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Abstract: Renewable and nonrenewable energy sources are widely incorpo-
rated for solar and wind energy that produces electricity without increasing
carbon dioxide emissions. Energy industries worldwide are trying hard to pre-
dict future energy consumption that could eliminate over or under contracting
energy resources and unnecessary financing. Machine learning techniques for
predicting energy are the trending solution to overcome the challenges faced
by energy companies. The basic need for machine learning algorithms to
be trained for accurate prediction requires a considerable amount of data.
Another critical factor is balancing the data for enhanced prediction. Data
Augmentation is a technique used for increasing the data available for training.
Synthetic data are the generation of new data which can be trained to improve
the accuracy of prediction models. In this paper, we propose a model that
takes time series energy consumption data as input, pre-processes the data,
and then uses multiple augmentation techniques and generative adversarial
networks to generate synthetic data which when combined with the original
data, reduces energy consumption prediction error. We propose TGAN-skip-
Improved-WGAN-GP to generate synthetic energy consumption time series
tabular data.We modify TGANwith skip connections, then improveWGAN-
GPby defining a consistency term, and finally use the architecture of improved
WGAN-GP for training TGAN-skip.We used various evaluation metrics and
visual representation to compare the performance of our proposed model.
We also measured prediction accuracy along with mean and maximum error
generated while predicting with different variations of augmented and syn-
thetic datawith original data. Themode collapse problem could be handled by
TGAN-skip-Improved-WGAN-GP model and it also converged faster than
existing GAN models for synthetic data generation. The experiment result
shows that our proposed technique of combining synthetic data with origi-
nal data could significantly reduce the prediction error rate and increase the
prediction accuracy of energy consumption.
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1 Introduction

Energy preservation is the source of economic development and plays a significant role in
social progress and residential environmental evolution. Countries all over the world are rapidly
shifting towards renewable and nonrenewable energy sources. Energy consumption forecasting is
an approach to predict the future consumption of energy so that energy companies can plan and
design policies for the future more efficiently. This also helps in eliminating financial loss for the
industry. Machine learning and deep learning prediction models or techniques are being widely
used for power load forecasting. Load forecasting generally predicts the total system load per hour,
day, week, or month for every specific geographic location. Load data for energy consumption are
time series tabular data. There exist well-known machine learning algorithms to predict energy
forecasts, but most of the time, the prediction error rates are high. There can be a substantial
financial loss even if the predicted load value differs from the actual load value by few points.
Previously, we have used multiple ensemble models to predict energy consumption [1,2]. But, we
could observe that although we had a large dataset, the prediction error rate was high for the days
having less record. For e.g., days when there was any natural disaster like typhoon, earthquake or
when there was some special holiday, etc. So, to reduce prediction error, it is important to balance
the variation of records which can be done by generating records of less frequency. Synthetic
generation of data and augmentation can solve the above issue of data scarcity. Synthetic data
can be referred to as artificial data that replicates the statistical characteristics of real data. Aug-
mentation is also a process by which we can increase the records of the existing dataset. Synthetic
data generation is a trending process and the latest models used for generating superior quality
of synthetic data are variational autoencoders and generative adversarial networks (GAN). In this
paper, we propose augmentation and synthetic time series data generation techniques that can
generate new tabular data, which reduces energy consumption prediction error and enhances the
accuracy when combined with original data. The main contribution of this paper is summarized
below:

• We proposed different augmentation techniques for time series tabular data.
• In this work, we proposed tabular GAN (TGAN) with skip connections (TGAN-skip) and

adapted improved version of Wasserstein GAN with gradient penalty (WGAN-GP) archi-
tecture for training TGAN-skip to generate synthetic tabular data. We named the model
as TGAN-skip-Improved-WGAN-GP which could enhance the performance by reducing
convergence time and eliminating mode collapse problem.

• For augmentation we experimented with multiple random transformation techniques and
discriminative guided warping of data that is based on dynamic time warping (DTW) and
shape-DTW.

The integration of renewable energy and nonrenewable energy into electric grids increases
energy demand requirements [3]. The power load historical data are a sample of ordered col-
lections which is recorded as specific time intervals. This makes them time-series records. The
traditional energy sources keep pace with wind and solar energy. At the same time, due to positive
aspects of renewable energy such as low-carbon, stable, reliable, and environmentally friendly the
consumers upgrade renewable energy demands [4]. Chengquan et al. [5], presented the two-tier
management system based on the degradation of the cost model with the hybrid energy system.
This system overcomes the cost of low operations and takes them into energy fluctuation account.

Shapi et al. [6] defined Microsoft Azure cloud-based machine learning platform for predicting
energy consumptions in building energy management system (BEMS). They proposed that cloud
based models for prediction would not depend on the hardware it’s running on and would be
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able to handle different distributions of energy consumption. Bourhnane et al. [7] used artificial
neural networks along with genetic algorithms for energy consumption prediction and scheduling.
They express in their paper that prediction models could not produce high accuracy result due
to the lack of data. Wang et al. [8] proposed a stacking model to forecast building energy
consumption. This model integrates advantages of multiple base prediction algorithms and forms
meta-features to discover spatial and structural angle of the dataset. Machine learning has been
widely used in generating synthetic patient data. Most commonly used models are probabilistic
models, classification-based imputation models and generative adversarial networks (GAN) [9].

Jaeuk et al. [10] proposed the solution for the data shortage problem based on two-stage
data generation, which effectively extracts the input and output variables for short-term load
forecasting. The first step is to extract the virtual calendar and the related data to temperature
as input for GAN and CTGAN. The second step is to load the electric data as an input for the
deep learning regression model. The process finalizes by generating actual data based on applying
a regression model on the generated dataset. Kavousi et al. [11] presented the various machine
learning techniques such as Artificial Neural Network (ANN) and autoregressive model for the
wavelet transform. This process is used to make the correlation of the functions for the time series
electric load in terms of stationary and non-stationary behaviors. The energy consumption data
has been obtained on a half-hourly basis.

Chenlu et al. [12], proposed the prediction of a parallel scheme applying few amounts of data
for generating the artificial data based on GAN. The applied dataset is containing the original and
synthetic type of data using the machine learning forecasting models. Kang et al. [13] presented
forecasting of the stock market using GAN based on the LSTM and MLP machine learning
models. The train set contains the daily stock data, which this process shows the improvement of
forecasting accuracy in this system.

Rezagholiradeh et al. [14] applied GAN to overcome the problem of regression. The GAN
structure in this process generates the train data and carries out the forecasting. This system
becomes successful in reducing the errors of the proposed model. MedGAN [15] processing is
based on an auto-encoder, but it is available for numeric and binary data types. The design of
this system doesn’t support the various type of dataset, and to process the different data types,
different models are required [16]. The numerical data is well fitted with the TableGAN and
VEEGAN, but there is a problem for categorical data [17] in terms of collapse mode. GAN is a
successful image generation method, but the training is not stable and straightforward [18].

2 Proposed Methodology

In this section, we explain our proposed approach on reducing prediction error of energy
consumption by generating synthetic time series data. Through this work, we demonstrate that
machine learning models when trained by combining original time series energy consumption data
with synthetic data can reduce the prediction error rate to a good extent as compared to using
only original real time data to train the models. In Fig. 1, we have presented the overview of
our proposed methodology. The proposed approach has been divided into four stages. As input,
we have considered real time energy consumption data of Jeju province in South Korea. The
next stage is the preprocessing stage, where we prepare the data according to different model
requirement. First, we train prediction models by using original data and then extract the data
that has absolute error more than four. This data is then used as input to the augmentor or
GAN synthesizer. After preprocessing comes the augmentation stage, where we perform vari-
ous traditional augmentation techniques along with synthetic generation of data using different
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variations of generative adversarial networks. We propose that the architecture of an improved
version of WGAN-GP can be adapted by TGAN with skip connections to generate synthetic
energy consumption time series data. We name our proposed model as TGAN-skip-Improved-
WGAN-GP. In the last stage, we combine the original data with the augmented or synthetic data
generated by each model. We then evaluate the energy consumption prediction error with and
without combining synthetic data with the original data. In the result section we assess the quality
of synthetic data generated by our proposed model compared to augmented or synthetic data
generated by other models. We also compare the prediction accuracy, mean error and maximum
error with and without using synthetic data.

Figure 1: Overview of the proposed approach

2.1 Energy Consumption Time Series Tabular Data
For our experiment, we have acquired real time energy and weather data of Jeju Island from

Jeju Energy Corporation. Korea Power Exchange (KPE) and Korea Electric Power Corporation
(KEPC) are the two main sources of electricity and renewable energy in South Korea. The three
primary sources of renewable energy for these organizations are obtained through contractless
small-sized behind the meter energy generator, photovoltaic solar energy generator and wind
power energy generator. There are five weather stations in Jeju Island that acquires data from all
over the Island.

We used energy consumption data of Jeju Island, South Korea dated from January 2012
to August 2018 to train our model. The time series energy consumption tabular data has been
obtained on a half-hourly basis. As a result, we received 48 entries per day of energy load. In
Tab. 1, we define the columns of the energy data and their properties.
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Table 1: Definition of input data

Abbreviation Feature Format Null Type

BASE_DT Date and Time yyyy-mm-dd hh:mm:ss No date
DFK_CD Code for day of the week 0 (Sunday)–6 (Saturday) No Integer (category)
HOLDY_CD Code for holiday 0 (Weekday), 1–9 (Holidays) No Integer (category)
SPCL_CD Code for special holidays Predefined string codes Yes String (category)
TOTAL_LOAD Total energy load Milliwatt (mW) No Float
ABS_ERROR Absolute error Error for each prediction No Float
TA Temperature Celsius or fahrenheit No Float (◦C or ◦F)
HM Humidity Percentage No Float
WS Wind speed Meters per second No Float (m/s)
DI Discomfort index Celsius No Float (◦C)
ST Sensible temperature Celsius or fahrenheit No Float (◦C or ◦F)
TD Due point temperature Celsius or fahrenheit No Float (◦C or ◦F)

2.2 Preprocessing
In the preprocessing stage, we perform different operations such as segregation of fields,

data cleaning, null value removal, encoding and data extraction. The tabular time series energy
data is prepared according to the requirement of the augmentation or GAN model. Firstly, we
replace NaN values with zero. From the BASE_DT column, we extract year, month, day, hour,
minutes and seconds. For SPCL_CD, we encode the string codes to categorical format. Initially,
with the original raw data, we apply a hybrid ensemble model consisting of CatBoost, Gradient
Boost and Multilayer Perceptron to perform energy consumption prediction. For every row in the
tabular data, we compare the original energy consumption with the predicted energy consump-
tion value. We then compute the absolute error for each prediction. We sort the ABS_ERROR
field in descending order and extract the data that has an error value of more than four. For
augmentation and synthetic data generation, we experimented with different variations of data
such as training the GAN synthesizer on the whole original data to generate new synthetic energy
consumption data. We also experimented by synthesizing data that has an ABS_ERROR greater
than four. We selected different values of ABS_ERROR to extract the energy consumption data
which was further used to generate augmented and synthetic data to test the prediction model.
We observed that not every augmented or synthetic data can reduce the prediction error rate.
So, in our work, we did a vast experimentation with multiple combination of synthetic data and
models. In this paper, we have proposed a generative adversarial networks-based model to generate
synthetic data which when combined with original data reduced the prediction error rate to a great
extent. We have also tested our proposed model with other publicly available datasets to verify
the efficiency of the model when used in different scenarios. Different preprocessing techniques
have been applied to different datasets as required by specific augmentation and GAN models.

2.3 Augmentation Through Random Transformation and Discriminative Guided Warping
Data augmentation is a familiar process in image processing. A lot of techniques for time

series data augmentation are borrowed from data augmentation of images commonly termed as
random transformations. Random transformation includes jittering, rotation, scaling, cropping,
magnitude warping, time warping and many other methods. Data augmentation through random
transformation uses specific transformation function to generate pattern D′, where D is a sequence
with T number of time steps denoted as D = D1, . . ., Dt, . . ., DT and where every element Dt can
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be univariate or multivariate. Random transformation of time series data can be divided into three
categories namely magnitude domain transformation, time domain transformation and frequency
domain transformation. Magnitude domain transformation refers to the transformation performed
on the values of the time series tabular data. In time domain transformation, the transformation is
applied on the time axis whereas in frequency domain transformation periodic signals are consid-
ered to be transformed. In this paper, we have used some of the transformation techniques from
each domain. Below, we explain the random transformation-based data augmentation techniques
we have used in this paper.

• Jittering–Jittering [19] is the transformation process which has been used to add noise in
our energy consumption time series tabular data. We define jittering as in Eq. (1)

D′ =D1 +λ1, . . . ,Dt+λt, . . . ,DT+λT (1)

where λ is the Gaussian noise that is added for every element Dt at each time step t. Including
noise has shown to induce generalization and enhance the performance of neural networks.
Through jittering the time series data created new energy consumption data patterns that are
different from the original data with respect to addition of noise.

• Rotation–Rotation transformation [20] in the energy consumption time series data can be
defined as in Eq. (2)

D′ =RD1, . . . ,RDt, . . . ,RDT (2)

where R denoted the element-wise random rotation matrix for multivariate time series data and
for univariate time series data it represents random flipping.

• Scaling–Scaling adds a random scalar value [21] in the energy consumption data which
increases or decreases the magnitude of each element. Scaling is described with below
Eq. (3)

D′ =�D1, . . . ,�Dt, . . . ,�DT (3)

where � is the scaling parameter that is determined by the Gaussian distribution �∼ N (1, σ2)
and σ is the hyperparameter. Scaling does not enlarge the time series data but only increases or
decreases the magnitude of elements.

• Magnitude Warping–Through magnitude warping [22], we multiply the magnitude of energy
consumption times series data with a smoothed curve and can be defined as in Eq. (4)

D′ =M1D1, . . . ,MtDt, . . . ,MTDT (4)

where M1, . . . , Mt, . . . , MT is the sequence incorporated from the cubic spline with knots taken
from a distribution N (1, σ2 ), where σ is the hyperparameter. Magnitude warping helps in adding
small fluctuations in the time series data which broadens the prospect of the dataset.

• Time Warping–Time warping generally warps in the temporal dimension through a random
smooth curve produced by the cubic spline with knots at the random magnitude. The
augmented data obtained through time warping can be defined as in Eq. (5)

D′ =DT(1), . . . ,DT(t), . . . ,DT(T) (5)

where T(·) represents the warping function based on the curve defined by the cubic spline.

• SPAWNER–Suboptimal Warped Time Series Generator (SPAWNER) performs augmen-
tation of energy consumption data through suboptimal time warping [23]. SPAWNER
averages aligned patterns and can create unlimited new time series energy consumption data.
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• Discriminative Guided Warping with Dynamic Time Warping (DGW-D) and Discriminative
Guided Warping with shapeDTW (DGW-SD)–Lets us consider two time series denoted
as a = a1, . . . , ax, . . . , aX and b = b1, . . . , by, . . ., bY with sequence length X and Y .
Given sequence a and b, dynamic time warping (DTW) can determine the global distance
between them where element ax and by can represent univariate or multivariate time series
data. Dynamic time warping is useful for measuring an optimized distance for time series
data. It matches the time series elements non-linearly in the time dimension by warping
the sequences to find the minimal path between element-wise time series using dynamic
programming.

This minimal distance is known as the warping path which acts as a mapping between time
steps of one sequence and another. Guided warping provides guidance for time warping based on
a reference pattern and uses the dynamic alignment function of DTW to warp the elements in the
time domain. There are two variants of guided warping random guided warping or discriminative
guided warping (DGW). DGW-D uses a discriminative teacher as the reference pattern for guided
warping. On the other hand, shapeDTW uses shape-descriptors to warp sample patterns within
the sequence which helps in maintaining the original features of the energy time series data
while generating unlimited related new samples. Fig. 2 represents the overview of DGW presented
in work [24] which we followed to select the discriminative teacher and to improve the energy
consumption time series data augmentation with shape descriptors.

Figure 2: Discriminative guided warping (DGW)

2.4 Generative Adversarial Networks for Generating Synthetic Energy Consumption Data
Since the introduction of generative adversarial networks in 2014 by Goodfellow et al. [25],

it has been widely used in the generation of new and vast image, video and audio datasets. GAN
has been used in multiple fields to augment image data, tabular data and signal data. Also, GAN
is well known for generating synthetic data that can be used to train machine learning algorithms
to improve the performance of the model by increasing accuracy and reducing error rate. GAN
is a machine learning framework which consists of two neural networks known as generator (G)
and discriminator (D) which competes against each other in a zero-sum game. The flow of GAN
architecture is shown in Fig. 3. The generator receives random input noise NZ(Z) and retains
the original data distribution DZ over data x. The generator outputs samples that serves as input
to the discriminator along with the original data distribution. Function of discriminator is to
differentiate generated data from real data. So, in the zero-sum game the generator tries to fool
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the discriminator and the discriminator tries to correctly distinguish between real and generated
data. Through the computation and feedback of the generator and discriminator loss the GAN
tries to improve its performance. The generator’s task is to minimize log(1 − D(G(Z))) where
the minmax function is defined as in Eq. (6).

min
G

max
D

f (D,G)=Ex∼DZ(x)[logD(x)]+EZ∼DZ(Z)[log(1−D(G(Z)))] (6)

Figure 3: Architecture of generative adversarial networks (GAN)

In this paper, we propose a GAN model that combines the architecture of tabular GAN
(TGAN) and Wasserstein GAN with gradient penalty (WGAN-GP). The proposed model is
termed as TGAN-skip-Improved-WGAN-GP where we modify the tabular GAN with skip con-
nections, improve the training of WGAN-GP with a consistency term and use the architecture
of improved WGAN-GP to train TGAN-skip model. Our proposed model can generate synthetic
energy consumption time series tabular data which when used for prediction, reduces the predic-
tion error rate to a considerable amount and increases the accuracy of the prediction model. First,
we perform data transformation where we define meaningful representation of continuous and
categorical values. Then the data is processed through TGAN-skip-Improved-WGAN-GP model
and further inverse transformation is performed, after which final synthetic energy consumption
time series tabular data is generated. Machine learning models require meaningful representation
of real data which is achieved through data transformation. Data transformation performs nor-
malization for continuous values by transforming the continuous values within 0 and 1. Whereas
data transformation standardizes the continuous values by transforming the data to obtain a mean
value of 0 and a standard deviation of 1. In our experiment we have performed standardization
of the original data for continuous values and used embedding techniques for data transformation
of categorical values which converts the large vectors into small dimensional space vectors and
preserves the semantic relationship.

Tabular GAN was introduced in the year 2018 [26] and since then, it has been widely
used for generating synthetic tabular data of different fields and for various applications. In
Fig. 4 we present the difference between TGAN and our proposed TGAN with skip connections
architecture. Including skip connections in the TGAN eradicates vanishing gradient problem and
also reduces the convergence time for the generator. The TGAN-skip architecture conserves the
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activation of high magnitude by initiating prompt activation and allowing them to skip in-between
dense layers which results in preserving the old information. In the TGAN-skip architecture we use
long short-term memory (LSTM) in the generator network architecture and multilayer perceptron
for the discriminator network as shown in Figs. 5a and 5b. We have modeled the generator to
produce categorical values in one step and the continuous values in two steps. First, the value
scalar VSi is generated for continuous variables, after which we generate the cluster vector CVi.
The probability distribution Pi is computed for categorical variables for each label. R representing
random variable along with context vector Ci which is attention-based and previous hidden vector
Hi or embedding vector H ′

i is forwarded to the LSTM cell as input for each step St. We define
the context by Eq. (7)

∂St =
St∑
n=1

exp∂St,n∑
p exp∂St,p

On (7)

where ∂St is the attention weight vector and O is output from the LSTM cell which is passed
through multiple dense layers to generate attention vector for LSTM’s next iteration and then
generates the final output.

Figure 4: Architectural difference between TGAN and TGAN-skip

Wasserstein GAN (WGAN) was introduced to improve the training and eliminate the flaws
of Vanilla GAN [27]. Later, Gulrajani et al. [28], proposed improved WGAN known as WGAN-
GP where GP stands for gradient penalty which would comply the constraint of 1-Lipschitz and
would remove the requirement for clipping. WGAN-GP improved WGAN by introducing a new
loss that would combine the gradient penalty loss with the original critic loss as defined in Eqs. (8)
and (9)

OriginalCriticLoss =Ex̃ ∼Gn[logD
(
x̃
)
]−Ex̂∼dn[D(x)] (8)
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Figure 5: (a) Architecture of the generator, (b) Architecture of the discriminator

GradientPenaltyLoss = λ Ex̂∼Rx̂
[(||∇x̂D

(
x̂
) ||2− 1)2] (9)

where dn and Gn represents data distribution and generator distribution and x̂∼Rx̂ represents
random samples with value of λ chosen as 10 according to [24] and further experimentation. We
have improved the training of WGAN-GP by introducing a consistency term as described in [29].
Gradient penalty is defined with a differential discriminator being 1-Lipschitz only if the norm of
its gradient is at the most one everywhere [30]. But it is not always possible to penalize everywhere
when there are finite number of iterations for training. So, the gradient penalty does not examine
several significant portions of the support domain. This flaw can be improved by not focusing on
a single data point at a given time and by regularizing a pair of data points ensuing the basic
definition of 1-Lipschitz. Let, M denotes the Lipschitz constant of the second norm i.e., l2 metric
and the discriminator is Lipschitz continuous if there exists a real constant C ≥ 0 for the pair x1
and x2

M(D(x1),D(x2))≤C ·M(x1, x2), (10)



CMC, 2022, vol.70, no.2 3161

we add to the value function of WGAN, a consistency term CT as defined in Eq. (11) to penalize
the infringement occurred in Eq. (10).

CT |x1,x2 =Ex1,x2[max(0,
M (D (x1) ,D (x2))

M (x1, x2)
−C′)] (11)

Defining the consistency term and using the improved version of WGAN-GP architecture for
TGAN-skip instead of normally used Vanilla GAN training architecture, reduced the loss of the
discriminator and enhanced the generator performance. This helped in avoiding mode collapse
problem and stagnation scenario and also our proposed model TGAN-skip-Improved-WGAN-
GP, converged much faster. For implementing improved-WGAN-GP architecture in TGAN-skip
model, we adapted the consistency term in WGAN-GP and the loss function. We also modi-
fied the batch normalization to layer normalization in the discriminator and removed sigmoid
activation from last layer. Thus, the discriminator was trained for more iterations. At last, we
perform inverse transformation to generate more meaning to the initially transformed dataset by
transforming discrete values to multinomial distribution and continuous variables to scalar values.
Our proposed architecture could produce better quality of synthetic data as presented in the
evaluation and result section.

3 Evaluation and Result

We evaluated our proposed model based on the synthetic and augmented data quality, predic-
tion accuracy and error rates. For every augmented or synthesized data, we computed the mean
correlation coefficient, mean absolute error, root mean square error, percent root mean square
difference, Fréchet distance, and mirror column association. Also, we have evaluated different
variations of augmented and synthetic data on our prediction model. We presented the prediction
accuracy, mean error and the maximum error for every synthetic or augmented data tested on our
prediction model.

For assessing the synthetic data, we compute the correlation coefficient of the synthetic data
with the original data by measuring Pearson’s correlation coefficient that ranged from −1 to 1.
The depiction of the correlation values is shown in Tab. 2 where direct relationship is represented
by a positive value, inverse relation is depicted by a negative value and zero represents no
relationship. Pearson’s correlation coefficient PCoef can be defined as in Eq. (12), where original
data is represented by OriData and synthetic data is represented by SynData.

PCoef =
∑n

i=1(OriDatai−OriData)(SynDatai−SynData)√∑n
i=1(OriDatai−OriData )

[∑n
i=1(SynDatai−SynData)

] (12)

3.1 Mean Absolute Error
Mean absolute error (MAE) is the measure of absolute error between the synthetic data and

the original data as defined by Eq. (13).

MAE= 1
n

n∑
i=1

∣∣OriDatai−SynDatai
∣∣ (13)
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Table 2: Representation of correlation values

Correlation values Correlation representation

0 to 0.3 or 0 to −0.3 Negligible
0.3 to 0.5 or −0.3 to −0.5 Low
0.5 to 0.7 or −0.5 to −0.7 Moderately
0.7 to 0.9 or −0.7 to −0.9 High
0.9 to 1 or −0.9 to 1 Extensively

3.2 Root Mean Square Error
Root mean square error (RMSE) quantifies the stability and measures how the synthetic data

is different from the original data as defined by Eq. (14).

RMSE=
√√√√n

n∑
i=1

(
OriDatai−SynDatai

)2 (14)

3.3 Percent Root Mean Square Difference
Percent Root Mean Square Difference (PRD) measures the distortion between the synthetic

and the original signals as defined by Eq. (15).

PRD=

√√√√100

∑n
i=1

(
OriDatai−SynDatai

)2
∑n

i=1 (OriData)2
(15)

3.4 Fréchet Distance
Fréchet Distance is used for finding the similarity in ordering and also to find the location

of points along the curve. If OriDatai =O1, O2, O3, . . . , Oi is order of points in original data
curve and SynDataj = S1, S2, S3, . . . , Sj is for synthetic data curve, we can compute the sequence
length ||l|| as defined in Eq. (16) [26]

‖l‖ = max
m=1,...,n

l
(
Oom, Ssm

)
, (16)

where Euclidean distance is defined by l and Oom and Ssm represents sequence or order of points.
Eq. (17) defines the Fréchet Distance [31]

FD(i, j)=min‖l‖ (17)

3.5 Mirror Column Association
Mirror column association is used find the rate of association between each column from

the synthetic and original dataset. Greater the value, greater is the association, representing better
performance.

Tab. 3 represents the quality of the synthetic and augmented data generated by different
models and techniques. As we can see from Tab. 3, that our proposed model achieves better result
as compared to existing models with an association value of 0.936 and also reduces the error
to a good extent. In Tab. 4, we present the prediction accuracy, mean error and maximum error
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which depicts that when the synthetic data generated by our proposed model is combined with
the original data, prediction accuracy is increased and error rate is decreased.

Table 3: Model comparison and quality evaluation of generated synthetic data

Type Mean
correlation
coefficient

MAE RMSE PRD FD Mirror
column
association

Jittering 0.578 0.88 0.79 87.7 0.88 0.613
Rotation 0.612 0.76 0.66 89.1 0.85 0.648
Scaling 0.589 0.81 0.67 86.3 0.87 0.632
Magnitude warping 0.693 0.71 0.61 84.5 0.79 0.681
Time warping 0.791 0.69 0.59 78.6 0.81 0.725
SPAWNER 0.813 0.66 0.60 77.1 0.77 0.783
DGW-SD 0.882 0.59 0.55 69.4 0.74 0.856
DGW-D 0.867 0.62 0.58 67.1 0.76 0.847
TGAN 0.818 0.69 0.59 69.3 0.78 0.801
TGAN-skip 0.839 0.63 0.58 68.1 0.77 0.822
TGAN-WGAN-GP 0.891 0.54 0.51 62.0 0.69 0.876
TGAN-skip-WGAN-GP 0.927 0.49 0.47 58.2 0.63 0.929
TGAN-skip-improved-WGAN-GP 0.931 0.46 0.44 55.7 0.60 0.936

Table 4: Model comparison and quality evaluation of generated synthetic data

Type Prediction accuracy Mean error Maximum error

No augmentation 86.8 2.9 8.9
Jittering 54.9 6.5 12.3
Rotation 56.7 7.2 13.6
Scaling 52.9 7.1 12.1
Magnitude warping 61.8 6.3 11.9
Time warping 68.9 5.2 11.8
SPAWNER 65.3 5.7 13.7
DGW-SD 86.4 3.8 10.3
DGW-D 87.1 2.8 10.1
TGAN 85.5 2.9 10.9
TGAN-skip 87.2 2.7 8.9
TGAN-WGAN-GP 88.9 1.7 8.6
TGAN-skip-WGAN-GP 91.4 1.6 7.2
TGAN-skip-improved-WGAN-GP 92.7 1.4 6.9
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3.6 Computation of Mean and Standard Deviation of Original and Synthetic Data
We present the visual representation of the mean and standard deviation of every column.

The diagonal line represents the original data, so the closer the plotted points to the diagonal
line, the better is the correlation between the original and the synthetic data. In Fig. 6 we have
compared the mean and standard deviation produced by DGW-SD, TGAN-WGAN-GP and our
proposed model TGAN-skip-Improved-WGAN-GP. Result depicts that the synthetic data gener-
ated by TGAN-skip-improved-WGAN-GP is more correlated to the original data as compared to
other existing models which concludes that our proposed model achieves better results and can
be used for generating synthetic time series tabular data.

Figure 6: Comparison of mean and standard deviation of different models
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4 Conclusion

In this paper, we propose that prediction accuracy and error rate can be improved if we try to
balance the dataset. Many a times, we receive large amount of data, but each case in the dataset
are not always well distributed, or the data is not uniform. In our case, we had large amount of
entries in the energy consumption data, but when we tried to use prediction algorithm, the error
rate was more. This was due to the fact that there were less entries for days with special events,
holidays, natural calamities etc. So, in this paper we experimented and proposed that augmenting
or generating synthetic data and combining them with the original data to balance the dataset
can reduce prediction error and enhance the prediction accuracy.

We divided our work into four stages. In the first stage, we receive the energy consumption
time series tabular data as input. In the second stage, we preprocess the data according to
the requirement of different GAN models and augmentation method. In the third stage, for
augmentation, we perform random transformation and discriminative guided warping. In random
transformation, we experiment our dataset with jittering, rotation, scaling, magnitude warping,
time warping, SPAWNER. In discriminative guided warping, we augment the data with dynamic
time warping and shape DTW. We then propose a generative adversarial networks-based model
named as TGAN-skip-Improved-WGAN-GP which modifies TGAN with skip connections and
then enhances the training of TGAN-skip with improved WGAN-GP architecture. We improve
WGAN-GP architecture by defining a consistency term. We experiment our datasets with various
other GAN models. In the result section we compute the prediction accuracy, mean error and
maximum error when different augmented and synthetic datasets are used with the original
data. We also measure the quality of the generated data through MAE, RMSE, PRD, FD,
mirror column association and mean correlation coefficient. We also visually presented the mean
and standard deviation of generated data and original data from different augmentation and
GAN models. Results show that generated data from our proposed model TGAN-skip-Improved-
WGAN-GP when combined with original data can significantly reduce the prediction error rate
and improve the prediction accuracy as compared to using only original data to predict energy
consumption.
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