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Abstract: This study proposed a measurement platform for continuous blood
pressure estimation based on dual photoplethysmography (PPG) sensors and
a deep learning (DL) that can be used for continuous and rapid measurement
of blood pressure and analysis of cardiovascular-related indicators. The pro-
posed platformmeasured the signal changes in PPG and converted them into
physiological indicators, such as pulse transit time (PTT), pulse wave velocity
(PWV), perfusion index (PI) and heart rate (HR); these indicators were then
fed into the DL to calculate blood pressure. The hardware of the experiment
comprised 2 PPG components (i.e., Raspberry Pi 3 Model B and analog-to-
digital converter [MCP3008]), which were connected using a serial peripheral
interface. The DL algorithm converted the stable dual PPG signals acquired
from the strictly standardized experimental process into various physiolog-
ical indicators as input parameters and finally obtained the systolic blood
pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure
(MAP). To increase the robustness of the DL model, this study input data
of 100 Asian participants into the training database, including those with
and without cardiovascular disease, each with a proportion of approximately
50%. The experimental results revealed that the mean absolute error and
standard deviation of SBP was 0.17±0.46 mmHg. The mean absolute error
and standard deviation of DBP was 0.27±0.52 mmHg. The mean absolute
error and standard deviation of MAP was 0.16±0.40 mmHg.

Keywords: Deep learning (DL); blood pressure; continuous non-invasive
blood pressure measurement; photoplethysmography (PGG)

1 Introduction

Hypertension has long been considered a main problem in cardiovascular disease. Abnormal
changes in blood pressure, a critical indicator of normal cardiac function, can seriously harm
the human body. Blood pressure also provides crucial information regarding cardiovascular status.
Lifestyle changes, including changes in food culture (e.g., the rise in consumption of refined foods
high in oil, sugar, and salt), increased life stress, and lack of regular exercise are responsible for
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the annual increases in the number of patients with hypertension. Moreover, this condition is
developing in younger adults. In addition, Uncontrolled abnormal blood pressure can lead to vari-
ous serious complications. Therefore, blood pressure monitoring is essential for the early detection
and treatment of hypertension, which is often difficult because it has no obvious symptoms and
is thus easily overlooked.

Blood pressure measurement methods can be classified as invasive and noninvasive. Invasive
blood pressure measurement is usually performed on critically ill patients or patients undergoing
operations. The advantage is that the blood pressure of each heartbeat can be measured in real
time. However, measurement can only be conducted after physician evaluation and only in the
hospital environment. Noninvasive blood pressure measurement typically involves oscillometry and
auscultation, through which blood pressure can only be determined at intervals. The interval
between two measurements must be at least 2 min; this is not conducive to continuous blood
pressure estimation and monitoring. Furthermore, the inflatable arm cuff used in noninvasive
measurement compresses the artery, causing discomfort to the patient.

Photoplethysmography (PPG), which has been widely used in medical research in recent
years [1,2], is a low-cost, noninvasive continuous measurement approach in which heart beat
signals are obtained from the fingertips, earlobes, and toes. Taking into account the existing
invasive or cuff-type technologies for blood pressure measurement in clinical settings, researchers
have outlined the advantages of noninvasive and cuffless blood pressure measurement methods
that use PPG signals. Chakraborty et al. applied PPG signals to nonparametric regression in
order to estimate systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial
pressure (MAP) in150 participants. The mean absolute error± standard deviation for SBP, DBP,
and MAP were 2.50±2.07, 2.12±1.79, and 2.69±1.71 mmHg, respectively [3]. Chen et al.
used 1060 PPG and electrocardiography (ECG) signals to estimate blood pressure, normalizing
related physiological signals such as age, height, weight, and body fat. Reduction of parametric
dimensionality was achieved through principal component analysis, with the results used as the
training data for support vector machine and random forest regression models. Moreover, the
genetic algorithm approach and grid search method were also used to determine the parameter
combinations. Random forest regression yielded the lowest mean absolute errors of 4.45 and
3.95 mmHg for SBP and DBP, respectively [4]. In a study on 22 individuals, Liu et al. pro-
posed a strategy for combining principal component analysis and multi-wavelength PPG. Through
principal component analysis, signal noise and motion artifacts were removed to obtain more
satisfactory features, and the least squares method was adopted for blood pressure estimation. The
mean absolute error and standard deviation for SBP and DBP were 5.51±6.89 and 5.57±6.71
mmHg, respectively [5]. Kyriacou et al. applied a bidirectional recurrent neural network and
attention mechanism to PPG signals, which were in turn used as signals in the Multiparameter
Intelligent Monitoring in Intensive Care (MIMIC) II Databases to estimate blood pressure. A total
of 500 items from the database were segmented using a 7-second window, and 22 time–domain
features were analyzed and extracted from the PPG waveforms. Dimensionality reduction and
preprocessing were conducted to eliminate noise and reduce computational complexity. The mean
absolute error and standard deviation of the two-way gated recurrent unit and the first sublayer of
attention mechanism for SDP and DBP were 2.58±3.35 and 1.26±1.63 mmHg, respectively [6].
Hajj et al. retrieved data on 500 PPG waveforms from the MIMIC II databases and segmented the
data 3-second and 7-second windows. They also selected seven time–domain features, normalized
them, and passed them through the gated recurrent unit for training. The mean absolute error
and standard deviation for SBP and DBP were 3.25±4.76 and 1.43±1.77 mmHg [7]. Dal et al.
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retrieved data from the database of Guilin University of Electronic Technology in China, which
contains 657 single PPG waveforms and the SBP and DBP data of 219 participants. A moving
average filter was used to eliminate noise and high-frequency signals. Five features were then
selected from the PPG waveforms. The optimal results were obtained through support vector
regression, which revealed that the mean absolute error and standard deviation of SBP and DBP
were 13.57±3.23 and 8.30±1.88 mmHg, respectively [8]. Nath et al. retrieved 20 sets of PPG
signals from the MIMIC Critical Care database, extracted 10 features, and used adaptive boosting
decision tree learning for blood pressure estimation. The mean absolute error and standard
deviation of SBP and DBP were 2.07±5.97 and 1.15±4.05 mmHg, respectively [9]. Baek et al.
used the heart rate sensor in Samsung Galaxy Note8 smartphones to obtain multi-wavelength
PPG signals for matching various combinations. The participants comprised 26 individuals. The
PPG signal was resampled at 250 Hz, a 0.4-Hz to 8-Hz band-pass filter was used to remove
the noise, and fast Fourier transform was performed to obtain the frequency domain signal.
Finally, a convolutional neural network model was employed to estimate blood pressure, with the
green light as the most accurate indicator. The mean absolute error and standard deviation of
SBP and DBP were 5.28±1.80 and 4.92±2.42 mmHg, respectively [10]. Panwar et al. proposed
PP-Net, a deep learning framework that combines a convolutional neural network with a long
short-term memory network to estimate SBP, DBP, and heart rate. PPG data selected from the
MIMIC II databases were used for training. The mean absolute error and standard deviation
of SBP and DBP were 3.97±5.41 and 2.30±5.65 mmHg, respectively [11]. Schlesinger et al.
proposed a preprocessing method that added physiological features to the PPG spectrogram,
combining a convolutional neural network with a Siamese neural network to train and test the
PPG signals from the MIMIC II databases. The mean absolute error and standard deviation for
SBP and DBP were 5.95±6.69 and 3.41±3.97 mmHg, respectively [12]. Singla et al. processed
and normalized 137 PPG and ECG signals, using wavelet transform as a feature of multiple linear
regression. The mean absolute error and standard deviation of SBP and DBP were 5.62±6.39
and 2.56±3.28 mmHg, respectively [13]. Chatterjee et al. used dual PPG sensors to measure PPG
signals from the left and right index fingers. The time interval between the two PPG wave crests
was obtained and then divided by the crest time value to the crest of left index finger signal. A
moving average filter was used to eliminate data noise. Subsequently, multiple linear regression was
employed to estimate the SBP [14]. Using PPG and ECG signals from the MIMIC II databases,
Yan et al. obtained the SBP and DBP of 604 participants after screening from their arterial
blood pressure. After using a moving average filter to eliminate the motion artifacts and noise,
training was performed through the proposed Deep-BP. The mean absolute error and standard
deviation for SBP and DBP were 3.09±2.76 and 2.11±2 mmHg, respectively [15]. Shimazaki
et al. analyzed and processed the PPG signals of 78 participants, using convolutional neural
networks to automatically extract features from the waveforms and input physiological parameters
such as age, height, weight, and sex into the fully connected layer for training to estimate the SBP.
The standard deviation of the SBP was 11.40 mmHg [16].

In sum, most relevant studies used the MIMIC databases and self-measured single PPG
signals. Only a few studies have used dual PPG signals. The pulse transit time (PTT) can be more
readily obtained from dual PPG signals than from single PPG signals, which is dependent on a
synchronized ECG signal. The acquisition of this EG signal involves a relatively complex mea-
surement procedure. Therefore, the PTT and other blood pressure–related features were obtained
by using dual PPG sensors in the present study. This was followed by noninvasive continuous
blood pressure estimation through deep learning.
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2 Physiological Parameters Extracted from Experiments

Physiological parameters are crucial indicators for judging the condition of the human body.
The use of diverse physiological parameters can assist physicians in judging the condition of
their patients. This study mainly discussed the physiological indicators related to blood pressure,
including Heart Rate (HR), pulse wave analysis (PWA), Pulse Transit Time (PTT), Pulse Wave
Velocity (PWV), and Perfusion index (PI) as the training parameters of deep learning to devise a
noninvasive continuous blood pressure measurement system.

2.1 Heart Rate
The most common method to estimate HR is by using ECG to extract the R peaks in the

QRS complex generated during each heartbeat (the QRS complex is regarded as the criterion
of a heartbeat); the heartbeat interval, called the RR interval, occurs after two successive R
peaks. According to relevant literature, the PPG signal has the same characteristics [17,18], and
it can also extract P waves, which exhibit the same characteristics as the ECG and form peak–
peak intervals (Fig. 1). A peak–peak interval in PPG is extracted by identifying the peak of
each complete PPG signal; the time generated between each peak is the peak-peak interval. After
averaging the value, it is converted to beats/min; the calculation formula of Eq. (1) is as follows:

HR=
(

1
PPImean

)
× 60 (1)

where HR is heart rate and PPImean is the average time of peak–peak intervals.

Figure 1: Peak–peak interval diagram

2.2 Pulse Transit Time (PTT) and Pulse Wave Velocity (PWV)
PTT and PWV refer to the time and flow rate of blood in the blood vessel, respectively. The

harder the vascular wall is, the faster the blood flow becomes. By contrast, softer blood vessels
can absorb the effect of blood flow and, thus, reduce the flow rate [19]. Therefore, a larger PWV
indicates a harder vascular wall, which means arteriosclerosis is ongoing [20,21]. According to
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related studies, PTT is highly correlated with the incidence of cardiovascular disease. A higher
PTT suggests a higher possibility of coronary artery disease [22–31]. The calculation formula of
PTT is as follows [24]:

PWV = D
PTT

(2)

where PTT is the pulse transit time, and D is the distance between the two sensors (its definition
differs in other methods). According to (2), PTT must be measured before calculating PWV.

2.3 Perfusion Index (PI)
PI represents the ratio of the AC to the DC component in the PPG signal. Physiologically,

this index represents the change in blood volume at the measurement location, which can be used
to predict the change in stroke volume caused by blood arterial circulation. Faster pulsating blood
flow can result in a greater pulsating component and PI value. The PPG signal obtains the AC
and DC. Physiologically, AC relates to artery compliance, which is proportional to the change in
tissue blood pulsation; DC (e.g., skin and veins) is related to the smallest end-diastolic volume of
blood pulsating in physiological tissues. The change in blood volume of all sections in the tissue is
proportional to the DC component. The AC is obtained by subtracting the trough value (V) from
the peak value (P), and the DC component is acquired from V (Fig. 2). Therefore, the formula
for PI of Eq. (3) is as follows:

PI (%)= AC
DC

× 100 (3)

where PI is Perfusion index, AC is alternating current of PPG and DC is direct current of PPG,
respectively.

Figure 2: Pulse AC and DC component in PPG
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2.4 Evalution of Objective Value
The target values for deep learning were obtained by using the Omron HEM-7070 blood

pressure monitor, which can measure SBP, DBP, and MAP as targets for model training. To
facilitate the subsequent development of deep learning algorithms, achieve continuous noninvasive
blood pressure estimation, and mitigate the discomfort and discontinuity of conventional blood
pressure monitors with cuffs, MAP was estimated as follows [32]:

MAP=DBP+ 1
3

(SBP−DBP) (4)

3 Experiments and System Setups

3.1 Participants
The data source is cooperated with physicians from National Taiwan University Hospital,

Yun-Lin Branch, to conduct a clinical trial after being granted approval by the relevant institu-
tional review board. A total of 100 people participated in this study, including 57 outpatients from
the cardiovascular disease department and 43 students from the National Formosa University.
A large sample was desirable for increasing the number of data in the experimental database and
improving the robustness of the BPNN algorithm model when measuring SBP and DBP.

1. The inclusion criteria for this study were as follows:
• Inpatients or outpatients with cardiovascular diseases who routinely undergo general
physiological parameter examinations;

• Students with normal blood pressure;
• Patients over 20 years of age.

2. The exclusion criteria were as follows:
• Pregnant women;
• Children or minors (under 20 years old);
• People with mental disorders.

This study used the dual PPG measurement method to capture waveform signals of the human
body. The number of male participants was 87, and their SBP and DBP ranged from 98–179 and
32–121, respectively. The SBP and DBP of the 13 female participants ranged from 99–193 and
57–102, respectively. The participants’ age range, average height, average weight, SBP, and DBP
are presented in Tabs. 1 and 2.

Table 1: Characteristics of male participants

Parameters Daily activity

Men 87
Age range (years) 20–88
Height (cm) 17±17
Weight (kg) 74±14
SBP range (mmHg) 128±15
DBP range (mmHg) 81±13
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Table 2: Characteristics of female participants

Parameters Daily activity

Women 13
Age range (years) 20–84
Height (cm) 155±8
Weight (kg) 57±8
SBP range (mmHg) 132±25
DBP range (mmHg) 79±9

The experimental location was a quiet empty room next to the physician’s office; the exper-
imental environment is depicted in Fig. 3. During the experiment, the participants did not have
any contact or interaction with the physician. At the beginning of the experiment, the participants
were provided with detailed information on the process and purpose of the experiment. The
experiment started after patients signed the consent form [33,34]. The crucial elements of the
experiment are as follows:

1. Informed consent form;
2. Dual PPG system;
3. Raspberry Pi 3;
4. Omron HEM-7070 (Omron Corporation, Kyoto, Japan) electronic blood pressure monitor;
5. Lay participant’s hands flat on a table, aligned with the position of the heart;
6. Quiet environment;
7. Basic information of experimental participants.

Figure 3: Experimental environment and apparatus layout
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The study explored the use of noninvasive PPG for measuring human photoelectric signals
and obtained relevant waveforms to identify the characteristics related to blood pressure. The data
of the participants were collected through the following procedure:

1. Male and female volunteers with and without cardiovascular disease were invited to par-
ticipate in this study. All participants were informed regarding the research objective and
experimental methods, and they subsequently signed an informed consent form.

2. The participants placed both their hands at the same height as the heart and sat quietly
(without talking) for 5 min; this enabled the researchers to obtain a stable PPG waveform
and blood pressure.

3. The inflatable sleeve (Omron) was wrapped around the left upper arm and compressed once
every 2 min for a total of three times. The dual PPG was fixed on the index and middle
fingers to measure the PPG signal waveform, and the waveform and conversion parameters
were continuously recorded for approximately 5 min. The experiment had a duration of
10 min per person, and the collected data were used as the training data set of the deep
learning network.

4. The age, height, and weight of the participants were obtained after the experiment.

The experimental measurement process, deep learning training framework is illustrated in
Fig. 4.

Explain the 
experimental process

Sign the consent

Doctor asks the 
patient's wishes

Start measurement

OMROM blood 
pressure 

measurement

Measuring fingertip 
signals with dual PPG

Training Deep 
Learning Model

Analysis results

Figure 4: Flowchart of the clinical experiment
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3.2 Experiment Setup
This study implemented a continuous blood pressure measurement platform, the hardware

models are as following. The system included two green-light PPG sensors (SEN-11574), a Rasp-
berry Pi 3, an MCP3008, and an Omron blood pressure monitor (HEM-7070). The two PPGs
were clipped onto the index and middle fingers and were connected to the Raspberry Pi 3
through the serial peripheral interface (SPI). The MCP3008 was used to convert analog signals to
digital signals, and Python syntax was used to process PPG signals to obtain signal waveforms
and extract the characteristics. Finally, the Omron blood pressure monitor was used to measure
blood pressure simultaneously on the same hand. After algorithm analysis and calculation, the
researchers conducted conversion to obtain the HR, PTT, PWV, PI, and blood pressure–related
data, and the SBP, DBP and MAP were calculated. The system structure is illustrated in Fig. 5.

PPG
Sensor 1

PPG
Sensor 2

MCP3008
(ADC)

Raspberry Pi 3
(SPI)

Feature
extraction

Deep Learning

Blood pressure 
value

OMROM
HEM-7070

Figure 5: System structure diagram

3.3 The Design Issue of Deep Learning Network
The network architecture is presented in Fig. 6. The input format was set as matrix, measur-

ing 12 × 1, that included the features described in Tab. 3. First, feature extraction was performed
by setting the first layer of the convolution filter to 256 neurons and the convolution kernel size
to 3 × 1. The maximum pooling layer was then used to reduce the computational complexity
and extract the most salient features. The pooling window was set to 2 × 1. Next, the second
layer of the convolution filter was set to 128 neurons and the convolution kernel size was set to
3 × 1 for another round of feature extraction. Feature dimensionality was then reduced by using
a flattening layer to facilitate the subsequent training of the fully connected layers. The first fully
connected layer was set to 512 neurons. To prevent overfitting, dropout of 20% of the neurons
in this layer was applied. Next, 256 neurons were set up through the second fully connected
layer for computation. Finally, three values of SBP, DBP, and MAP were output through the
output layer (Tab. 4). The activation functions of the convolutional and fully connected layers
used rectified linear units to strengthen the nonlinear relationship between the neural network
layers. This caused the initial negative output to become 0, which can prevent overfitting to a
certain extent, as well as prevent the vanishing gradient problem. The spans of the convolutional
and maximum pooling layers were both set to 1, and both were padded. The input and output
were converted to within the range of 0 to 1 through minimum–maximum normalization.
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Input Layer
12×1

Conv1D
12×256

MaxPooling1D
6×256 

Conv1D
6×128

Flatten
768

Dense/Dropout
512/20%

Dense
256

Output
3

SBP
DBP

MAP

Figure 6: Deep learning network architecture

Table 3: Dual photoplethysmography eigenvalues used in the deep learning network

Heart rate PTT PWV

Peak value of sensor 1 Trough value of sensor 1 Average value of peak and
trough of sensor 1

Peak value of sensor 2 Trough value of sensor 2 Average value of peak and
trough of sensor 2

Perfusion index of sensor 1 Perfusion index of sensor 2 Average value of perfusion
index of sensor 1 and sensor 2

Table 4: Target values used in the deep learning network

SBP DBP MAP

The number of epochs was set to 2000, and the early stopping method was used. Specifically,
when the model loss function did not exhibit obvious changes, training was stopped and the
training model was stored. The batch size was set to 64, the Adam optimizer learning rate was
set to 0.001, and the mean squared error, calculated as shown in Eq. (5), was used in the loss
function. The loss function was smaller when the estimated value was closer to the actual value,
but it was larger when the difference between the actual and estimated values was larger.

MSE = 1
n

n∑
i=1

(
yi− ŷi

)2 (5)
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where MSE is the mean squared error, yi is the actual value, ŷi is the estimated value, and n is
the number of data items.

Regarding model evaluation, mean absolute error, calculated as in Eq. (6), was used to better
reflect the actual situation of the estimated values. The standard deviation constituted as measure
of dispersion, as shown in Eq. (7).

MAE = 1
n

n∑
i=1

∣∣yi− ŷi
∣∣ (6)

where MAE is the mean absolute error, yi is the actual value, ŷi is the estimated value, and n is
the number of data items.

SD=
√√√√1
n

n∑
i=1

(xi−µ)2 (7)

where SD is the standard deviation, µ is the mean error between the actual and estimated values,
xi is the error between the actual and estimated values, and n is the number of data items.

4 Experimental Results

A total of 100 participants were recruited, and three sets of experimental data were collected
from each participant, totaling 300 sets, each of which had 12 eigenvalues collected using dual
PPG sensors. The proposed deep learning network was trained. As shown in the training conver-
gence curve in Fig. 7, the training loss curve fell rapidly before 250 epochs. Less fluctuation and
gradual stabilization are observable later on. The curve indicates that the proposed deep learning
model was able to converge the sensor-collected data in a stable manner. The early stopping
method was used to prevent the overfitting of the model, which converged to 1931 epochs, with
a loss of less than 0.0001.

The present experiments were conducted with reference to [13] and [14]. The mean absolute
error and standard deviation of SBP, DBP, and MAP, as estimated by deep learning model, were
0.17±0.46, 0.27±0.52, and 0.16±0.40 mmHg, respectively.

Figure 7: Training convergence curve
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The scatter plots and trend lines of the actual measurement and the estimation results from
the deep learning model for SBP, DBP, and MAP are presented in Figs. 8–10, respectively. The
estimates were close to the trend lines, and the R2 coefficient of determination approached 1,
indicating a favorable model fit.

Figure 8: Scatter plot and trend line of systolic blood pressure

Figure 9: Scatter plot and trend line of diastolic blood pressure

The line charts of the actual measurement and the estimation results of the deep learning
model for SBP, DBP, and MAP are shown in Figs. 11–13, respectively. The values that were
determined using the Omron monitor were similar to the estimations of the deep learning model.
Overall, the estimations were somewhat accurate.

Results from the comparison of SBP and DBP, which was performed according to the
evaluation method presented in [13], are shown in Tab. 5.
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Figure 10: Scatter plot and trend line of mean arterial pressure

Figure 11: Line chart of systolic blood pressure

Figure 12: Line chart of diastolic blood pressure
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Figure 13: Line chart of mean arterial pressure

Table 5: Comparison of systolic and diastolic blood pressure

Study SBP MAE±SD (mmHg) DBP MAE±SD (mmHg)

Singla et al. [13] 5.62±6.39 2.56±3.28
Ours 0.17±0.46 0.27±0.52

5 Conclusion

Under the proposed blood pressure monitoring method, dual PPG sensors were placed on
the index and middle fingers of the same hand. The signals were captured at the same time
as the peak and trough values, heart rate, perfusion index, PTT, and pulse wave velocity were
recorded. A deep learning algorithm was used to calculate the SBP, DBP, and MAP. To increase
the robustness of the network model, the data of 100 Asian individuals were input into the
network training database, with the data of participants with and without cardiovascular disease,
each with a proportion of approximately 50%. The mean absolute error and standard deviation
of the SBP, DBP, and MAP estimated by the model were 0.17±0.46, 0.27±0.52, and 0.16±0.40
mmHg, respectively. The present method differed from the conventional blood pressure estimation
method, through which the ECG and PPG signals must be simultaneously obtained to measure
the PTT. In this study, dual PPG signals were used for blood pressure estimation, and deep
learning was applied to obtain more favorable results.
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