHA based on hash code generation time

Table 2: Evaluation of the proposed BC-XORECC with the existing methods in terms of encryp-
tion and decryption time (s)

File size (MB) Blowfish DES RC4 AES Proposed BC-XORECC

Encryption 100 8.978 6.554 5.647 3.456 1.203
200 9.987 8.201 6.788 5.689 1.658
300 10.625 9.689 7.924 6.789 2.546
400 12.345 10.247 8.678 7.945 2.987
500 14.897 11.457 9.897 8.976 3.784

Decryption 100 7.897 5.902 4.897 2.489 1.201
200 9.563 7.998 6.788 4.887 1.699
300 11.203 8.958 7.896 5.789 2.568
400 11.989 9.978 7.982 6.996 3.106
500 16.457 10.733 9.012 8.841 4.124

In Figs. 5a & 5b, the time taken for encrypting and decrypting the varied data sizes is shown.
Thus, it shows that encryption and decryption of any large size of files will only take significantly
less time for the proposed system when compared with the existing Blowfish, DES, RC4, and
AES methods and provides a high level of security. Security level elaborates the strength of the
cryptographic primitives, such as cipher or hash function. Based on the security level, the proposed
method is analyzed graphically in Fig. 6.
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Figure 5: Graphical representation of BC-XORECC based on (a) Encryption time (b) Decryption
time

The security level is the most important metric that illustrates the framework’s efficiency by
bringing the users’ trust. Therefore, a high percentage of security level indicates a better frame-
work for transferring data. The proposed method tends to achieve a security level of 93.56%, as
shown in Fig. 6. In contrast, the existing Blowfish, DES, RC4, and AES methods tend to achieve
a security level of 87.96%, 91.54%, 90.89%, and 91.84%, respectively comparatively lower than
the proposed method. Thus, the proposed BC-XORECC tends to be more secure for transferring
user details or medical details by avoiding malicious attacks.

4.2 Performance Evaluation of Proposed LSK-RNN for Patient Monitoring System Based on Metrics
The proposed LSK-RNN patient monitoring system is analyzed based on the liver dataset,

which is publically available. The proposed method is evaluated based on the metrics, such as
Accuracy, Specificity, False positive rate (FPR), and False negative rate (FNR), along with the
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existing methodologies, such as Deep neural network (DNN), Ensemble method, Support vector
machine (SVM), and Recurrent neural network (RNN).

Figure 6: Graphical representation of BC-XORECC based on the security level

Fig. 7 illustrates the IoT data-based patient health monitoring system. The performance
evaluation helps to know the efficiency of the proposed techniques. From the tabulation, it is
known that the proposed LSK-RNN achieves an accuracy of 89.96% and specificity of 89.99%.
In contrast, the existing methods achieve the metric value ranging between 75.68%–83.54%,
which is relatively low compared to the proposed technique. In addition to that, the proposed
method avoids misclassification by achieving lower FPR and FNR values of 14.52% and 12.53%,
respectively. Nevertheless, it remains to be robust as compared to the existing methodologies.

Figure 7: Graphical representation of LSK-RNN based on accuracy, specificity, FPR, and FNR

5 Conclusion & Future Scope

Secure data transmission is a vital task in the IoT environment. As there is a lot of chances
to steal the data within the IoT platform because IoT devices are generally accessed through an
untrusted network, so there is a need to protect the privacy of healthcare data while it travels over
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an untrusted network. In this paper, the authors have developed a BC-XORECC based Secure
IoT healthcare monitoring system to avoid various vulnerable attacks. First, the work allows the
authorized user to access the data by implementing a strong authentication process using LCC-
PHA, ECC, and FYS-AVL tree. The authentications prevent internal attacks. Secondly, the data
is transferred securely by maintaining the confidentiality, integrity, and availability of the data
by avoiding the interference of the attackers using BC-XORECC. Finally, secured data is trained
under LSK-RNN classification to monitor the patient’s health status. Experimental analysis has
shown that the proposed framework has achieved a Hash code generation time of an average
of 4.8056 s with a faster encryption time of 3.784 s and decryption time of 4.124 s. It has
also classified the patient’s health status with an accuracy of 89.96% and remains to be robust
compared with the existing state-of-the-art method.

In the future, authors have planned to enhance this work by integrating the work with an
android based app so that the proposed model can also be used on mobile. It can be implemented
by the use of some lighter deep learning models.
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