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Abstract: Planning and scheduling is one of the most important activity in
supply chain operation management. Over the years, there have been multiple
researches regarding planning and scheduling which are applied to improve
a variety of supply chains. This includes two commonly used methods which
are mathematical programming models and heuristics algorithms. Flowshop
manufacturing systems are seen normally in industrial environments but few
have considered certain constraints such as transportation capacity and trans-
portation time within their supply chain. A two-stage flowshop of a single
processing machine and a batch processing machine are considered with their
capacity and transportation time between twomachines. The objectives of this
research are to build a suitable mathematical model capable of minimizing
the maximum completion time, to propose a heuristic optimization algorithm
to solve the problem, and to develop an applicable program of the heuristics
algorithm. AMixed Integer Programming (MIP) model and a heuristics opti-
mization algorithmwas developed and tested using a randomly generated data
set for feasibility. The overall results and performance of each approach was
compared between the two methods that would assist the decision maker in
choosing a suitable solution for their manufacturing line.

Keywords: Scheduling; two-stage flowshop; supply chain management;
transportation; batch processing machine; heuristic

1 Introduction

Flowshop scheduling was derived since 1959 by Johnson [1] and since then has been exten-
sively researched and developed. It is considered to have opened a new horizon for advanced
development of the industrial environment and especially scheduling field. In its early years,
researches only mentioned about scheduling flowshop for single processing machine. Then, in the
late of 1990’s, a new flowshop scheduling problem emerged in the manufacturing of custom-built
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very large-scale integrated circuits (IC) concerning two-stage machine where one is a single pro-
cessing machine and the other is batch processing machine. Afterwards, the same problem then
considered the transportation and deterioration between batch and single processing machine that
arose in the steel industry, specifically the steel ingot teeming, heating and rolling processes in the
steel plant.

In particular manufacturing and distribution systems, semi-finished jobs are transported from
one facility to another for further processing by material handling systems such as automated
guided vehicles (AGVs) and conveyors whereas finished jobs are delivered to the customers or
warehouses by vehicles such as trucks. Numerous researches have been carried out to investigate
this problem. Nevertheless, most of them presume that either there are an infinite number of
transporters or unlimited capacity to deliver the tasks whenever the jobs are finished or jobs that
are transported immediately from one location the another without transportation time involved,
neglecting transportation time.

Scheduling problems that address the optimal coordination of machine scheduling along with
job transportation are more practical to those that do not consider these factors. It is apparent
that different operations in manufacturing and distribution systems must be coordinated carefully
in order to achieve an optimal overall system performance. The recent enormous expansion of
supply chain management in both academic and industrial communities has demonstrated the
importance of such coordination.

In steel industry, there are processes, referred as the two-stage flowshop scheduling problems,
considers transportation as a constraint, specifically from the steel ingot teeming, heating and
rolling process shown in Figs. 1 and 2. Teeming is the process where molten steel in the ladle
is poured into molds to produce steel ingots. After the ingots are stripped from the molds, they
are appropriately segregated into batches and transported to the soaking pit by a vehicle inside
the manufacturing plant. The soaking pit can be considered as a batch processor as it reheats
the ingots to a desirably high temperature. The reheated ingots are again transported to a rough
mill. The ingots are later rolled to a usable from of steel, such as the slabs and the blooms, on
the rough mill where its temperature drops gradually as waiting time passes. If the temperature
drops considerably low, the ingots are required to add more heating time to reach the rolling
temperature. Consequently, the rolling time of the ingots is prolonged.

Figure 1: The process of ingot teeming and heating

As shown in Figs. 1 and 2 respectively, the process of teeming and heating is commonly
referred to as the two-machine flowshop problem where a single processor is followed by a batch
processor whereas the heating and rolling refer to the problem where a batch processor followed
by a single processor, both with transportation time considered.
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Figure 2: The process of ingot heating and rolling

Motivated from the procedure above and developed from former papers, this research consid-
ers a two-machine flowshop scheduling problem comprising of a discrete processing machine and
a batch processing machine. Specifically, there are two scheduling models are considered:

(1) Single processing machine followed by batch processing machine.
(2) Batch processing machine followed by single processing machine.

In the first model, each job that is completed on the single processing machine are transported
to the batch processing machine by a vehicle. On the other hand, jobs in the second model
are transported to the single processing machine also by a vehicle after processed on the batch
machine. The transportation time is a given constant, and the transportation capacity is equal
to the batch size. The batch processing machine processes a number of jobs in a batch so that
all jobs in each batch start together, and also finish their processing at the same time. For the
situation where the processing time of each batch is job-dependent, i.e., the maximum processing
time of jobs assigned to the batch, the proposed problem is to find the optimal schedule which
minimizes the maximum completion time.

2 Literature Review

The burn-in operation in semiconductor manufacturing with their objectives are to minimize
the maximum completion time (makespan). There are a lot of research concerning these problems
and extensive surveys of different mathematical models and problems that have been conducted
by Webster et al. [2] and Potts et al. [3].

As the reported pattern of the batch processing time, this research can be divided into two
categories. In the first category, the processing time of each batch is fixed and independent
from the jobs listed in the batch. Ikura et al. [4] were seemingly the first to study the batching
scheduling problems with a constant batch processing time in which they introduce the First-
Only-Empty (FOE) algorithm and Greedy-Adjusted-Bunching (GAB) algorithm to minimize the
completion time. Ahmadi et al. [5] examined a 2-stage flowshop scheduling in which one or
both stages may consist of a batch processor. They analyze the complexity for the two problems
with the objectives of minimizing the makespan and minimizing the total completion times. Sung
et al. [6] further studied the extension of one of the models of Ahmadi et al. [5]. They investigate
a scheduling problem for a two-machine flowshop with a discrete processing machine followed by
a batch processing machine to minimize makespan where dynamic job arrivals are allowed.

On the other hand, the second category consider the batch processing time that is dependent
of the jobs assigned to the batch, i.e., the processing time of a batch is given by the maxi-
mum processing time of all jobs in the batch. Damodaran et al. [7] proposed a mixed integer
programming approach for the flowshop problem in case the buffer space is unlimited or zero.
Numerical examples are presented to demonstrate the application of the model. Lee et al. [8]
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considered the problem of minimizing the makespan on a single batch processing machine in
the presence of dynamic job arrivals. Chandru et al. [9] studied the problem of minimizing total
completion time on single and parallel batch processing machines where the processing time of a
batch is equal to the longest processing time among all jobs in the batch. They propose a branch-
and-bound algorithm and several heuristic algorithms for the problem of minimizing the total
completion time on a burn-in oven, and also a heuristic algorithm for a parallel oven system. The
authors also propose an optimal dynamic programming approach for a problem of minimizing
the total completion time on a burn-in oven with fixed number of job families. Sung et al. [10]
investigated a scheduling problem of a single batch processing machine. They propose a branch-
and-bound algorithm and several heuristic algorithms and derived the worst-case error bounds of
their heuristic algorithms to minimize the makespan on a single burn-in oven with dynamic job
arrivals allowed. Uzsoy [11] examined a problem of scheduling jobs with non-identical size on a
single burn-in oven to minimize the total completion time and the makespan.

The second category also consider the total processing time of the jobs assigned to the batch
as the batch processing time. Cheng et al. [12] consider the two-machine flowshop in which one
is a discrete processor and the other is a batch processor. They prove the NP-hardness of the
problem and propose efficient algorithms for some polynomial solvable cases. Cheng et al. [13]
present the same configuration except that both machines process the jobs in batches. They
provide strong NP-hardness proofs and propose properties and polynomial algorithms for some
special cases. They also propose heuristic algorithms to deal with the general problem.

This scheduling problem with the consideration of transportation involving batch processing
machine arises from the ingot teeming and heating process in the steel plant. Their objectives
are, likewise, to minimize the maximum completion time (makespan). By Lee et al. [14], this
problem can be categorized into two types. The first type is intermediate transportation where
semi-finished jobs are transported from one machine to another for further processing. Type two
is the transportation of finished jobs to the customers. A variety of scheduling problems involving
these two types of transportation is considered with transporter capacity and transportation time
taken into account.

Maggu et al. [15] is probably the first to explicitly consider the transportation factor. They
consider a two-machine flowshop scheduling problem with unlimited buffer spaces on both
machines, i.e., there are a sufficient number of transporters so that whenever a job is completed
on the first machine it can be transferred immediately to the second machine. The transportation
time is job-dependent. They generalize the well-known Johnson’s rule to solve their problem.
Kise [16] investigates a similar problem but with only one transporter with a capacity of one,
i.e., it can transport only one job at a time. He proves that this problem is NP-hard even with
job-independent transportation times. As opposed to the above studies, Stern et al. [17] have
investigated two-machine flowshop problems where a transporter only with a capacity of one such
as AGV travelling back and forth between machines and job-independent transportation times in
which there is not any intermediate buffer space. They formulate the problem as an asymmetric
traveling salesman problem and give a polynomial-time heuristic. Ganesharajah et al. [18] later
on point out that this problem is strongly NP-hard. Langston [19] analyses some heuristics for
a k-station flowshop problem where each station has a number of machines that can be used
to process jobs, and there is only one transporter with a capacity of one to transfer jobs with
transportation times dependent on the physical locations of the origin and destination machines.
Tang et al. [20] study the two-machine flowshop scheduling problems where a single machine is
followed by a batching machine. The processing time of a batch is a constant. They also consider
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a transporter to carry the jobs between two machines and deteriorating jobs to be processed on
the single machine. They prove that this problem is strongly NP-hard and propose a mixed integer
programming to formulate the problem. Behnamian et al. [21] approached the two-stage flowshop
manufacturing scheduling problem under transportation capacity and time constrains with the
mixed integer mathematic programming method. The objective of the proposed model is to find
the optimal makespan.

To take a look at more modern problems of this flowshop problem, a number of recent
researched have also addressed to this problem. Cai et al. [22] investigated a distributed permu-
tation flow shop scheduling problem (DPFSSP) with transportation and elibility constraints using
the Nondominated Sorting Genetic Algorithm II (NSGA-II) methodology due to multi-objective
nature of DPFSSP. The findings showed optimistic Pareto solutions that minimized the overall
makespan of the process. Kumar et al. [23] researched into another flow shop scheduling problem
that considered breakdown intervals, transportation time and weights of jobs and proposed a
Genetic Algorithm (GA) approach into solving. The method showed suitable results through a
variety of different problem sizes. Qin et al. [24], on the other hand, considered a hybrid flow
shop problem at a seaport and was able to utilize the mixed integer programming combined
with constraint programming to model the activities happening in the port. The study was able
to improve the activity of the port by 3.31% from a feasible solution time of 2 min operating.
Finally, Gheisariha et al. [25] proposed a different methodology into solving a flexible flow shop
scheduling problem of simulation-optimization. The algorithm considered in the enhanced multi-
objective harmony search with a Gaussian mutation in order to incorporate the data together with
objectives of minimizing completion time and minimizing mean tardiness between the jobs and
machine.

While flowshop scheduling problem has been studied extendedly in past studies, few have
look into the flowshop scheduling problem under transportation capacity and time constrains.
In this study, two approaches to the flowshop scheduling problem under transportation and
capacity and time constrains are developed: a Mixed Integer Programming (MIP) Model and a
Heuristics Model. Both approaches are then applied to a numerical examples to demonstrate their
performance and feasibility.

3 Methodology

Consider a set J of n independent and non-preemptive jobs J = {1, 2,. . ., n} to be processed
at a two-machine flowshop, where one processes one job at a time—single processing machine—
and one processes jobs as a batch simultaneously—batch processing machine. Each batch has
the capacity of c jobs (c ≤ n), i.e., up to c jobs can be assigned to one batch and processed
simultaneously, where all the jobs have different processing times. The processing times of job j on
machine 1 and machine 2 are denoted by p1j and p2j. The processing time of a batch is equivalent
to the longest processing time of a job among all jobs in a batch. Once the batch process machine
is initiated, no job can be entered or released from the machine until the entire batch is completed.
Also consider a transporter which transports the semi-finished jobs from machine 1 to machine
2 and returns from machine 2 to machine 1 and so on. The capacity of the transporter is equal
to the batch capacity c of the batch processing machine, i.e., it can carry up to c jobs in one
shipment. Assume that a round trip time of the transporter is a constant T unit of time and
as two halves of the trip are identical, each takes T/2 units of time, where T ≥ P to emphasize
the significance of transportation. Let Cj denote the completion time of job j, and the objective
function is to minimize the makespan Cmax = max1≤j≤n{Cj}.
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As aforementioned, we are considering two scheduling models:

(1) Single processing machine followed by batch processing machine.
(2) Batch processing machine followed by single processing machine.

In order for further clear explanation, we adopt the three-field notation ψ1ψ2ψ3 of Graham
et al. to denote the two scheduling models.

The first model can be denoted as F2 | b1 = 1, b2 = c, M2k = max{P2j}, tk = T |Cmax, where
F2 indicates two-machine flowshop, b1 = 1 and b2 = c indicate that the first machine is a single
processing machine and the second is a batch processing machine with capacity c, M2k denotes the
processing time of kth batch on batch processing machine and is equal to the longest processing
time of a job among all jobs in batch k. tk is the transportation time of batch k and equals to a
constant T and lastly minimizing the makespan Cmax.

On the other hand, the second model is denoted as F2 | b1 = c, b2 = 1, M1k = max{P1j},
tk = T |Cmax. The notations indicate in the same way as the first model except for the order
of processing machines whereby the batch machine is followed by a single machine. Thus, M1k
denotes the processing time of kth batch on batch processing machine equally to the maximum
of processing times of jobs assigned to the kth batch.

3.1 The First Model (F2 | b1 = 1, b2 = c, M2k = max{P2j}, tk = t | Cmax)
3.1.1 Notations

• Parameters

J Set of all jobs, J = {1, 2,. . ., N}; where N is the total number of jobs
c Capacity of the transporter and batch processing machine
T Round trip time of transporter
P1j Processing time of job j on the single processing machine; j= 1, 2,. . ., N
P2j Processing time of job j on the batch processing machine; j= 1, 2,. . ., N

• Decision variables

xjk 1, if job j belongs to the kth batch; 0, otherwise
Ck The completion time of kth batch; k= 1, 2,. . ., B
Rk Departure time of transporter which contains kth batch; k= 1, 2,. . ., B
M1k Processing time of kth batch on single processing machine; k= 1, 2,. . ., B
M2k Processing time of kth batch on batch processing machine; k= 1, 2,. . ., B
B Number of batches; B= [N/c]

3.1.2 Mixed Integer Programming Model

MinimizeCmax (1)

Subject to:

B∑
k=1

xjk = 1; with j= 1, 2, . . . , N, (2)

N∑
j=1

xjk < c; with k= 1, 2, . . . , B, (3)
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M1k =
N∑
j=1

P1j.xjk; with k= 1, 2, . . . , B, (4)

M2k ≥P2j.xjk; with k= 1, 2, . . . , B and j= 1, 2, . . . , N, (5)

R1 =M11, (6)

Rk ≥
k∑
i=1

M1i; with k= 2, 3, . . . , B, (7)

Rk ≥Rk−1+T ; with k= 2, 3, . . . , B, (8)

R1+T/2+M21 =C1, (9)

Rk+T/2≤Ck−M2k; with k= 2, 3, . . . , B, (10)

Ck−1 ≤Ck−M2k; with k= 2, 3, . . . , B, (11)

Ck ≤Cmax; with k= 2, 3, . . . , B, (12)

Xjk ∈ {0, 1}; with k= 2, 3, . . . , B and j= 1, 2, . . . , N, (13)

Rk,Ck,M1k,M2k ≥ 0; with j= 1, 2, . . . , N. (14)

The objective function (1) is to minimize the makespan, Cmax = max1≤j≤n{Cj}, where Cj
denotes the completion time of job j. Constraint (2) ensures that each job is assigned to one and
only one batch, i.e., it is scheduled particularly once. Constraint (3) guarantees that the number of
jobs contained in each batch cannot exceed capacity c. Constraint (4) defines the processing times
of kth batch on single processing machine as sum of processing times of jobs assigned to the
kth batch on single processing machine. Constraint (5) indicates the batch processing time as the
maximum processing time of jobs assigned to each batch. Constraint (6) determines the departure
time of transporter containing first batch upon the completion of its on single processing machine.
Constraint (7) ensures that the transporter transfers the jobs in kth batch only when all jobs
have been completely processed in single machine. Constraint (8) guarantees that the transporter
departs from single to batch machine only after it has returned to origin point. Constraint (9)
indicates the completion time of the first batch. Constraint (10) defines that the batch processing
machine only starts to process when the batch have arrived. Constraint (11) ensures that the batch
is processed until the preceeding batch has been finished. Constraint (12) defines the characteristics
of the completion time of batch k. Constraint (13) and (14) illustrate the range of the namely
variables.
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3.1.3 Heuristic Algorithm
Since there is hardly any specific and accurate method to solve an MIP model, a heuristic

algorithm is necessary in order to yield near-optimal solutions. The heuristic algorithm introduced
consists of three phases namely job sequencing, job batching and processing. Job sequencing
phase is based on Johnson’s rule for two machines whereas job batching and processing are done
heuristically.

• Phase 1: Job Sequencing

The Johnson’s interactive procedure for determining the optimal sequence for an n-jobs 2
machines can be outlined as follows:

Step 1: Find the shortest processing time among the jobs not yet scheduled. If two or more
jobs are tied, choose one job arbitrarily.

Step 2: If the shortest processing time is on machine 1, schedule the corresponding job as
early as possible. If the shortest processing time is on machine 2, schedule the corresponding job
as late as possible

Step 3: Eliminate the last job scheduled from further consideration.

Step 4: Repeat step 1 and 2 until all jobs have been scheduled.

• Phase 2: Job Batching

Given the Job Sequence from phase 1, the phase 2 can start. Each and every job j to L batches
is assigned until all batches are full or there are no jobs left to assign. Simultaneously, assigning
jobs to the 1st batch and the last batch with full capacity are prioritized.

• Phase 3: Processing

Upon the completion of Job Batching, each job is processed on the single machine and then
transferred by transporter to process on batch machine, where completion time of single machine,
departure time and completion time of batch machine are determined as followed:

C1k =C1, k−1+M1k; (15)

Rk =max{M1k, Rk−1+T}; (16)

C2k =max
{
C2, k−1,Rk+

T
2

}
+M2k; (17)

3.2 The Second Model (F2 | b1 = c, b2 = 1, M1k = max{P1j}, tk = t | Cmax)
3.2.1 Notations

As this problem is explicitly opposite of the above problem, all the parameters and variables
remain the same except:

• Parameters

P1j Processing time of job j on the batch processing machine; j= 1, 2,. . ., N
P2j Processing time of job j on the single processing machine; j= 1, 2,. . ., N

• Decision variables

M1k Processing time of kth batch on batch processing machine; k= 1, 2,. . ., B
M2k Processing time of kth batch on single processing machine; k= 1, 2,. . ., B
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3.2.2 Mixed Integer Programming Model

Minimize Cmax (18)

Subject to :
B∑
k=1

xjk = 1; j= 1, 2, . . . , N, (19)

N∑
j=1

xjk ≤ c; k = 1, 2, . . . , B, (20)

M1k ≥ P1j.xjk; k = 1, 2, . . . , B, (21)

M2k =
N∑
j=1

P2j.xjk; k = 1, 2, . . . , B and j= 1, 2, . . . , N, (22)

R1 = M11, (23)

Rk ≥
k∑
i=1

M1i; k = 2, 3, . . . , B, (24)

Rk ≥ Rk−1 + T ; k = 2, 3, . . . , B, (25)

R1 + T/2 + M21 =C1, (26)

Rk + T/2 ≤ Ck − M2k; k = 2, 3, . . . , B, (27)

Ck−1 ≤ Ck − M2k; k = 2, 3, . . . , B, (28)

Ck ≤ Cmax; k = 1, 2, . . . , B, (29)

Xjk ∈ {0, 1}; k = 1, 2, . . . , B and j= 1, 2, . . . , N, (30)

Rk, Ck, M1k, M2k ≥ 0; k = 1, 2, . . . , B. (31)

Likewise, the MIP model does not change much except for constraint (21) and (22). Contraint
(21) in this problem indicates the batch processing time as the maximum processing time of
jobs assigned to each batch. Constraint (22) defines the processing times of kth batch on single
processing machine as sum of processing times of jobs assigned to the kth batch on single
processing machine.
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3.2.3 Heuristic Algorithm
In this problem, we modify the above heuristic algorithm in which phase 1 is similarly

methods for job sequencing and phase 2 is methods for job batching.

• Phase 1: Job Sequencing

The sequence of jobs in problem 2 is sorted exactly the same as problem 1. Hence, the
Johnson’s interactive procedure for determining the optimal sequence for an n-jobs 2 machines
can be outlined as follows:

Step 1: Find the shortest processing time among the jobs not yet scheduled. If two or more
jobs are tied, choose one job arbitrarily.

Step 2: If the shortest processing time is on machine 1, schedule the corresponding job as
early as possible. If the shortest processing time is on machine 2, schedule the corresponding job
as late as possible

Step 3: Eliminate the last job scheduled from further consideration.

Step 4: Repeat step 1 and 2 until all jobs have been scheduled.

These steps are shown in Fig. 3.

Figure 3: Flowchart of sorting algorithm
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• Phase 2: Job Batching

Given the Job sequence from phase 1, we begin phase 2 which is presented in Fig. 4. We
assign each and every job j to L batches until the all batches are full or there are no jobs left to
assign. Simultaneously, we prioritize assigning jobs to the 1st batch and the last batch with full
capacity.

Figure 4: Flowchart of batching algorithm

• Phase 3: Processing

Upon the completion of Job Batching, each job is processed on the single machine and then
transferred by transporter to process on batch machine, where completion time of single machine,
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departure time and completion time of batch machine are determined as followed:

C1k = C1,k−1 + M1k; (32)

Rk = max {M1k, Rk−1+ T}; (33)

C2k = max {C2,k−1, Rk+T/2}+M2k (34)

4 Results and Discussion

4.1 Program Performance
The numerical example below is taken to test the program (Tab. 1):

Table 1: Processing time

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15

P1j 3 5 2 4 1 2 7 4 3 1 6 2 5 4 4
P2j 6 1 3 5 2 4 3 7 2 4 4 1 2 3 6

In addition, we consider c= 4 and T = 13.

4.2 Computational Experiments
In order to analyze the performance of the MIP model vs. the proposed heuristic algorithms,

computational experiments are conducted using both CPLEX and Python. Some data sets in
which the jobs processing times of single processing machine and batch processing machine
are randomly generated from the discrete uniform distribution within the range of [1, 30]. The
transporter’s capacity/batch size c and transportation time T is taken as 4 and 55 respectively. The
input data are shown from Tabs. 2–6.

Table 2: Instance 1

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

P1j 21 22 20 21 9 22 15 23 6 28 25
P2j 27 24 16 6 22 9 3 20 3 10 14

Table 3: Instance 2

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

P1j 27 18 7 22 29 1 23 7 17 29 1 21
P2j 6 4 24 18 21 21 14 1 24 15 29 9

The result of the problem F2 | b1 = 1, b2 = c, M2k = max{P2j}, tk = T | Cmax is shown in
Tab. 7.
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Table 4: Instance 3

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13

P1j 28 6 22 6 19 14 8 7 12 14 29 16 27
P2j 19 3 21 18 14 6 11 12 9 28 8 24 26

Table 5: Instance 4

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14

P1j 8 11 8 11 8 11 8 11 8 11 8 11 8 11
P2j 14 23 14 23 14 23 14 23 14 23 14 23 14 23

Table 6: Instance 5

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15

P1j 14 20 6 11 29 19 18 23 23 20 8 29 22 9 13
P2j 8 8 28 28 22 26 7 5 21 6 14 25 27 23 17

Table 7: Result of problem F2 | b1 = 1, b2 = c, M2k = max{P2j}, tk = T | Cmax

CPLEX Heuristic

Instances Size Value CPU(s) Value CPU(s)

1 11 248.5 3.86 248.5 0
2 12 238.5 4.35 238.5 0
3 13 244.5 3.85 244.5 0
4 14 285.5 4.18 285.5 0
5 15 298.5 3.66 299.5 0
6 16 349.5 3.62 350.5 0
7 17 329.5 3.82 329.5 0
8 18 352.5 4.05 353.5 0
9 19 358.5 3.76 358.5 0
10 20 351.5 3.19 352.5 0
11 23 420.5 3.59 423.5 0
12 40 655.5 3.63 655.5 0
13 100 1514.5 7.32 1514.5 0
14 200 3110.5 41.16 3110.5 0
15 500 7246.5 494.75 7285.5 0

As shown in Tab. 8, p-value is greater than 0.05. Therefore, it can be concluded that both
CPLEX and heuristic algorithm significantly give the same results.

The result of the problem F2 | b1 = c, b2 = 1, M1k = max{P1j}, tk = T |Cmax is shown in
Tab. 9.
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Table 8: t-Test of single-batch for two samples means

CPLEX Heuristic

Mean 1066.966667 1070.033333
Variance 3497642.41 3531477.124
Observations 15 15
Pooled variance 3514559.767
Hypothesized mean difference 0
Df 28
t Stat −0.004479832
P(T<= t) one-tail 0.498228694
t Critical one-tail 1.701130934
P(T<= t) two-tail 0.996457389
t Critical two-tail 2.048407142

Table 9: Result of problem F2 | b1 = c, b2 = 1, M1k = max{P1j}, tk = T |Cmax

CPLEX Heuristic

Instances Size Value CPU(s) Value CPU(s)

1 11 202.5 3.50 204.5 0
2 12 220.5 3.81 230.5 0
3 13 240.5 3.87 257.5 0
4 14 261.5 3.68 272.5 0
5 15 301.5 3.60 303.5 0
6 16 291.5 3.74 298.5 0
7 17 298.5 3.57 325.5 0
8 18 289.5 4.34 293.5 0
9 19 361.5 4.07 362.5 0
10 20 373.5 3.54 373.5 0
11 23 447.5 3.72 447.5 0
12 40 611.5 3.70 611.5 0
13 100 1615.5 9.36 1628.5 0
14 200 2777.5 37.22 2813.5 0
15 500 7680.5 206.87 7680.5 0

As shown in Tab. 10, p-value is greater than 0.05. Therefore, it can be concluded that both
CPLEX and heuristic algorithm in this problem also significantly give the same results. The cases
where c and T are changed are also experimented, the results are shown from Tabs. 11–16.
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Table 10: t-Test of batch-single for two samples means

CPLEX Heuristic

Mean 1064.9 1073.567
Variance 3836661.114 3837401
Observations 15 15
Pooled variance 3837030.948
Hypothesized mean difference 0
Df 28
t Stat −0.01211672
P(T<= t) one-tail 0.495209208
t Critical one-tail 1.701130934
P(T<= t) two-tail 0.990418416
t Critical two-tail 2.048407142

• c = 5, T = [minimum processing time * c, maximum processing time * c]

Table 11: Result of single-batch with c= 5

CPLEX Heuristic

Instances Size Value CPU(s) Value CPU(s)

1 40 646.0 3.63 646.0 0
2 100 1589.5 6.65 1589.5 0
3 200 3285.5 41.05 3285.5 0
4 500 9856.5 94.67 9856.5 0
5 1000 >7200 15388.0 0

Table 12: Result of batch-single with c= 5

CPLEX Heuristic

Instances Size Value CPU(s) Value CPU(s)

1 40 635.0 3.25 635.0 0
2 100 1464.5 4.82 1464.5 0
3 200 3285.5 32.13 3285.5 0
4 500 9856.5 169.49 9856.5 0
5 1000 >7200 15168.0 0
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• c = 10, T = [minimum processing time * c, maximum processing time * c]

Table 13: Result of single-batch with c= 10

CPLEX Heuristic

Instances Size Value CPU(s) Value CPU(s)

1 40 781.0 2.95 816.0 0
2 100 1543.5 4.84 1543.5 0
3 200 3762.0 12.74 3762 0
4 500 9267.5 50.17 9267.5 0
5 1000 >7200 18219.5 0

Table 14: Result of batch-single with c= 10

CPLEX Heuristic

Instances Size Value CPU(s) Value CPU(s)

1 40 759.0 3.45 765.0 0
2 100 1623.5 4.29 1623.5 0
3 200 3760.0 13.72 3760.0 0
4 500 9267.5 56.32 9267.5 0
5 1000 >7200 18219.5 0

• c= 15, T = [minimum processing time * c, maximum processing time * c]

Table 15: Result of single-batch with c= 15

CPLEX Heuristic

Instances Size Value CPU(s) Value CPU(s)

1 40 772.5 2.95 823.5 0
2 100 1702 4.20 1729.0 0
3 200 4652 5.89 4672.0 0
4 500 10760.5 32.78 10769.5 0
5 1000 >7200 18170.5 0

Table 16: Result of batch-single with c= 15

CPLEX Heuristic

Instances Size Value CPU(s) Value CPU(s)

1 40 826.5 4.14 869.5 0
2 100 1882 4.20 1929.0 0
3 200 4654 5.84 4683.0 0
4 500 10760.5 41.00 10769.5 0
5 1000 >7200 18170.5 0
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As seen in from Tabs. 11–16, the proposed heuristic solves the problem much faster than
CPLEX such that it takes so small amount of time (almost 0) that it can be negligible for all
given cases. Simultaneously, the objectives found by using the heuristic are close to the MIP
model for sample size 40, 100, 200, and 500. However, with the increasing in the sample size, the
time required for the MIP model to solve would scale up exponentially, i.e., it takes excessively
more time to solve a large-scale problem: for a sample size of 1000, the MIP model failed to
provide result in a suitable time frame (under 120 min). With the heuristic algorithm, the results
remain close to the optimal results from the MIP model without scaling up the solving time.
The heuristics model also have significant shorter runtime compared to the MIP model, with all
problems solved instantaneously regardless of sample size. The results suggest that the MIP model
should be used with small to medium size problems (500 and under) while the heuristics model
should be used with large size problems (more than 500) and provide adequate result.

5 Conclusion

This research focuses on solving a scheduling problem concerning two-stage flowshop of a
single processing machine and a batch processing machine with transportation between the two
machines taken into account. Both capacity of the vehicle and transportation time are particularly
regarded.

With the aim to minimize the completion time makespan of all jobs assigned, a mathematical
model capable of minimizing the maximum completion time Cmax (makespan) is built to describe
the problem. As aforementioned, we considered two scheduling models: single-batch model in
which single processing machine followed by batch processing machine while batch-single model
contains batch processing machine followed by single processing machine. Then, a heuristic algo-
rithm is proposed to solve the problem efficiently with the numerical example given showing that
the heuristic is practically effective. Finally, an applicable program of the heuristic algorithm is
developed to solve the problem automatically and almost instantly. The output of the developed
program turns out to be an optimal sequential jobs scheduling suggestion as well as the expected
minimum completion time.

However, some drawbacks are that the transportation time is a constant which is not practical.
In addition, unlimited buffer space is assumed for the two machines. Therefore, future research
are to study the problem in the case that buffer space is limited and also, the transportation time
data is collected. There may be additional factors to be considered in the model such as release
time, due time of the job and set up time of the machines.
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