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Abstract: Understanding the content of the source code and its regular
expression is very difficult when they are written in an unfamiliar language.
Pseudo-code explains and describes the content of the code without using
syntax or programming language technologies. However, writing Pseudo-code
to each code instruction is laborious. Recently, neural machine translation is
used to generate textual descriptions for the source code. In this paper, a novel
deep learning-based transformer (DLBT) model is proposed for automatic
Pseudo-code generation from the source code. The proposed model uses deep
learning which is based on Neural Machine Translation (NMT) to work as
a language translator. The DLBT is based on the transformer which is an
encoder-decoder structure. There are three major components: tokenizer and
embeddings, transformer, and post-processing. Each code line is tokenized to
dense vector. Then transformer captures the relatedness between the source
code and the matching Pseudo-code without the need of Recurrent Neural
Network (RNN). At the post-processing step, the generated Pseudo-code
is optimized. The proposed model is assessed using a real Python dataset,
which contains more than 18,800 lines of a source code written in Python.
The experiments show promising performance results compared with other
machine translation methods such as Recurrent Neural Network (RNN).
The proposed DLBT records 47.32, 68. 49 accuracy and BLEU performance
measures, respectively.

Keywords: Natural language processing; long short-term memory; neu-
ral machine translation; pseudo-code generation; deep learning-based
transformer

1 Introduction

In the software development cycle [1], there are many different ways of writing code based
on the syntax of the programming language. Understanding the program is challenging if the
developer is unfamiliar with the programming language. Software development is a collaborative
process involving many developers. At any time, the code is changed according to the requirements
updates. Before any change, the developer would need to read all the previous lines of code
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to make the new updates. Therefore, developers should associate a description with each code
line they write, which makes code updating is very difficult. This process is difficult and ignored
by majority of programmers. Thus, many tools and techniques are developed to automatically
generate textual descriptions of the source code. This process is done at the level of accurate
code statements [2,3]. Pseudo-code is a well-known textual description for source code. This
description uses natural language and mathematical expressions to explain what the source code
does. Moreover, Pseudo-code can be converted into any programming language as shown in
Fig. 1. This an example of the source Python code and its equivalent in Pseudo-code. Python
code instruction “self . _servers = server . split ( ′;′′ )” is written in Pseudo-code “split server with
′;′′ as a delimiter, substitute the result for self._servers.”

Figure 1: An example of Python code and its corresponding Pseudo-code

Therefore, an automatic way to generating Pseudo-code from the source code is needed.
Furthermore, to generate the Pseudo-code from the source code, Statistical Machine Translation
(SMT) is used [3], which is a process of machine translation. Another way to solve this problem
is the rule-based machine, which is statistically drawn from the source and target sentences and
creates its own translation. Deep learning [4] is used in machine translation, known by the name
of Neural Machine Translation (NMT). This is the current alternative to Statistical Machine
Translation (SMT) because it gives better results [2]. The most popular model in the NMT is
Recurrent Neural Network (RNN) [2] in which the translation data follows a sequential and
temporary pattern. The problem in the RNN is the training process, as weights tuning has a very
small value which is called vanishing gradient [5], or weight changes to a large value which is
called exploding gradient. To solve this problem, the Long Short-Term Memory (LSTM) model
is used [6] as it uses language modeling [7]. This leads to the success of backpropagation to
optimize the weights [8]. The major limitations of LSTM-based models are that it processes the
code sequentially and fails to capture the long-term dependencies between code tokens.

In this paper, a novel deep learning-based transformer (DLBT) model is proposed for auto-
matic Pseudo-code generation from the source code. The proposed model is a transformer machine
translation model that is based on deep learning [9] to overcome the limits of the RNN and
LSTM models. The DLBT model is built on the sequence-to-sequence frame and is based on
the attention layer without the need for a Recurrent Neural Network (RNN). The proposed
DLBT is an encoder-decoder structure, which is consists of three components: Tokenization and
Embedding, Transformer (encoding and decoding) and Post-processing. Each sentence is separated
in tokens, and positional encoding is applied to prepare the input entry for the transformer step.
Then, the encoder processes the input iteratively, then the decoder does the same at the output of
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the encoder. Finally, a correction function is applied to enhance the resultant Pseudo-code. The
proposed model is evaluated using a large dataset of Python code [2]. The BLEU [10] is used
to measure the Pseudo-code quality. The results of experiments are promising compared to other
Neural Machine Translation (NMT) methods. The proposed DLBT records 47.32, 68. 49 accuracy
and BLEU performance measures, respectively.

The main goal of the proposed model is to automatically generate the Pseudo-code by
avoiding the problem of the vanishing gradient because it has access at each layer of all input
tokens. In addition, the DLBT uses the attention layer independently of the previous state. This
independence leads to lower computation and speed in training by avoiding weight calculations
between the situations or using a long short-term memory.

This paper is organized as follows. Section 2 presents a literature review. Section 3 presents
the DLBT proposed model. Section 4 shows experimental results, and finally, Section 5 is the
conclusions.

2 Related Work

Machine Translation (MT) is used to translate a language into other languages. The meth-
ods which are based on Machine Translation are comprised of rule-based and SMT. Recently
the Neural Machine Translation (NMT), has increased for language modeling. In [2], authors
generated Pseudo-code from the Python source code using NMT. Their approach is based on
the LSTM model and the attention layer. LSTM is used to learn long-term dependencies in
the source code. Many code elements are dependent although they are in different order. The
attention layer is applied to the encoder-decoder model as it improves the performance of the
translation [11]. It is also used to align incoming and outcoming sequences. In [3], the Pseudo-
code is generated from the Python source code with Statistical Machine Translation (SMT).
This method involves Phrase-Based Machine Translation and Tree-to String Machine Translation.
Phrase-Based Machine Translation relates the phrases of the input source code with the phrases
of the target of the corresponding Pseudo-code. In addition, Tree-to String Machine Translation
converts the code into tree using Abstract Syntax Trees (AST) [12] to maintain the structural
context of the code. Tree-to String Machine Translation has three different styles: raw code trees,
inserted tree heads, and reduced trees.

In [13], the authors designed a model for generating Pseudo-code that consists of three
parts: an input encoder, a sketch decoder, and a natural language explanation decoder. The input
encoder is used to encode the embedding vector of all the input data in a latent vector space.
Then, bidirectional LSTM (BiLSTM) is used to encode the input embedding. The sketch decoder
adds LSTM with an attention mechanism. The natural language explanation decoder is based on
recurrent neural networks (RNN), an attention mechanism, and a copy mechanism [14]. In [15],
authors generated Python source code from Pseudo-code using NMT. Their approach is made
of two frameworks: The grammatical model and the deep learning model. The grammar model
is applied in source code sentences after conversion into a tree by ASTs. String-to-Tree Machine
Translation has two actions that run in the grammar model APPLYULE [r] and GENTOKEN [v].
APPLYULE [r] extracts the role of the structure of the code in current ASTs. The result of this
action will be the roles, call function, if-statement, loop, or function definition. GENTOKEN [v]
defines the value of a node within AST from a token word. Neural Machine Translation (NMT)
works in String-to-Tree Machine Translation in the encoder and decoder. Encoder reserves the
input as a sequence of the words and uses bidirectional LSTM. The decoder presents the RNN
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model at AST using the vertical LSTM and applies the Grammar model for each node in AST.
The connection between encoder and decoder is done using Deep Neural Network (DNN).

The authors in [16], started with the syntactic code generation model in [15] which uses
sequences of actions to generate the AST before converting it to a code. Then, the Retrieval-Based
mechanism [17] is applied to improve the result when the input is similar to the input in the
training dataset but does not exist as it applies a tree instead of a string. The Retrieval-Based
code generation RECODE has four steps to achieve. First, retrieve the most similar Pseudo-code
from the training Pseudo-code set compared to the input sentence. Second, translate the retrieved
sentences from the first step and have the ASTs to extract n-gram of a subtree. Third, words
that are similar between the output and the retrieved sentence are searched for by input and then
replaced by words that are not the same between the input sentence and the retrieved sentence
in the first step. Fourth, each decoding step increases the probability of the action if the same
procedure is repeated to call a later time.

The work of [18] introduced a Tree-Based Convolutional Neural Network (TBCNN) for
classifying programs based on code functionality and program detection. This could be done by
converting the code to a tree by using ASTs and representing the nodes to vector. This shape of
vectors such as a triangle as tree-based convolution, is applied by max-pooling. Dynamic pooling
is the result of the previous step, then it adds a fully-connected hidden layer and a SoftMax as the
output layer in the architecture. The work in [19] presents a method for generating code comments
for Java methods through the introduced model which is called DeepCom. The framework of
DeepCom has three steps: data processing, training a sequence-to-sequence model, and generating
comments with the trained model. In the data processing step, the data of the source files must
be obtained and separated into natural language annotation and java code. The java method
converts AST data into a string and is inputted in the training a sequence-to-sequence model as
x. The natural language annotation is inputted in the training a sequence-to-sequence model as y.
Training a sequence-to-sequence model is followed by the NMT architecture and uses LSTM in
each encoder and decoder. After training the model and inputting a java method into the model,
the comment is generated. In [20], DeepCom is developed to represent the code structure as a
tree using AST. In [21], the DeepCom is enhanced for Hybrid-DeepCom. It consists of three
components: local encoder that is based on a bi-directional Gated Recurrent Unit (bi-GRU) [22],
global encoder which is built upon a Graph Attention (GAT) network [23], and decoder that
aggregates the local and global information learned by the local and global encoders. The work
in [24] presents a rule-based method for generating Pseudo-code from the Python source code.
The dataset which is used in this work is the same dataset in [2,3]. Tab. 1 shows a summary
comparison between different machine translation methods.

3 Deep Learning-Based Transformer (DLBT) Model

The proposed Deep Learning-Based Transformer (DLBT) model generates Pseudo-code from
the source code based on the Transformer Neural Machine Translation (TNMT). The proposed
model is organized as a stack of self-attention and pointwise, fully connected layers as shown in
Fig. 2. The DLBT consists of the following components:

• Tokenization and Embedding.
• Transformer (encoding and decoding).
• Post-processing.
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Table 1: A summary showing machine translation methods

Studies Limitation

[2,13,19,20] • LSTM requires high memory for training experiments.
• The training step is slow because sentence processing
is done word by word.
• The size of the batch, learning rate, and number of
epochs must be selected efficiently to avoid overfitting.
• Dropout is complicated to implement in LSTMs.
• LSTMs are susceptible to different random weight
initializations; this means that repetition of the
experiment may give different results.
• Bidirectional LSTM has double LSTM cells, which is
expensive.

[3] • Many translation errors with material that does not
resemble the content of the training data.
• Statistical machine translation has also been shown to
be less efficient than neural machine translation.

[15,16] • Training and testing phases are long.
• DNN is used to link encoder to decoder which
consume time more than using attention layer for this
connection.

[18] • CNN works for a fixed sentence size; a performance
reduction would occur when the sentence becomes too
long.
• The result is low compared to other NMT models.

[21] • In decoder, the processing of sentences is done word
by word, which leads to high computation time.
• GRU is slow convergence and low learning
performance.

[24] Low performance compared to other machines
translation methods. It takes to much time in training

3.1 Tokenization and Embedding
In this step, each sentence is tokenized. For example, the sentence s = s.replace ( ′ \ t′′ , ′\

\ t′′ ) is tokenized as [′s′′,’=′′,’s′′,′′.′′,’replace′′,′′ ′,’(′, ′\ ’′′,’\ ′′,’t′′,’\ ’′′,′′,′′,’\ ’′′,’\ ′′,’\ ′′,’t′′,’\ ’′′,′′)′′]. The
order of the tokens are unimportant, because the input is represented as a set of tokens. Two
different methods are used to tokenize:

• Method 1, the rule expression of the Tokenizer is ([∧A-Za-z0-9_:.]);

• Method 2, the rule expression of Tokenizer is ( ).

For example, if there are three statements: “ the_expression=(′?\ /∗+−%<>:&|′′) ”, “ default:
“html,txt”, or “js” ”, and “z2=x1+y3”. The output of the tokenization step after applying Method
1 will be as follows:

• Statement 1: [the_expression, =, (, ′, ?,\ V, ∗, +, -, %, <, >, :, &, |, ′, )];
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Figure 2: The proposed deep learning-based transformer (DLBT) model architecture

• Statement 2: [default:, “, html, ′,′′, txt, “, ′,′′, or, “, js, “];
• Statement3: [z2, =, x1, +, y3].

The result of the tokenizing step after applying Method 2 will be the following:

• Statement 1:[the_expression, =, (, ′?\ /,
∨∗+-%<>:&|′′,)];

• Statement 2: [default:, “html, ′,′′, ′txt∗∗, ′,′′, ′or′′, “js∗∗];
• Statement 3: [z2, =, x1+y3].

Both methods are used for Pseudo-code and code. Finally, additional tokens are added at the
beginning and end of the sequence. For example, <sop>for start-of-Pseudo-code and <eop>for
end-of-Pseudo-code. After tokenization, tokens embedding is applied. This is a way to represent
similar tokens by similar encodings. A floating-point value is assigned to similar tokens con-
structing a dense vector. Finally, positional encoding is done to discover the sequence order by
alternating the embeddings depending on the position. Before the first attention layer, a small set
of constants is added to the embedding vector as in [9], the sinusoidal function is used for the
positional encoding.
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For example, the sentence “I love the Transformer model “is tokenized as [I, love, the,
Transformer, model]. Then, each token is assigned an index such as indexes in the list
[224,378,962,1123,4136]. Each token is initialized a d-length vector, which has a random number
from −1 to 1. Each vector value represents the linguistic features that are used during the
training step. If two tokens share similar language characteristics and appear in similar contexts,
their embedding values are updated to be closer during the training process. Fig. 3 shows the
embedding process assuming d = 5.

Figure 3: Embedding process for “I love the transformer model” sentence

In positional encodings, Eqs. (1) and (2) are used as follows:

PE(pos, 2i)= sin
(

pos

10000
2∗i
d

)
(1)

PE(pos, 2i+ 1)= cos
(

pos

10000
2∗i
d

)
(2)

where pos is the position word in the sentence, i is index in vector of position, and d is length of
position vector. In [9], the authors hypothesized the Eq. (1) used for the odd index, the Eq. (2)
for even index and d value= 512 would make the model easy to learn. Fig. 4 shows positional
encodings steps to sentence “I love transformer the model” how will be with addition position.

3.2 Transformer (Encoding & Decoding)
The DLBT is an encoder-decoder frame structure. Encoder processes the input iteratively, then

the decoder does the same to the output of the encoder. Encoder and decoder are composed of
uniformly chained layers. The encoder and decoder use attention mechanism to weigh each input,
the relevance of each other input, and pull information from them accordingly to produce the
result. In addition, the feed-forward neural network is used in both the encoder and decoder to
perform the additional processing of outputs. Residual connection and normalization layer [9] are
used for connecting sub-layers. The encoder function is to process input vectors and generates
information about inputs parts that are relevant to each other, then the generated information is
the input for the next encoder. On the other hand, decoders do the opposite. Each encoder takes
the generated information and generates an output sequence.
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Figure 4: Position Encoding steps for “I love the transformer model” sentence

In Multi-Head Attention, the attention function maps a query and a set of key-value pairs
for output and all previous values to vectors. The output is computed by calculating a weighted
sum of the values. The weight is calculated using the query compatibility function with the
corresponding key as shown in Fig. 5. As in [9], the proposed model adopts the Scaled Dot-
Product Attention to calculate the attention function. It has three inputs: queries (Q), keys (K),
and values (V ). The attention function is defined by Eq. (3).

Attention(Q,K,V)= softmax

(
QKT√
dk

)
.V (3)

where Q is queries, K is keys, V is values, and dk is the dimension of keys. The Multi-Head
Attention layer enables the model to jointly attend information from different representation
subspaces at different positions. This occurs by concatenating heads where a signal head is defined
in Eq. (3) and the weight is calculated as Eq. (4).

headi =Attention(QWQ
i ,KWK

i ,VWV
i ) (4)

MutiHead(Q,K,V)=ConCat(head1, ..,headh)W
O (5)

where headi is a head from a set of heads have size h, WQ
i is the weight of headi for queries,

WK
i is the weight of headi for keys and WV

i is the weight of headi for values. The computation of

Multi-Head for all heads is followed Eq. (5) where WO is the weight of Multi-Head.

where headi is a head from a set of heads have size h, WQ
i is the weight of headi for queries,

WK
i is the weight of headi for keys and WV

i is the weight of headi for values. The computation of

Multi-Head for all heads is followed Eq. (5) where WO is the weight of Multi-Head.
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The decoder has a different layer, which is Masked Multi-Head Attention. It works similar to
the multi-head attention layer and uses an extra mask inside Scaled Dot-Product Attention. It sets
all values in the input of the SoftMax equal infinity with corresponding to illegal connections.
Eq. (7) defines the Scaled Dot-Product Attention with the mask. It is called a Masked Scaled
Dot-Product Attention or Masked attention function. The masked head is calculated as in Eq. (8).
Masked Multi-Head Attention is presented in Eq. (9).

Masked Attention(Q,K,V)= softmax

(
M + QKT√

dk

)
.V (6)

Masked headi =Masked Attention(QWQ
i ,KWK

i ,VWV
i ) (7)

Masked MutiHead(Q,K,V)=ConCat(Masked head1, ..,Masked headh)W
O (8)

Figure 5: Multi-Head Attention consists of several attention layers running in parallel

3.3 Post-Processing
In testing phase, the proposed model corrects Pseudo-code as tokenizer by adding spaces

between tokens; such as, (\ ’\ "\
∨
/?|&<>∗+%). For example, the translation of code “ s = s .

replace ( ′\ r′′ , ′\ \ r′′ ).” is “ replace every occurrence of ′\ r ′ in s with ′\ \ r ′.”, this well
be corrected to “ replace every occurrence of ′\ r′′ in s with ′\ \ r′′.” as shown in Fig. 6.

Figure 6: Example of Pseudo-code after Post-processing
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4 Experimental Results and Evaluation

4.1 Dataset Description
The proposed deep learning-based transformer (DLBT) model is evaluated using Django

codebase [2]. It is gathered from a web application framework. The Django dataset contains more
than 18,800 lines of a source code written in Python and corresponds to the English Pseudo-code
of those lines. A sample of the dataset is shown in Fig. 7. DLBT is evaluated using Method(1)
and Method(2) tokenizers as follows:

• Method(1) tokenizer: the vocabulary sizes of Pseudo-code and Python code are 10,867 and
6,226 respectively. The maximum sequence lengths of Pseudo-code and the source code are
538 and 963 respectively.

• Method(2) tokenizer: the vocabulary sizes of Pseudo-code and Python code are13,060 and
8,552. The maximum sequence lengths are 522 and 613.

Figure 7: Example of Django codebase

The proposed DLBT model is implemented by PyTorch [25] for deep learning and Spacy [26]
for natural language processing. WordNet [27] is used to tokenizing the source code lines. DLBT
is assessed with two values for the number of layers in the encoder and decoder(6-layers and
8-layers).

4.2 Performance Measures
The BLEU score is a metric measurement to evaluate the quality of machine translation

techniques. Quality is measured in terms of how to match between the machine translation
output (candidate or hypothesis) and human translation output (reference). BLEU score is a value,
ranging from 0 to 1. The machine-translation output closest to the human translation output
gets a high BLEU score. If the machine translation output is identical to the human translation
output, then the BLEU score will be 1. The BLEU uses a modified form of precision uni-
gram, bi-gram, 3-gram, and 4-gram to compare a candidate translation against multiple reference
translations.

Pn=
∑

ngramεC countclip(ngram)∑
ngram′εC count(ngram

′)
(9)
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where Pn is the precision score,
∑

ngramεC countclip(ngram) is the n-gram matches sen-
tence by sentence. Additionally, the clipped n-gram counts for all the candidate sentences.∑

ngramεC countclip(ngram)is the number of candidate n-grams in the test dataset.

BP=
{
e

(
1− |r|

|c|
)

if |r| ≥ |c|
1 otherwise

}
(10)

BP is the brevity penalty, |r| is the reference dataset length, |c| is the candidate translation length.

BLEU =BP.exp

(
N∑
n=1

wn. logPn

)
(11)

Using n-grams up to length N and positive weights
N∑
n=1

wn summing to one. Accuracy is

calculated by summing the value of all the sentences equal to 1 in the BLEU score and dividing
by the number of sentences.

4.3 Results
Tab. 2 shows an output example of generating Pseudo-code from source code using the

DLBT model. Experiments are conducted to show the performance of the proposed model using
six-layers and eight-layers for the encoder-decoder structure. Tab. 1 is divided to two columns.
Column one contains five lines of Python code. The second column is the Pseudo-code column.
Pseudo-code has three forms: the manual output using the professional programmer, the output
of DLBT six-layers, and the last one is the output from DLBT eight-layers. Both six-layers and
eight-layers generate the correct Pseudo-code for line 1 and line 2 code. Moreover, they avoid
the mistake that humans may make; such as the name of package “gzip”, the name of class
“GzipFile”, the name of method “__init__”, the number of argument and the name “self” “text”.

In line 3, the six-layer DLBT misses the two-argument “col” and “area”. Eight-layers DLBT
prevents this error because it has more training, it is formed of more than six-layers DLBT.
In lines 4 and 5, the six layers-DLBT add “s is an empty list” in both lines and some other
mistakes. In line 5, The eight-layers DLBT change"every” by “all”. This is a mistake compared
with the manually generated Pseudo-code. It is a logic error because DLBT uses WordNet in the
tokenization phase and the two words have close meaning and are semantically related.

Moreover, cross-validation is added to the proposed DLBT and is evaluated in terms of
accuracy and BLEU performance measures, as shown in Tab. 3 Six-layers DLBT records 36.85,
36.42 accuracy, and 59.62. 59.31 BLEU measures when applying Method(1) and method(2) for
tokenization. Using cross-validation and applying Method(1) and Method(2), the DLBT accuracy
reaches 46.89 and 49.94 for Method(1) and Method(2), respectively. BLEU reaches 67 and 67.18.
In eight layers of DLBT, accuracy and BLEU are reported respectively 35.13, 58.58 for Method(1)
and 34.8, 57.92 for Method(2). Using cross-validation and Method(1), it records 47.06, 68.31
accuracy and BLEU measures, respectively. Using cross-validation and Method(2), it records
47.32, 68. 49 accuracy and BLEU measures, respectively. The higher performance of DLBT results
when applying cross-validation and Method(2) for tokenization. Fig. 8 presents a comparison for
DLBT performance when applying cross-validation and Method(2) tokenization for six-layers and
eight-layers.
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Table 2: Output of six-layers DLBT and eight-layers DLBT

# Python code Pseudo-code

Manually Generated Pseudo-code
1 from gzip import GzipFile #from gzip import GzipFile into default name

space.
2 def __init__ (self , text) : #define the method __init__ with 2 arguments: self

and text.
3 html4_-

singlets=(′br′′,’col′′,’link′′,’base′′,
#html4_singlets is a tuple with 9 elements: strings
′br′′, ′col′′, ′link′′

′img′′,’param′′,’area′′,’hr′′,’input′′) , ′base′′, ′img′′, ′ param ′′, ′ area ′′, ′hr′′ and ′input′′.
4 s = s. replace (′\ r′′, ′\ \

r′′)
#replace every occurrence of ′\ r′′ in s with ′\ \
r′′.

5 s = s. replace (′\ t′′, ′\ \
t′′)

#replace every occurrence of ′\ t′′ in s with ′\ \
t′′.

Six-layers DLBT
1 from gzip import GzipFile #from gzip import GzipFile into default name

space.
2 def __init__ (self , text ) : #define the method __init__ with 2 arguments: self

and text.
3 html4_-

singlets=(′br′′,’col′′,’link′′,’base′′,
#html4_singlets is a tuple with 9 elements strings
′br ′, ′link ′, ′link ′, ′base ′, ′img ′, ′param ′, ′param
′, ′hr ′and ′input ′.

′img′′,’param′′,’area′′,’hr′′,’input′′) #s is an empty list. Replace every occurrence of ′\
r ′in the result with ′\ \ r ′.

4 s = s. replace (′\ r′′, ′\ \
r′′ )

5
s = s . replace (′\ t′′ , ′\ \
t′′)

\ t′′ ′in t with ′\ \ t′′.

Eight-layers DLBT
1 from gzip import GzipFile #from gzip import GzipFile into default name

space.
2 def __init__ ( self , text ) : #define the method __init__ with 2 arguments: self

and text.
3 html4_-

singlets=(′br′′,’col′′,’link′′,’base′′,
#html4_singlets is a tuple with 9 elements: strings
′br′′, ′col′′, ′link′′,

′img′′,’param′′,’area′′,’hr′′,’input′′) ′base′′, ′img′′, ′param′′, ′area′′, ′hr′′ and ′input′′.
4 s = s . replace ( ′\ r′′ , ′\ \

r′′ )
#replace every occurrence of ′\ r′′ in s with ′\ \
r′′.

5 s = s . replace ( ′\ t′′ , ′\ \
t′′ )

#replace all occurrences of ′\ t′′ with ′\ \ t′′.
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Table 3: DLBT performance in terms of BLEU and accuracy measures

# of layers Tokenizer #epoch BLEU Accuracy

Six-layers DLBT Method(1) 35 59.62 36.85
Six-layers DLBT Method (2) 35 59.31 36.42
Six-layers DLBT Method (1) 75 + cross-validation 67.00 46.89
Six-layers DLBT Method (2) 75 + cross-validation 67.18 46.94
Eight-layers DLBT Method(1) 35 58.58 35.13
Eight- layers DLBT Method (2) 35 57.92 34.81
Eight-layers DLBT Method (1) 75 + cross-validation 68.31 47.06
Eight-layers DLBT Method (2) 75 + cross-validation 68.49 47.32

Figure 8: DLBT performance using Method(2) and cross validation. (a) Six-layers. (b) Eight-layers

Tab. 4 and Fig. 9 show the results of six-layers DLBT and eight-layers DLBT compared
to other methods:code 2 Pseudo-code [2], Tree-to-String Machine Statistical Machine Transla-
tion (T2SMT) [3], Phrase-Based Machine Translation (PBMT) [2], Code2NL [13], Code-GRU,
Seq2Seq [13], and Rule-Based Machine Translation (RBMT) [24].

Table 4: DLBT performance in terms of BLEU score compared with other works

Studies BLEU%

Eight-layers DLBT 68.49
Six-layers DLBT 67.18
Code2NL [13] 56.54
code2pseudocode [2] 54.78
T2SMT [3] 54.08
Code-GRU [13] 50.81

(Continued)
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Table 4: Continued

Studies BLEU%

NoAtt [2] 43.55
RBMT [24] 41.876
CODE-NN [13] 40.51
Seq2Seq [13] 28.26
PBMT [3] 25.17
SimpleRNN [2] 06.45

Figure 9: DLBT performance in terms of BLEU score compared with other works

4.4 Results Discussion and Interpretation
In [2], the authors introduced models that are based on Recurrent Neural Network (RNN).

The input for the network layers is the output of earlier layers. In training, each sentence is
tokenized and assigned to input layers in sequence, one word at a time. This means information
moves through time in RNNs, which means that information from earlier time points is used as
input for the next subsequent time points. The training for the time point t is happening all along
based on inputs that are coming from untrained layers. Thus, because of the vanishing gradient,
the whole network is not being trained properly. In [2], LSTM (long short-term memory) is added
to remember the information for a long time to fix the RNN problem. models are considered a
sequential network and handle the vanish gradient problem encountered by RNN. In [13], self-
attention is added to improve results and capture the long-term dependencies in source code and
Pseudo-code. The RNN-based sequence models have two limitations:

• They do not model the non-sequential structure of source code as they process the code
tokens sequentially.

• Source code can be very long, and thus these models may fail to capture the long-range
dependencies between code tokens.

The proposed DLBT outperforms the performance of the previous models because of

• Tokenization: the rule expression for Tokenizer is ( )
• Positional embeddings: it is position-insensitive and positional encoding is used to guaran-
tee the order relationship between words in the text;
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• Multi-head attention mechanism: each input is divided into multiple heads, and each head
uses the attention mechanism. This unit is used to compute similarity scores between words
in a sentence;

• Cross-validation: it scans the dataset and defines the dataset to test the DLBT in the
training phase (validation dataset). It reinforces the vocabulary that is not defined in the
training data and put in the test data.

• Post-processing: it is an important process in the testing phase. It finds the mathematical
expressions errors and corrects them such as spaces between a single quotation or double
quotation.

5 Conclusions and Future Work

In this paper, a novel deep learning-based transformer (DLBT) model is proposed for auto-
matic Pseudo-code generation from the source code. The proposed DLBT is an encoder-decoder
structure, which consists of three components: Tokenization and Embedding, Transformer (encod-
ing and decoding), and Post-processing. In the tokenization and embedding step, the DLBT
manages the order and relationship between the tokens. Then, the encoder-decoder structure is
built using a multi-head attention mechanism to calculate a score of similarity between the tokens.
Finally, the correction function is applied. The proposed model is evaluated using a large dataset
of Python code. The proposed model is assessed using six and eight layers and applying cross-
validation. The experimental results are promising compared to other methods. Using six and eight
layers, it reaches 68.49% and 67.18% in terms of BLEU score performance measures, respectively.

We are planning to add more languages such as C++, C#, and Java. In addition, we want to
enhance the proposed DLBT to deal with more complex code rather than simple lines of code and
output more abstract description. Moreover, there will be an important step to discover syntax
errors before the preprocessing step. This step guarantees that the source code is correct before
generating the Pseudo-code. Using this information can partially enhance Pseudo-code generation
and help to increase accuracy and BLEU performance measures.
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