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Abstract: The middle layer model has been used in recent years to better
describe the connection behavior in composite structures. The influencing
parameters including low pre-screw and high preload have the main effects on
nonlinear behavior of the connection as well as the amplitude of the excitation
force applied to the structure. Therefore, in this study, the effects of connection
behavior on the general structure in two sections of increasing damping and
reducing the stiffness of the structures that lead to non-linear phenomena have
been investigated. Due to the fact that in composite structure we are faced to
the limitation of increasing screw preload which tend to structural damage,
so the investigation on the hybrid connection (metal-composite) behavior is
conducted. In this research, using the two-dimensional middle layer theory,
the stiffness properties of the connection are modeled by normal stiffness
and the connection damping is modeled using the structural damping in the
shear direction. Nonlinear frequency response diagrams have been extracted
twice for two different excitation forces and then proposed by a high-order
multitasking approximation according to the response range of the nonlinear
finite element model for stiffness and damping of the connection. The effect
of increasing the amplitude of the excitation force and decreasing the preload
of the screw on the nonlinear behavior of the component has been extracted.
The results show that the limited presented novel component model has been
accurately verified on the model obtained from the vibration experimental test
and the reduction of nonlinear model updating based on that is represented.
The comparison results show good agreementwith amaximumof 1.33%error.

Keywords: Nonlinear equation; hybrid joint behavior; thin laminated ele-
ment; nonlinear frequency response function

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.020245


3384 CMC, 2022, vol.70, no.2

1 Introduction

Nowadays, the hybrid structures is a common material which is widely employed in design [1],
and analyzing [2–8] of various industrial engineering component with its specific bottlenecks and
uncertainties. Since the advent of composite or metal-composite materials in aerospace structures,
their applications have been steadily increasing. In addition to their primary applications in non-
structural parts or secondary structural components, the application of these materials in the main
parts of the components of structures is inevitably increasing.

The finite element method is a common method in the industry for estimating [6] the dynamic
response of structures. But predicting a structure’s behavior, using the finite element model, is
always different from the actual behavior of the structure. The vibrational response of composite
structures has complex mechanical behavior than metal structures. For example, composites are
relatively more brittle compared to metals.

So far, many models have been proposed to describe the levels of screw connection and
model their dynamic behavior. Spring-damper models [9,10], compensatory elements [9], generic
elements [10], intermediate layer elements [11], porch models and more recently intermediate
elements [12] are examples of these efforts.

Two types of middle layer elements are zero-layer thickness middle elements and thin middle
layer element [13,14]. In the middle layer element with zero thickness, the compatibility relation-
ships of the element usually include fixed values for both shear stiffness (tangent to the connection
surface plate) and normal stiffness (perpendicular to the connection surface plate) [15,16]. How-
ever, in the thin middle element, the properties of the bonding surface are controlled by a thin
band around the surface with different characteristics from the adjacent materials [17].

The studies on thin layer element were conducted in order to update and extract the
stiffness coefficients of the connection using linear elastic compatibility relationships and test
results [17,18]. The investigations prove the linear behavior of contact surface under the condition
of low force value, isotropic material, or high preload value. The studies reveal that the behavior
of connection can be modeled in the compatibility equation of thin middle layer element using the
normal and shear stiffness with acceptable accuracy of nearly 99.8% percentage of reliability [18].

For nonlinear behavior of a structure that begins with the increase in excitation force, a
careful modeling of the connection is needed, so that the nonlinear behavior of the contact
surface can be described. Previous experimental studies have shown that the connection behavior
depends on the domain of the structural response [19]. Since the structure weight decreases due
to increase of stiffness and damping of the structure, by using the thin middle layer model and
its compatibility relationships, the approximation of the second order is presented according to
the response range [20]. In the non-linear model, the stiffness and damping is represented in the
directions of normal stiffness and shear stiffness, respectively [21,22].

The main purpose of this paper is to provide a novel non-linear thin intermediate layer of
four ordered nonlinear equation according to the response range for modeling the metal-composite
behavior with two screws. Here, it is assumed that the total damping of the structure, including the
composite damping and the screws connections damping [23], is supposed in the contact surface
damping model and the composite structures and bonding layers are undamaged. So, the linear
connection model and its linear frequency response are firstly extracted. Finally, the linear model
obtained by the sensitivity method has been supplied with special values.
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2 Connection Modeling Formulations

So far, a variety of connection models have been proposed for two identical metal beams.
According to Fig. 1 in this study, we have a different connection including a metal beam and
an isotropic quasi-composite beam with completely different elastic modulus in the direction of
width.

Figure 1: Composite-metal single lap bolted joint

The most important thing in providing a connection model is that the model presented is
compatible to the physical view governing the connection. In the middle layer theory proposed
by Desai [16], it is assumed that the stiffness in the normal direction and the shear are separate.
In this model, the stiffness changes in X direction can be neglected according to Fig. 2, and the
middle layer at distance H from the neutral axis.

Figure 2: The 2D thin-layer element and degrees of freedom

2.1 Linear Modeling of Connection
The middle layer element used to model the connection is assumed to be a rectangular

membrane element with degrees of rotational freedom [18]. In order to calculate the elemental
stiffness matrix, the compatibility (stress-strain) relations of the matrix [D] must be determined.

{σ } = [D]{ε} (1)
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As mentioned in the middle layer theory, elements outside the original diameter have a very
small value due to the separation of the stiffness in the normal direction and a cut equal to zero,
as well as D11, and are assumed to reduce numerical errors. It suffices to place the matrix [D] in
relation 3, where L is the length of the element and H is the height and t is the thickness of the
middle layer (Fig. 2).
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[Ke]= t
h
∫
0

L
∫
0
[B]T [D][B]dxdy (3)

Matrix B is in the form of [B]= [L][N] in which [N] is the matrix of shape functions and [L] is
the derivative matrix in two-dimensional mode [18]. It is only necessary to identify the parameters
Ec and Gc using the test results to model the linear behavior of the connection correctly.

2.2 Nonlinear Connection Modeling
As shown in previous research, the onset of a weak nonlinear area requires a sufficient

amount of stimulation or looseness of the preload screw [19,20]. We know that the relationship
between stress and strain (Eq. (3).) can be assumed that as follow for nonlinear mode:

σ(t)= f {ε(t) , ε̇(t)} (4)

Considering that the stimulation is mono-harmonic, which is explained in the following test
conditions, so the answer can be assumed to be mono-harmonic and therefore strain is represented
as shown in Eq. (5). The linear stress-strain relationship is obtained by describing the concept of
function as follows [21].

ε(t)=Xε sin(ωt+ θ) (5)

σ(t)=̃(Er(Xε,ω)+ j Ej(Xε,ω))ε(t)=Eeq(Xε,ω)ε(t) (6)

Eeq(Xε,ω)= 1
Xεπ

2π
∫
0

f (Xε sin(β) , ωXε cos(β))∗
(sin(β)+ j cos(β))

dβ with β = (ωt+ θ) (7)

As shown in Eqs. (5)–(7), the strain-stress relationship is a function of displacement and
frequency. In this study, it is assumed that because nonlinear behavior is around the first frequency
and in the range of small changes in frequency, nonlinear behavior is only a polynomial function
of the response range.

The following relationships are applied to model the stiffness and damping of the non-linear
connection.

Ec(X)=Ec0 −F1(X) (8)

Gc(X)=Gc0+ j×F2(X) (9)

where Ec0 and Gc0 are the values obtained from the linear solution and X is the size of the
response range of the structure to the sinusoidal excitation force with frequency ω. In the case
of stiffness modeling, the value of the F1 function decreases from the linear solution due to
the softening phenomenon. For damping modeling, structural stiffness, i.e., complex function
form F2, with stiffness in the shear direction has been used to model it. According to empirical
observations, the cause is the stiffening phenomenon of damping [21,22].

3 The Sample Under Study

The metal-composite hybrid structure used in this experimental study (See Fig. 3) includes
an AL7075-T651 aluminum beam with dimensions of 360× 39× 11 mm3 and a carbon/epoxy
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composite beam with dimensions of 353× 39× 8.85 mm3, which is connected by two M8 bolts.
Properties of aluminum beam is equal to 69.2 e 10 (Pa) elastic modulus and density of 2850
kg/m3, which have been extracted and employed based on the data available in the references.
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Figure 3: Schematic of test setup

The composite beam is made of double-sided carbon fibers with 32 layers and symmetrical
arrangement [[(±45)4/(±45)4]2/(0/90)2]s with Epoxy adhesives cyanoacrylate bonding. The den-

sity of composite with isotropic arrangement is equal to 1200 Kg
m3 . Its elastic modulus is obtained

by modal testing and model updating using Euler-Bernoulli beam theory. For this purpose, the
desired beam has been subjected to a modal test in the free-free mode according to Fig. 4. The
beam is triggered by a modal hammer and the sensor as illustrated in Fig. 4.

Figure 4: Composite beam test setups

The frequency response diagram is shown in Fig. 5. The results of model updating of the
composite beam model by analyzing the sensitivity of the frequency response and its error
percentage are given in Tab. 1. Based on the data in this table, the equivalent elastic modulus for
the composite beam is obtained with a quasi-isotropic arrangement equivalent to 38.566 Gpa.
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Figure 5: FRF of a composite beam with simple free-free boundary condition

Table 1: The results of the updating composite beam

After model updating Before model updating The extracted
experimental
frequencies

Mode shape
numbers

Einitial
(Gpa)

Error
percentage
(%)

Frequency
(HZ)

Einitial
(Gpa)

Error
percentage
(%)

Frequency
(HZ)

(Hz)

33.41 3.76 241.4 25 14.98 212.8 253.1 1
1.18 675.3 13.35 590.6 681.9 2
0.28 1290.1 11.94 1139.9 1294.2 3
−0.07 2120.0 11.62 1873 2118.2 4

4 Modal Test of Linear and Nonlinear System

The position of the hybrid structure is shown in Fig. 6 during the vibration modal test.
As can be seen in Fig. 3, the hybrid structure in the aluminum section (according to industrial
applications) is fixed to the boundary condition as cantilevered form. The shaker is connected to
the beam at x= 125 mm distance from the retaining edge.

To get the linear response, the structure is excited by a random signal and with a force of 5 N.
The applied force to the structure is measured by a power sensor and its response is measured
by one accelerator installed in positions x= 699 mm. The screws preload are set to 9 N.m and
14 N.m by one torque meter. Fig. 6 shows the frequency response chart for the 9 N.m preloads.
The results of the resulting frequencies are shown in Tab. 2.
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Figure 6: FRF of two bolted lap joint for composite-metal

Table 2: Basic frequencies of represented material with 9 & 14 N.m preloads

f4 f3 f2 f1 Natural frequency (Hz)

414 251.2 79.3 21.3 9 N.m Preload of the screws
417 253.3 80.3 21.29 14 N.m

Figure 7: Composite-metal single lap bolted joint modal test setup

To obtain the nonlinear frequency response, we then extract the nonlinear frequency response
with the help of vibration in the two amplitude ranges of 5 and 15 N in near range of the
first frequency. In this way, we first determine the excitation force and excitation frequency and
stimulate the structure with this harmonic force by shaker.

In each frequency, by obtaining the amplitude of the response and the amplitude of the
stimulus, its value can be determined in the frequency response diagram in this specific frequency,
and at the end, by connecting these points; the nonlinear frequency response graph can be



3390 CMC, 2022, vol.70, no.2

reached. As shown in Fig. 8, the displacement of the resonant point and the reduction of the
amplitude are observed with the increase of the excitation force.

Figure 8: nonlinear FRF of joint with 9 & 14 N.m preload
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5 Identify the Linear Parameters of the Middle Layer

One of the most applicable approaches in identifies parameters and reduces the computational
error in finite element method is the models based on sensitivity eigenvalues method. The matrix
[S1] is the sensitivity matrix of eigenvalues to identification parameters, and {ε0} is the residual
vector of the difference between the eigenvalues of experimental and what predicted values. To
calculate {Δp}, it is sufficient to calculate the inverse of the sensitivity matrix [S1] and multiply
by {ε}. Therefore, relationship 10 can only be solved by being in a repetitive cycle as follows. The

goal in each step is to minimize the objective function as
m∑
i=1

(
((ωbj )

2−(ωaj )
2
)

(ωbj )
2

)2

where ωb
j are the test

frequencies and ωa
j is the analytical frequencies.

{ΔP} = [S1]+{ε0} (10)

{P}new = {P}old +{ΔP} (11)

According to the frequency response diagram of the metal-composite bonded with two bolt of
Fig. 7 and the values of the frequencies obtained from the test in two pre-loads of 9 and 14 N.m,
the identification of the parameters of the middle layer of E1 and G1 has been conducted. As
can be seen in Tab. 3, the initial and final values of the identified parameters and the percentage
of errors of the updated frequencies are given. The error nom L2of updated frequencies and test
for corresponding modes is represented in Tab. 3.

Table 3: The linear frequencies results of AL-composite

The updated frequencies for 9 Nm E1 = 4.85× 106 Nm−2, G1 = 4.01× 106 Nm−2

ω4(Hz) ω3(Hz) ω2(Hz) ω1(Hz) Frequencies

412 252.20 78.21 20.98 Test
411.95 252.18 77.95 21.02 Updated frequencies
0.012 0.007 −0.330 −0.190 Differences (%)

The updated frequencies for 14 Nm: E1 = 5.42× 106 Nm−2, G1 = 4.25× 106 Nm−2

ω3(Hz) ω3(Hz) ω2(Hz) ω1(Hz) Frequencies

421 255.40 81.30 21.20 Test
421 255.38 81.59 21.31 Updated frequencies
0.000 0.005 −0.360 −0.560 Differences (%)

6 Nonlinear Parameters Identification of the Middle Layer

In this section, discussion of nonlinear modeling is firstly completed, then a brief overview of
the discussion of updating by frequency response diagram and parameter adjustment method dur-
ing the convergence process is provided, and finally, the results of identifying nonlinear parameters
are presented.
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6.1 Nonlinear Middle Layer Element Relationships
Based on the mentioned theories in Section 2 and given that the nonlinear behavior of the

joint is investigated in its first mode, it is assumed that the joint stiffness behavior is in the
direction of the normal stiffness of the middle layer and the damping behavior of the joint occurs
in the direction of its shear stiffness. As described in the previous section2, we use the following
equations to model the stiffness and damping of our connection.

E1(X)=E10−F1(X) (12)

G1(X)=G10+ j×F2(X) (13)

where, Fi(X) are functions to describe the stiffness and nonlinear damping of the joints. If we
consider the Fi(X) function to be dependent on the response domain, we can assume that it
consists of a polynomial of order 4 in terms of X as follows. The reason for using 4 ordered
equations is to be able to provide a more accurate update existing study [15].

Fi(X)= δi1X
4+ δi2X

3+ δi3X
2+ δi4X + δi5 (14)

i= 1, 2

Therefore, we can identify δij coefficients using the update method and nonlinear frequency
response diagrams obtained from the test in Fig. 8.

In fact, by placing the functions Fi(X) in the relations (12) to (13) and obtaining the nonlinear
Ec and Gc it is enough to form a new matrix D and integrate it around the element using Eq. (3).
The obtained stiffness matrix has a real part and an imaginary part to describe the attenuation.
Using the update method of the frequency response function to update the analytical model has
the advantages. The frequency response sensitivity matrix to the P-update parameter is used to
update the analytical model using the frequency response functions and is calculated as follows:
where [Z] is the dynamic stiffness matrix of the system [23].

∂[H]
∂p

=−[H]T
∂[Z]
∂p

[H] (15)

[Z(ω)]= [−ω2[M]+ jω[C]+ [K]] (16)

[H(ω)]= [Z(ω)]−1 (17)

where [M], [C], [K] and ω are the matrices of mass, damping, stiffness and frequency, respectively.
Using Eq. (15), the ratio update formula that the parameter P in the frequency ωK with the
excitation and response points j and i can be calculated, respectively.

He
ij(ωk)− Ha

ij(ωk)=
(
−{Ha

i (ωk)}T
∂[Z(ωk)]

∂p
{Ha

j (ωk)}
)

Δp (18)

{εk} = [Sk]{Δp}
where {Ha

i (ωk)}Tand {Ha
j (ωk)} where the r-line vectors i and the column j-th are the frequency

response matrix [Hij(ωk)], respectively. The e and a parameters represent the experimental and
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analytical FRFs. Arruda and Duarte [19] and later Balmes [20] defined the objective function as
follows.

J({p})= ‖20log10|{Ha
ij(ωk, {p})}| − 20log10|{He

ij(ωk)}| ‖ (19)

By deriving from 20log10|Hij|| With respect to P, the derivative of the dynamic stiffness matrix
and the frequency response matrix can be obtained.

‖20log10|{Ha
ij(ωk, {p})}|− 20log10|{He

ij(ωk)}| ‖ = 8.6859

⎛
⎝Re(Hij)

∂Re(Hij)

∂p + Im(Hij)
∂Im(Hij)

∂p

Re(Hij)
2+ Im(Hij)

2

⎞
⎠ (20)

Using Eq. (20) at each excitation frequency, the sensitivity matrix [Sk] and the remaining
vector {Δp} resulting from the difference of the values obtained from the test and analysis of the
upgrade operation can be performed.

6.2 Investigation on the Results of Nonlinear Parameters of the Middle Layer Element
Examining the results of identifying the nonlinear parameters of the middle layer element,

the examination of the updated nonlinear frequency response diagrams is conducted using the 4th
order approximation according to the response amplitude and based on the representing result in
Figs. 9 and 10. As can be seen, the frequency response diagrams for both preload and excitation
force have been updated with high accuracy. The Figs. 9 and 10 are obtained by using the relation
18 the coefficients δij for each of the frequencies ωk using the update method by the frequency
response diagram and finally from the relations (12) to (13). The stiffness and damping matrices
are obtained and using them the predicted frequency response diagram of the solution is obtained.
Tab. 4 is calculated using the remaining 15% criterion for each of the graphs, indicating the high
accuracy of the update process.

Figure 9: calculated and experimental results of FRF for torque 9 N.m
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Figure 10: calculated and experimental results of FRF for torque 14 N.m

Table 4: Percentage of residual differences for nonlinear updated models

Residual (%) Samples

1.33 9 N.m preload 5N; load
0.22 9 N.m; preload 15N; load
0.37 14N.m; preload 5N; load
0.94 14N.m; preload 15N; load

The changing diagrams of the Fi(X) functions are given in Fig. 11. Firstly, it is considered
that the identification of nonlinear parameters located in the range 5 N. The linear functions
F1(X), F2(X) are depicted on both preload forces of 9 N.m, 14 N.m. Parameters F1(X), F2(X)

have been updated in the iterative process until convergence is achieved.

When the screws preload is 14 Nm, F1(X) is linear and F2(X) is a double polynomial,
increasing and decreasing along the response amplitude, but at 9 Nm where the screw is looser,
both functions are F1(X), F2(X) are polynomials of the second order and also the maximum
amount of damping and stiffness of these functions is higher than the case where the clamp
screws is closed. Using the 4th order polynomial allows the parameters F1(X), F2(X) to find
the best way to identify the connection parameters. Finally, the nonlinear parameters of the thin
middle layer element for the excitation force of 10 N are identified using its frequency response
diagram, both functions of F1(X), F2(X) are polynomial. In the case that the excitation force
is increased in the same preloads, the values of the mentioned functions are increased compared
to the previous case. The results of Fig. 11 show that the Fi(X) diagrams increase with respect
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to increasing the excitation force range or decreasing the preload load of the polynomial degree,
which is the nonlinear damping and stiffness factor.

Figure 11: The F1(X), F2(X) which updated at preloads 9 N.m, 14 N.m and loads 5 N, 15 N



3396 CMC, 2022, vol.70, no.2

7 Conclusion

In this research, the use of a thin middle layer model for a metal-composite joint has been
studied. This modeling has been evaluated in both linear and non-linear modes by coding in
MATLAB software. First, the flexural modulus of a composite beam has been identified due
to its quasi-isotropic behavior. Then, with the help of linear test results, the parameters of
connection, normal stiffness and shear were identified using frequency sensitivity analysis with
undamaged composite structures and bonding layers. The results of this identification indicate that
the joint stiffness is reduced by 103 order compared to the side beam stiffness. In the following,
by describing the finite element model of the fourth order relative to the response amplitude, the
description of the nonlinear connection behavior is investigated. The nonlinear modal connection
test was performed and the nonlinear properties of the connection were identified by analyzing
the sensitivity of the frequency response and using parameter adjustment to reduce the dissolution
time and better convergence for first optimal mode. Since composite parts have high damping and
have a limitation in applying pre-screws preload due to damage to the part, so we have no choice
but to do nonlinear analysis. The high-order model presented in this paper has high accuracy
(nearly about 99 percent) and sufficient efficiency (maximum 1.3% differences) to use it in applying
similar analyzes. Also, considering that the obtained results satisfy the analysis correctly according
to the previous observations, and the stiffness and damping parameters of the connection are
polynomial and have been identified with high accuracy.
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