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Abstract: The problem of missing values has long been studied by researchers
working in areas of data science and bioinformatics, especially the analysis
of gene expression data that facilitates an early detection of cancer. Many
attempts show improvements made by excluding samples with missing infor-
mation from the analysis process, while others have tried to fill the gaps with
possible values. While the former is simple, the latter safeguards information
loss. For that, a neighbour-based (KNN) approach has proven more effective
than other global estimators. The paper extends this further by introducing a
new summarizationmethod to theKNNmodel. It is the first study that applies
the concept of ordered weighted averaging (OWA) operator to such a problem
context. In particular, two variations of OWA aggregation are proposed and
evaluated against their baseline and other neighbor-based models. Using dif-
ferent ratios of missing values from 1%–20% and a set of six published gene
expression datasets, the experimental results suggest that newmethods usually
provide more accurate estimates than those compared methods. Specific to
the missing rates of 5% and 20%, the best NRMSE scores as averages across
datasets is 0.65 and 0.69, while the highest measures obtained by existing
techniques included in this study are 0.80 and 0.84, respectively.

Keywords: Gene expression; missing value; imputation; KNN; OWA
operator

1 Introduction

DNA microarray technology [1] is used to monitor expression data under a variety of condi-
tions. In previous decades, gene expression data obtained from various microarray experiments has
inspired several applications, including the discovery of differential gene expression for molecular
studies or drug therapy response [2], the creation of predictive systems for improved cancer
diagnosis [3] and the identification of unknown effect of a specific therapy [4]. However, using
this technology to generate gene expression data sometimes leave a number of spots on the
array missing [5]. These may be caused by an insufficient resolution, an image corruption, array
fabrication and experimental errors during the laboratory process [6–8]. In general, missing of
data around 1%–10% would affect up to 95% of the genes in any microarray experiments [9].
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The treatment of missing values is a critical pre-processing step, as data quality is a major
concern in the downstream analysis and actual medical applications. Ignoring this may degrade
the reliability of knowledge or model generated from the underlying data set. In many domains
ranging from gene expression to survey responses in social science, missing data causes several
statistical models and machine learning algorithms to be incompetent as they are designed to work
with a complete data [10]. In fact, data cleansing prior the actual analysis is critical to the quality
of outcome [11]. It helps to decrease the need of repeating experiments, which can be expensive
and time consuming. Above all, the repetition of experiments may not guarantee completeness of
the data [12].

Instead of repeating an experiment, one can attempt to estimate missing values by impu-
tation. As a result, many algorithms have been proposed to tackle this problem found in gene
expression data [13]. A quick search in PubMed for the phrase ‘missing value imputation’ in the
Title/Abstract field returns more than 100 articles, in which 76 of them were published during
2010–2020. Among these, an obvious solution is simply to exclude any samples with missing
information from the analysis step. However, it is recommended to apply this only when a large
volume of data is available, such that representatives of different data patterns remain in the final
data set [6]. In addition, different statistical measurements such as zero, means, maximum and
minimum are exploited as a reference value [14]. A rich collection of machine learning techniques
has also illustrated a leap of improvement during past decades. These include linear regression
imputation and K nearest-neighbors imputation [12], maximum likelihood [15], decision trees [16]
and the fuzzy approach [17]. Among those, K nearest-neighbors imputation or KNNimpute [18]
is perhaps one of the earliest and most frequently used missing value imputation algorithms. It
makes use of pairwise information between the target gene with missing values and the K nearest
reference genes. The missing value j in the target gene is estimated as the weighted average of the
j-th component of those K reference genes, where the weights are inversely proportional to the
proximity measures (e.g., Euclidean distance) between the target and the reference genes. Based
on the empirical study with published gene expression data sets [12], KNNimpute and its variants
often perform better than other alternatives, provided that a strong local correlation exists between
genes in the data.

Several modifications to the basic KNNimpute algorithm have been proposed in the literature.
For sequential KNNimpute or SKNNimpute [19], imputed genes are reused in later imputation
processes of other genes. In particular, the data matrix is first split into two sets: the first set (i.e.,
the reference set) consists of genes with no missing value and the second set (i.e., the target set)
consists of genes with missing values that are ranked with respect to the missing rate. Missing
values are estimated sequentially, starting with the gene having the smallest missing rate in the
target set. Once all the missing values in a target gene are imputed, the target gene is moved
to the reference set to be used for subsequent imputation of the remaining genes in the target
set. Another variation of KNN imputation is introduced as an iterative KNN imputation or
IKNNimpute [20]. This algorithm is based on a procedure that initially involves replacing all
missing values via means imputation and iteratively refining these estimates. In each iteration, K
closest reference genes selected from the previously imputed complete matrix are used to refine
the missing values estimated of the target gene. The iteration terminates when the sum of square
difference between the current and the previous estimated complete matrix falls below a pre-
specified threshold. In addition, the study of [21] compares the performance of incomplete case
KNN imputation (ICKNNI) against complete case KNN imputation (CCKNNI). The empirical
results show that using incomplete cases often increases the effectiveness of nearest-neighbors
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imputation, especially at a high missing level. In the work of [22], a method for nearest-neighbors
selection for iteratively KNN imputation is proposed. This so-called GKNN algorithm selects k
nearest neighbors for each missing data via calculating the grey distance instead of the traditional
Euclidean distance. This function calculates the proximity from only one dimension, while other
methods conduct this measurement on multiple dimensions. Besides, the feature weighted grey
KNN (FWGKNN) imputation technique [23] incorporates the concept of feature relevance to
determine estimated values using the mutual information (MI) metric.

Unlike the aforementioned, a trend to apply data structure or cluster to guide the neighbor
selection has recently emerged with reported successes over gene expression data. Specific to the
Evolutionary kNNimpute (EvlkNNImputation) model introduced by [24], it extends KNNimpute
with the genetic algorithm being employed to optimize parameters of the underlying KNNimpute
algorithm. Given the prior step of clustering, the missing data will be filled in by taking into
account all neighbor instances belonging to the same cluster. Similarly, the cluster based KNN
imputation or CKNNimpute [12] also makes a good use of cluster analysis, where the k-means
clustering algorithm is employed to obtain clusters of data set under examination. Instead of using
all available genes, only those in the cluster whose centroid is the closet to the target gene are
candidates for the selection of nearest neighbors. However, a simple average operator is still used
to deliver the imputed value at the end, which may be ineffective for cases with extreme values or
noises. In fact, a number of alternatives have been proposed under the umbrella of ‘aggregation
operator’ that combines multiple sources of information into a global outcome [25]. For this
purpose, Yager’s ordered weighted averaging (OWA) operators [26] have proven useful for many
problem domains such as data mining, decision making, artificial neural networks, approximate
reasoning and fuzzy system [27]. Furthermore, a rich collection of weight determination methods
for OWA can also be found in the literature [28–36].

In order to improve the quality of imputation, the work presented in this paper proposes an
organic combination of CKNNimpute with the argument-dependent OWA operator [33,34], which
has not been investigated thus far in the literature. In particular, the performance of CKNNim-
pute technique may be enhanced, where imputed values are summarized from those of selected
neighbors using a data-centric aggregation operator instead of a conventional average function.
New models are evaluated with several published gene expression data sets, in comparison with
basic statistical models, the conventional KNNimpute and its weighted variation. The behavior of
these models are also assessed using different levels of missing values, with the results providing a
guideline for their practical uses. The rest of this paper is organized as follows. Section 2 presents
the methodology of proposed imputation process, in which a clustering of data under examination
is obtained prior the selection of nearest neighbors. Then, basic and argument-dependent OWA
operators are applied to a set of reference inputs each belonging to a particular neighbor, to create
an imputed value. After that, the performance evaluation of this new technique and compared
methods are included and discussed in Section 3. At the end, the conclusion with directions of
future research is given in Section 4.

2 Proposed Method

In this section, the proposed imputation methods called OWA-KNN and OWA-CKNN are
fully explained. It combines the cluster-based selection of neighboring genes and the application
of argument-dependent OWA operator that helps to reduce the effect of false or biased judgment
in a group decision-making. In particular, these new models commonly include three steps of:
(i) finding the appropriate number of clusters and creating a clustering model; (ii) using this
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as a reference for the following gene selection process; and (iii) applying the ordered weighted
averaging operator with K nearest-neighbor imputation algorithm in conjunction with the data
cluster previously discovered. Each of these is described in the following sub-sections.

2.1 Acquisition of Gene Clusters
The objective of this initial phase is to obtain a set of data clusters that will be exploited

as references to the next stage of nearest neighbor selection. In particular, the k-means clustering
algorithm is employed here for its simplicity and efficiency. This technique aims to divide a given
set of data into a predefined number of groups or clusters, provided that there is no missing
value in the underlying data matrix. Therefore, a simple average imputation is introduced to the
proposed framework to firstly estimate those missing entries in the original data matrix G ∈Rm×n,
where m� n, m and n correspond to rows and columns (i.e., genes and experiments, respectively).
This step delivers the so-called complete data matrix G′ ∈ Rm×n of the same dimensionality
as the original. For a given matrix G′, the k-means algorithm searches for the partition π =
{C1,C2, . . . ,Ck} of genes {x1,x2, . . . ,xm} ∈ G′ into k clusters, such that genes in the same cluster
are more similar to each other than to those in the others. This is achieved through minimizing
the following objective function Q(U ,Z).

Q (U ,Z)=
k∑
l=1

m∑
i=1

n∑
j=1

uil(xij − zlj)
2, (1)

where Z = {z1, z2, . . . , zk} denotes a set of vectors representing centroids of k clusters, i.e., zl =
(zl1, zl2, . . . , zln) ,∀l = 1 . . .k. Furthermore, U ∈ Rm×k is another matrix in which each entry uil
represents a membership degree that a specific gene xi ∈G′ having with cluster Cl ∈ π (uil ∈ {0, 1}
and uil ∈ [0, 1] for crisp/hard and soft clustering, respectively), provided that

∑
∀l uil = 1. For many

clustering algorithms including k-means, the parameter k indicating a number of gene clusters is
to be determined prior the generation of reference partition π . In fact, setting the value of k
requires either knowledge of the investigated data or the alternative of trial-and-error experiment.
For the latter, a user must have sufficient expertise to know what a good clustering looks like.
However, if the data set is very large or of a high dimensionality, human verification could
become difficult or even impossible at times. As such, it is necessary to have an algorithm that
can efficiently justify a reasonable number of clusters to use. With this in mind, the next step is
to identify the appropriate k value, which can be summarized as follows.

Step1: the process starts with applying the k-means algorithm to the data matrix G′. Spe-
cific to the trial t, this generates a set of partitions π t

2,π
t
3, . . . ,π

t
β using different value of

k ∈ {2, 3, . . . ,β}. In the current research, β = 15 is used for the advantage of efficiency. It is
noteworthy that a more general heuristics such as β =√

m can be applied, however with higher
computational/time requirement [37].

Step2: find the data partition π t
b from trial t with the best internal cluster quality, based on a

group of cluster validity indices [12]. In other words, one vote is given to π t
b that is a member of

the collection π t
2,π

t
3, . . . ,π

t
β if it provides the best score of a quality index θo,o= 1, . . . ,λ. Having

evaluated across λ indices, the π t
b partition with b clusters that has the majority vote [2] is taken

as the optimal setting of cluster numbers, i.e., kt = b is the preferred k for the tth trial. In case of
a tie, a vote is divided between those relevant partitions. Note that a cluster validity index is one
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of standard tools to assess the goodness of clustering results. For this work, five of the most well-
known quality indices are included to form a committee (i.e., λ = 5) that judges the appropriate
kt value. These include Silhouette index, Dunn’s index, DB index, Calinski-Harabasz index and
Kzannowski-Lia index, respectively. Please refer to [9,38] for more details of these validity indices.

Step3: since k-means is non-deterministic, Steps 1–3 are repeated for M times, i.e., t =
1 . . .M. This is to ensure that the target number of clusters is not randomly obtained from
a few trials. Results from M trials are then used to form a vector of preferred cluster num-
bers (i.e., k1, . . . ,kM). With this information, the optimal value of k is the most frequently
occurring numbers in the aforementioned vector. For instance, k would be 3 given the result
vector

{
k1 = 2,k2 = 3,k3 = 3,k4 = 4,k5 = 3

}
of M = 5 trials. In case of a tie, a smaller k value

is preferred. Note that M is set to 20 for the current research, as several works on ensemble
clustering [37] have commonly identified that the promotion of diversity within an ensemble is
limited as the size grows larger than 20 k-means repetitions. In other words, the patterns of data
partitions become highly overlapping, as more results are included.

Step4: once the value of optimal k is known, the quality of all π t
k partitions of k clusters

from t= 1 . . .M trials are examined again. Let Qt
k be the quality of π t

k , which can be calculated
by:

Qt
k =

∑
o=1...λ θo

(
π t
k

)
λ

, (2)

where θo
(
π t
k

)
denotes the quality measure of partition π t

k with respect to the quality index θo in
the normalized domain of [0, 1] across different λ indices. Following that, the selected partition
π∗
k for the next stage is one with the maximum value of Qt

k.

π∗
k = argmaxt=1...MQt

k (3)

Instead of selecting a partition with the best quality from the given pool, another alternative
that can be investigated in the future work is to exploit the cluster ensemble approach to summa-
rize all available partitions [37]. With this intuition, the final partition may be more accurate and
robust. Despite higher time requirement, this research direction seems promising.

2.2 Cluster-Directed Selection of Nearest Neighbours
With the optimal clustering model π∗

k obtained from the previous stage, the selection of
nearest neighbours to the target gene is emphasised next. Note that the reference partition consists
of k clusters {C1, . . . ,Ck}, each of which is represented by a unique centroid zp,p= 1 . . .k. Firstly,
find the cluster for any row x∗g with missing values to associate with. Such a row in gene expression
data is called a target gene whose missing values will be estimated. A target gene x∗g is formally
assigned to a cluster C∗ only when

z∗ = argminp=1...kd
(
zp,x∗g

)
, (4)

where zp denotes the centroid of cluster Cp, while d (xa,xb) is the Euclidean distance between
vectors xa and xb. After that, the cluster membership previously discovered is utilized to determine
the gene set Nx∗g for a particular target gene x∗g. The size of this gene set may be subjectively spec-

ified by a human expert, but a data-driven counterpart is usually preferred for better adaptability.
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Specific to this study, the number of genes in Nx∗g is dynamically determined by the intuition that

xg ∈Nx∗g only when

d
(
xg,x∗g

)
< μ∗, ∀xg ∈C∗, (5)

provided that

μ∗ =
∑

∀xg∈c∗ d(xg,x∗g)
|C∗| , (6)

where the target gene x∗g belongs to cluster C∗, and |C∗| denotes the size of C∗ (or the number
of genes in that cluster). A missing value in x∗g is then estimated by applying a KNN imputation
to the set of those genes of Nx∗g . The KNNimpute method has proven simple and effective in the

literature, whilst being generally competitive to other advanced techniques. However, the efficiency
of KNN imputation is still subjected to the number of genes (m), with the time complexity of
searching for nearest neighbours being around O(m2). In other words, KNN does not scale up
well with a very large set of data. In order to increase to efficiency of imputing missing values in
microarray data, the idea is to reduce biases and increase correlation of data by clustering method
before imputing the missing values. With a clustering model, the neighbor search is restricted
only to the cluster that the target gene is closest related. Thus, the time complexity would reduce
dramatically to O

(
β2
)
where β is the average size (or number of genes) of clusters and β �m.

2.3 Application of Argument-Dependent OWA Operator
The general process of OWA consists of three steps: (i) input values are rearranged in the

descending order, (ii) weights of these inputs are determined using a preferred method, and (iii)
based on the derived weights, these rearranged input values are combined into a single value.
In the community of OWA research, weight determination has long attracted a large number of
studies and publications. These include different types of methods such as constraint optimization
models [28,29], quantifier functions [30], and data distribution assumption [31,32]. Given these
techniques, weights are generated in an objective way, without considering actual distribution
characteristics of input values. It is simply assumed that the distribution of inputs follows one of
common probability density functions. This hypothesis may be unrealistic provided the observation
that OWA weights often cannot fit any pre-defined functions in many real problems [27]. Unlike
the aforementioned families of weight specification methods, another category takes into account
distribution characteristics of input values. At first, the argument dependent method [33,34] is
proposed where large weights are assigned to input values close to the average, and small weights
to those values further away from the center. While this initial method treats the whole inputs
as one global cluster, local clusters are also exploited to estimate weights [35,36]. However, the
underlying cluster analysis can be highly expensive, especially to a big data set. For the present
work, the argument-dependent OWA operator introduced by [33,34] is exploited to deliver the
proposed OWA-CKNN imputation model. For a comparative purpose, another new method of
OWA-KNN is also introduced here by making a good use of the same OWA operator to the
basic KNNimpute technique. Details of these applications to create the final estimate from the
set of genes identified previously are presented next.

Specific to OWA-CKNN, the j-th attribute or component x∗gj that has been missing in the

target gene x∗g can be estimated from a set of j-th attribute values {xsj, s = 1 . . .k} of all genes
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xs ∈ Nx∗g , s = 1 . . .k in that set of k cluster-based nearest neighbors. With CKNNimpute that is

the baseline counterpart of OWA-CKNN, x∗gj is obtained as an average of the aforementioned

attribute values.

x∗gj =μj = 1
k

∑
s=1...k

xsj, (7)

This is considered to be unreliable at times, such that OWA-CKNN applies the argument-
dependent OWA instead. In particular, each value in the set {xsj, s = 1 . . .k} is given a weight
wsj ∈ [0, 1] that can be approximated by the following equations.

wsj = 1−
∣∣xsj −μj

∣∣∑
s=1...k

∣∣xsj −μj
∣∣ , (8)

provided that∑
s=1...k

wsj = 1 (9)

After that, the estimate of x∗gj is calculated by the next equation.

x∗gj =
∑
s=1...k

xsjwsj, (10)

For the OWA-KNN model, this same process is repeated, with the argument-dependent OWA
being also applied to the set of k nearest neighbors. However, this set is simply obtained from
a simple search for nearest neighbors without the constraint of clustering reference explained in
Section 2.2. Note that OWA-KNN is considered to be the extension of KNNimpute, while OWA-
CKNN is a novel modification made to CKNNimpute.

3 Performance Evaluation

To obtain a rigorous assessment of proposed methods, OWA-CKNN and OWA-KNN, this
section presents the framework that is systematically designed and employed for the performance
evaluation. It includes details of datasets to be examined, compared methods, parameter settings,
an evaluation metric and the statistical assessment. Also, experimental results, observations and
discussion are provided herein.

3.1 Experimental Design
Specific to this empirical study, proposed models are evaluated on six gene expression datasets

that are obtained from published microarray experiments. This follows the previous study of [12],
which initially introduces the concept of CKNNimpute, i.e., the baseline of OWA-CKNN. Four
of these datasets originate from the cell-cycle expression of yeast Saccharomyces Cerevisiae (or
S. Cerevisiae) that has been reported in [39]. The first set named Sp.Alpha is represented as
an m × n data matrix of m = 4, 303 genes and n = 18 experiments. The second dataset that is
referred to as Sp.Elu hereafter is generated from elutriation data and presented as a 4, 303× 14
matrix. Next, Sp.Cyca is the third set in which time series data for the analysis of cell cycle
regulate genes is recorded as a matrix of dimension 2, 856× 14. The fourth microarray dataset or
Sp.Cycb is also drawn from this set of time series, and contains 242 genes and 14 experiments. In
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addition to these, the fifth dataset is acquired from the study of [40], which investigates response
in yeast to environmental changes. This data matrix called Ga.Env contains 5,431 genes and 13
experiments. At last, the sixth dataset or Ta.Crc presents cDNA microarray data [41] relevant to
human colorectal cancer (CRC). In particular, the underlying data matrix contains 758 genes and
205 primary CRCs. Details of these six datasets are summarized in Tab. 1. Note that these have
been investigated in many studies, including the survey of [6] and comparative reports by [42,43].
Henceforth, these can be considered as the benchmark data collection for the comparison of new
and existing imputation methods. In order to make use of these datasets for the problem of
missing values, they are modified such that missing values are randomly inserted to make up the
proportion of up to r% of the data matrix, where r ∈ {1, 2, 3, 4, 5, 10, 15, 20}. This can be achieved
by the salt-and-pepper selection of corresponding positions across the space of m× n.

Table 1: Description of six datasets used in this evaluation

Dataset No. of genes (m) No. of experiments (n) Species Organism

Sp.Alpha [39] 4,304 18 S. Cerevisiae Yeast
Sp.Elu [39] 4,304 14 S. Cerevisiae Yeast
Sp.Cyca [39] 2,856 14 S. Cerevisiae Yeast
Sp.Cycb [39] 242 14 S. Cerevisiae Yeast
Ga.Env [40] 5,431 13 S. Cerevisiae Yeast
Ta.Crc [41] 758 205 H. Sapiens Human

To gain a thorough comparison of performance, the next five methods are included in exper-
iments in addition to OWA-CKNN and OWA-KNN. The setting of method-specific parameters
are also specified.

• Two basic imputation techniques of zero heuristics and row average, which are referred to
as Zero and RA hereafter.

• Two common neighbor-based models KNNimpute [18] and its weighted variation,
WKNN [44]. Algorithmic variables are set in accordance with those reported in published
reports.

• CKNN: cluster-based KNNImpute or called CKNNimpute in the original work of [12].
Note that, as the baseline of OWA-CKNN such that the steps of finding clustering-
based nearest neighbor set is identical to that of OWA-CKNN. Furthermore, CKNN is
a good representative of many imputation techniques found in the literature as it demon-
strates performance superior than others [12] such as SKNNimpute [19], IKNNimpute [20],
LLSimpute [45], and BPCAimpute [46].

• Similar to many previous studies, normalized root mean square error or NRMSE [6] is
used to determine a goodness of imputation. It is based on the difference between values
estimated by an imputation technique and their true values. Intuitively, the lower such a
difference is the better the performance is. Formally, NRMSE is defined by the following.
Note that xtruth is the actual value in the original data matrix, xestimate is the corresponding
estimated value, var(xtruth) is the variance of the actual values. The lower NRMSE is, the
better the value estimated by a computerized method becomes.
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NRMSE =
√
mean (xestimate−xtruth)2

var(xtruth)
(11)

• Each experiment setting (imputation method, dataset and missing rate) is repeated for 20
trials to generalize the results and comparison.

3.2 Experimental Results
According to Fig. 1 that presents method-specific NRMSE measures as averages across

datasets and multiple trials, the two basic alternatives of Zero and RA appear to be the worst
among all seven techniques investigated here. The gap of difference between these two with the
others is obvious when the missing rate is less than 15%, while KNN is only slightly better than
Zero and RA as the rate rises up to 20%. Not only the basic KNN model, performance of
other neighbor-based imputation techniques also drops as the magnitude of missing value inclines.
Provided that WKNN and OWA-KNN are extensions of KNN, it is only natural to compare their
NRMSE scores across the range of missing rates, from 1% to 20%. In particular to this objective,
the results illustrated in Fig. 1 suggest that both WKNN and OWA-KNN similarly improve the
effectiveness of KNN, whereas OWA-KNN usually provides more accurate estimates than the
other for all the missing rates. However, this proposed use of OWA with KNN is still not as
good as CKNN, thus confirming the benefit of cluster-based selection of nearest neighbors. This
leads to the comparison between OWA-CKNN and its baseline, i.e., CKNN. It is observed that
the former performs consistently better than the latter, with the different between their NRMSE
scores becomes gradually larger along the increase of missing rate. It is noteworthy that OWA-
CKNN is a promising choice as it is able to keep the NRMSE measure below 0.68 even with a
large amount of missing values. Apart from this overview, details of dataset-specific results are
given next.

Figure 1: Method-specific NRMSE scores as averages across datasets and multiple trials, cat-
egorized by different rates of missing values: 1%, 2%, 3%, 4%, 5%, 10%, 15% and 20%,
respectively
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Figs. 2–7 provide further results summarized for each of datasets examined in this study. Note
that the results of Zero and RA are not included in these figures as they are significantly higher
than five neighbor-based counterparts, hence making illustrations rather difficult to understand.
With the Sp.Alpha dataset, it is shown that all the four variants of KNN outperform the baseline
model, with OWA-CKNN achieving the best NRMSE score for each of missing rates. This trend
can be similarly observed with other datasets (based on Figs. 3–7), where NRMSE scores of
OWA-CKNN are significantly lower than those of CKNN. It is also interesting to see that OWA-
KNN can be more effective than CKNN in datasets like Sp.Elu, Sp.Cyca, Sp.Cycb and Ga.Env.
This suggests that the exploitation of OWA operator can provide a reliable estimate even from
a set of simple nearest neighbors, i.e., without referring to the cluster-based reference. Specific
to Fig. 7 that shows the results with Ta.Crc, OWA-CKNN is able to boost the performance of
CKNN, which is originally only comparable to WKNN and slightly better than the KNN baseline.

Figure 2: Method-specific NRMSE scores as averages from multiple trials, on the Sp.Alpha dataset

Figure 3: Method-specific NRMSE scores as averages from multiple trials, on the Sp.Elu dataset
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Figure 4: Method-specific NRMSE scores as averages from multiple trials, on the Sp.Cyca dataset

Figure 5: Method-specific NRMSE scores as averages from multiple trials, on the Sp.Cycb dataset

Figure 6: Method-specific NRMSE scores as averages from multiple trials, on the Ga.Env dataset
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Figure 7: Method-specific NRMSE scores as averages from multiple trials, on the Ta.Crc dataset

To achieve a more reliable assessment, the number of times (or frequencies) that one technique
is ‘significantly better’ and ‘significantly worse’ (of 95% confidence level) than the others are con-
sidered. This comparison framework has been successfully used by [37,38] to discover trustworthy
conclusions from the results. Let μ(i, j) be the average of NRMSE measures across n runs (n=
20 in this evaluation) for an imputation method i ∈CM (CM is a set of seven methods assessed
here), on a specific dataset j ∈DT (DT is a set of investigated datasets). In other words, μ(i, j) is
estimated by the next equation.

μ(i, j)= 1
n

n∑
t=1

NRMSEt(i, j), (12)

where NRMSEt(i, j) denotes the NRMSE measure obtained from the t-th run of method i, on
dataset j. The comparison of average values (or means) to discriminate the effectiveness of exam-
ined methods may be misleading, as the difference between means can be statistically insignificant
at times. Thus, such an evaluation decision can be more robust using the 95% confidence interval
for the mean μ(i, j), which is defined as follows.[
μ(i, j)− 1.96

S (i, j)√
n

,μ(i, j)+ 1.96
S(i, j)√

n

]
, (13)

where S(i, j) denotes the standard deviation of the NRMSE measures across n runs for a method i
over a dataset j. The statistical significance of the difference between any two techniques i, i′ ∈CM
over any dataset j ∈DT is found if there is no intersection between their confidence intervals of
μ(i, j) and μ(i′, j). For any dataset j, a method i is significantly better than another method i′
when the following is true.(

μ(i, j)− 1.96
S (i, j)√

n

)
>

(
μ
(
i′, j
)+ 1.96

S
(
i′, j
)

√
n

)
(14)
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Following that, the number of times that one method i ∈ CM is significantly better than its
competitors across all experimented datasets, i.e., B(i), can be estimated by the following equation.

B (i)=
∑

∀j∈DT

∑
∀i′∈CM, i′ 	=i

betterj(i, i′), (15)

provided that

betterj
(
i, i′
)=

{
1 if

(
μ(i, j)− 1.96S(i,j)√

n

)
>
(
μ
(
i′, j
)+ 1.96S(i

′,j)√
n

)
0 otherwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

(16)

Similarly, the number of times that one method i ∈ CM is significantly worse than its
competitors, i.e., W(i) can be computed by the next pair of equations.

W (i)=
∑

∀j∈DT

∑
∀i′∈CM, i′ 	=i

worsej(i, i′), (17)

worsej
(
i, i′
)=

{
1 if

(
μ(i, j)− 1.96S(i,j)√

n

)
<
(
μ
(
i′, j
)+ 1.96S(i

′,j)√
n

)
0 otherwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

(18)

Given these definitions, it is useful to evaluate the quality of imputation techniques based on
the frequencies of better (B) and worse (W ) performance than competitors. Figs. 8 and 9 depict
better and worse statistics at low missing rates of 1% and 5%. These lead to a familiar conclusion
that OWA-CKNN is the most effective, and another proposed model of OWA-KNN is usually
better than both WKNN and KNN. Let use turn to the case of a high missing rate of 20%. The
same observation is also obtained from the results shown in Fig. 10. Note that the quality of
OWA-CKNN is exceptional in this extreme case as compared to other alternatives. This is implied
by the fact that ‘Worse’ frequency of this model is zero. Nonetheless, the goodness of all methods
including OWA-CKNN is likely to rapidly decrease as the rate of missing values grows beyond
the mark of 20%.

Figure 8: Comparison of better-worse statistics between neighbor-based methods, at 1%
missing rate
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Figure 9: Comparison of better-worse statistics between neighbor-based methods, at 5%
missing rate

Figure 10: Comparison of better-worse statistics between neighbor-based methods, at 20%
missing rate

4 Conclusion

This paper presents an organic combination of KNN imputation and argument-dependent
OWA operator, which has been missing from the literature, especially for improving quality of
gene expression data. Instead of relying on a simple average as the representative of attribute
values extracted from a set of nearest neighbors, a weighted aggregation is exploited. Each
of these reference values is assigned with a specific weight emphasizing its significant to the
underlying summarization. A simple global approach to determine argument-dependent weights
is employed in the current work for its simplicity and efficiency. The proposed models of OWA-
CKNN and OWA-KNN are assessed against benchmark competitors, over a set of published data
and a widely used quality metric of NRMSE. In addition, an additional evaluation framework
of significant better and worse is also exploited herein to provide further comparison. Based on
the experimental results, both new techniques usually perform better than their baselines, whilst
reaching the best performance per setting of dataset and missing rate. Despite this success, it
is recommended to make use of other alternatives to resolve the problem of missing values
when the rate of missing values grows higher than the level of 20%. Perhaps, a re-run of
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microarray experiment might be a better choice than analyzing uncertain data. With respect to
the current development, several directions of possible future work can be considered. These
include the exploitation of consensus clustering [37,47] to provide accurate clusters for the pro-
posed neighbor-based imputation method. In particular, an investigation of generating those using
quality-diversity based selection of ensemble members [48] and noise-induced ensemble genera-
tion [49] can be truly useful in practice. Besides, possible applications of imputation techniques to
fuzzy reasoning [50] and clustering-based data discretization [51] can also be further studied.
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