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Abstract: There are many optimization problems in different branches of
science that should be solved using an appropriate methodology. Population-
based optimization algorithms are one of the most efficient approaches to
solve this type of problems. In this paper, a new optimization algorithm called
All Members-Based Optimizer (AMBO) is introduced to solve various opti-
mizationproblems. Themain idea in designing the proposedAMBOalgorithm
is to use more information from the population members of the algorithm
instead of just a few specific members (such as best member and worst mem-
ber) to update the population matrix. Therefore, in AMBO, any member of
the population can play a role in updating the population matrix. The theory
of AMBO is described and then mathematically modeled for implementation
on optimization problems. The performance of the proposed algorithm is
evaluated on a set of twenty-three standard objective functions, which belong
to three different categories: unimodal, high-dimensional multimodal, and
fixed-dimensional multimodal functions. In order to analyze and compare
the optimization results for the mentioned objective functions obtained by
AMBO, eight other well-known algorithms have been also implemented. The
optimization results demonstrate the ability of AMBO to solve various opti-
mization problems. Also, comparison and analysis of the results show that
AMBO is superior andmore competitive than the other mentioned algorithms
in providing suitable solution.

Keywords: Algorithm; all members; optimization; optimization algorithm;
optimization problem; population-based algorithm

1 Introduction

Optimization is defined as finding the best solution out of all possible solutions to a problem
by considering the constraints and limitations. Therefore, each optimization problem consists of
three main parts: decision variables, primary objectives, and secondary objectives. The decision
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variables are the same as the problem variables, the primary objectives represent the constraints
of the problem, and the secondary objectives are the objective functions of the problem.

Population-based optimization algorithms (PBOAs) are one of the most effective methods for
solving optimization problems. PBOAs are able to provide appropriate solutions to optimization
problems based on random scan of the search space and through an iterative-based process [1].
Each optimization problem has a best basic solution called global optimum. On the other hand,
the solution obtained by PBOAs for the optimization problem is not necessarily the global optimal
solution. Hence, the solution provided by PBOAs is referred as quasi-optimal solution [2,3].
Whatever the quasi-optimal solution provided by an algorithm is closer to the global optimum,
that algorithm has a better performance in solving that optimization problem. For this reason,
various PBOAs have been introduced by scientists to provide quasi-optimal solutions to opti-
mization problems. In this regard, optimization algorithms have been applied in various fields
in the literature such as energy [4–7], protection [8], electrical engineering [9–14], and energy
carriers [15,16] to achieve the optimal solution.

PBOAs are designed based on simulation of various natural phenomena, behavior of living
organisms, physical laws, genetic sciences, rules of the games, and so on. In a general classification
based on the design idea, PBOAs are categorized into 4 groups: swarm-based, physics-based,
evolutionary-based, and game-based optimization algorithms.

Swarm-based optimization algorithms are designed based on simulating the behavior of liv-
ing organisms such as animals, plants, and natural phenomena. Particle Swarm Optimization
(PSO) is one of the most widely-used algorithms in this category, which is based on simulating
behaviors of birds’ swarm [17]. Ant Colony Optimization (ACO) is another swarm-based opti-
mization technique that has been introduced based on the behavior of ants in finding the shortest
route between their nest and the food source [18]. Simulation of the patient treatment process
by the doctor has been used in designing doctor and patient optimizer (DPO) [19]. Some of
the other swarm-based optimization algorithms are: Seagull Optimization Algorithm (SOA) [20],
Whale Optimization Algorithm (WOA) [21], Firefly Algorithm (FA) [22], Artificial Bee Colony
(ABC) [23], Cuckoo Search (CS) [24], Bat-inspired Algorithm (BA) [25], Spotted Hyena Optimizer
(SHO) [26], Monkey Search (MS) [27], Artificial Fish-Swarm Algorithm (AFSA) [28], Group Opti-
mization (GO) [29], Dolphin Partner Optimization (DPO) [30], Hunting Search (HS) [31], Coupled
Spring Forced Bat Algorithm (SFBA) [32], Teaching-Learning-Based Optimization (TLBO) [33],
Grey Wolf Optimizer (GWO) [34], Following Optimization Algorithm (FOA) [35], Moth-Flame
Optimization Algorithm (MFO) [36], Grasshopper Optimization Algorithm (GOA) [37], Donkey
Theorem Optimization (DTO) [38], Emperor Penguin Optimizer (EPO) [39], Multi Leader Opti-
mizer (MLO) [40], Rat Swarm Optimizer (RSO) [41], and “The Good, the Bad, and the Ugly”
Optimizer (GBUO) [42].

Physics-based optimization algorithms are introduced based on simulation of various laws of
physics. Spring Search Algorithm (SSA) is one of the algorithms in this group, which was designed
based on the simulation of Hooke’s law in a system consisting of weights and springs [43].
Momentum Search Algorithm (MSA) is another algorithm based on the simulation of Newton’s
laws of motion and “momentum conservation principle” [44]. Gravitational Search algorithm
(GSA) was introduced based on the law of universal gravitation between objects [45]. Some
other popular physics-based optimization algorithms are: Big-Bang Big-Crunch (BBBC) [46],
Galaxy-based Search Algorithm (GbSA) [47], Charged System Search (CSS) [48], Particle Col-
lision Algorithm (PCA) [49], Simulated Annealing (SA) [50], Binary Spring Search Algorithm
(BSSA) [51], Central Force Optimization (CFO) [52], Ray Optimization (RO) algorithm [53],
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Curved Space Optimization (CSO) [54], Henry Gas Solubility Optimization (HGSO) [55], Small
World Optimization Algorithm (SWOA) [56], and Artificial Chemical Reaction Optimization
Algorithm (ACROA) [57].

Evolutionary-based optimization algorithms are inspired by genetics and inheritance laws.
Genetic Algorithm (GA) is the most famous algorithm in this group, which is designed based
on simulation of reproduction process and Darwin’s theory of evolution by natural selection [58].
Artificial Immune System (AIS) inspired by the mechanism of the human body and the human
immune system against viruses and microbes is another evolutionary-based optimization algo-
rithm [59]. Some other evolutionary-based optimization techniques are: Evolutionary Program-
ming (EP) [60], Cultural Algorithm [61], Evolution Strategy (ES) [62], Differential Evolution
(DE) [63], Biogeography-Based Optimizer (BBO) [64], Artificial Infectious Disease (AID) [65],
Genetic Programming (GP) [66], and Improved Quantum-inspired Differential Evolution (IQDE)
algorithm [67].

Game-based optimization algorithms are another POBAs, which are designed based on
simulating rules of various games. Football Game-Based Optimization (FGBO) is one of the
algorithms in this group, which was introduced based on simulation of football league rules and
clubs’ behaviors [68]. Darts Game Optimizer (DGO) inspired by the rules of the darts game
and the behavior of the players in dart throwing for collecting more points is another game-
based optimization technique [69]. Some of the other game-based optimization algorithms are:
Orientation Search Algorithm (OSA) [70], Hide Objects Game Optimization (HOGO) [71], Shell
Game Optimization (SGO) [72], Binary Orientation Search Algorithm (BOSA) [73], and Dice
Game Optimizer (DGO) [74].

In this paper, a new optimization algorithm entitled All Members-Based Optimizer (AMBO)
is designed to provide suitable quasi-optimal solutions for various optimization problems. In
the proposed AMBO, all members of the population, regardless of their position in the search
space, participate in updating the population matrix. Various steps of implementing AMBO are
explained and then its mathematical formulation is presented. The performance of AMBO in
providing quasi-optimal solution is evaluated for twenty-three standard objective functions of
different types.

The rest of the article is organized as follows. In Section 2, the proposed AMBO algorithm is
described and modeled. In Section 3, the proposed algorithm is simulated for optimizing different
objective functions and the results are presented. Statistical analysis of the results is carried out
in Section 4. Finally, the conclusions of this investigation and suggestions for future studies are
presented in Section 5.

2 All Members-Based Optimizer

In this section, various steps and mathematical modeling of the proposed optimization algo-
rithm are presented. All Members-Based Optimizer (AMBO) is a PBOA proposed for solving
optimization problems. The main idea in designing AMBO is to make more use of the population
matrix information as well as the simultaneous participation of all members of the population in
updating the algorithm population. The search space for each optimization problem consists of
coordinate axes equal to the number of problem variables. In most of optimization algorithms,
the best population member directs the population of the algorithm along these axes. Also, in
some algorithms, the worst member or several members with specific characteristics are effective
in updating the algorithm population. However, an ordinary member of the population may be
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more qualified to lead the population in some axes than the best member. Therefore, AMBO is
designed based on this concept to use the information of all population members.

Each PBOA has a number of members called the algorithm population. The algorithm
population can be displayed using a matrix called the population matrix. Each row of this matrix
represents a population member and each column of this matrix represents a variable of the
optimization problem. Therefore, the number of rows in the population matrix is equal to the
number of population members and the number of columns in this matrix is equal to the number
of the optimization problem variables.

In AMBO, the population matrix is represented using Eq. (1).

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

...

Xi
...

XN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×m

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 · · · xd1 · · · xm1
...

. . .
... . . .

...

x1i · · · xdi · · · xmi
... . . .

...
. . .

...

x1N · · · xdN · · · xmN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×m

, (1)

where X is the population matrix, Xi is the ith population member, xdi is the value of dth problem
variable suggested by the ith population member, N is the number of population members, and
m is the number of problem variables.

In each iteration of the algorithm, the objective function of the problem is evaluated based
on the suggested values of variables provided by each population member. Therefore, the values
of the objective function are specified as a vector using Eq. (2).

OF(X)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

OF1 =OF(X1)

...

OFi =OF(Xi)
...

OFN =OF(XN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
N×1

, (2)

where OF(X) is the objective function vector and OFi is the objective function value based on
the solution suggested by ith population member.

In the proposed AMBO algorithm, population members are updated in two stages. In the first
stage, each member of the population is updated based on the position of different members of
the population in the search space. The important point in this process is that the new position is
acceptable to a population member if it improves the value of the objective function. Otherwise,
the update is not acceptable and the member remains in its previous position. The first stage is
simulated using Eqs. (3) to (5).

Ns = round
(
N ×

(
1− t

T

))
(3)
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x′di =
⎧⎨
⎩
xdi + r(xdi −xdj ), OFi <OFj

xdi + r(xdj −xdi ), else
& j= 1 to Ns (4)

Xi =
{
X ′
i, OF ′

i <OFi

Xi, else,
(5)

where Ns is the number of selected members to lead the population members, t denotes the
algorithm replication counter, T is the maximum replication of the algorithm, x′di is the new value
for dth problem variable, r is a random number in the interval [0, 1], X ′

i is the new position of
ith population member based on the first stage, and OF ′

i is its objective function value.

Input information of optimization problem.
Variables interval, constraints, objective function.

Set maximum iteration and number of population members.

Create initial population.

Evaluate objective function based initial population.

Update and .

Stage 1: Update based on (3) to (5).

Start AMBO

Stage 2: Update based on (6) to (7).

NO

Yes

i = i+1

Print best semi-optimal solution

i==N?

i = 1
t = t+1

Save best solution so far.

t==T?
NO

Yes

End AMBO

Figure 1: Flowchart of AMBO
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In the second stage, the population matrix is updated based on the best member. In this stage,
similar to the first stage, the new position is acceptable to a population member if it improves
the objective function. The second stage of AMBO is simulated in Eqs. (6) and (7).

x′′di = xdi + r(xdbest−xdi ) (6)

Xi =
{
X ′′

i, OF ′′
i <OFi

Xi, else,
(7)

where x′′di is the new value for dth problem variable. xdbest is the best member, which achieves
the best objective function value, X ′′

i is the new position of ith population member based on the
second stage, and OF ′′

i is its corresponding objective function value.

For each iteration, the population matrix is updated through these two steps and this process
is repeated until the algorithm stops. At the end of the algorithm iterations, AMBO provides the
best obtained quasi-optimal solution to the optimization problem. The implementation process
of the proposed algorithm in an optimization problem is shown as a flowchart in Fig. 1. The
pseudo-code of the proposed AMBO algorithm is also presented in Algorithm 1.

Algorithm 1: Pseudo-code of the AMBO
Start AMBO.

1. Input optimization problem information.
2. Set N and T .
3. Create initial population matrix.
4. Evaluate objective function.
5. for t= 1:T
6. Update Ns and Xbest (best member)
7. for i= 1:N
8. Stage 1
9. Update i’th member based on (3) to (5).
10. Stage 2
11. Update i’th member based on (6) to (7).
12. End for i= 1:N
13. Save the best solution so far.
14. End for t= 1:T
15. Output the best quasi-optimal solution.
End AMBO.

3 Simulation Study

In this section, the ability of AMBO for solving optimization problems and providing quasi-
optimal solutions is evaluated. For this purpose, AMBO is implemented on a set of twenty-three
standard objective functions from three different types including unimodal, high-dimensional mul-
timodal, and fixed-dimensional multimodal functions. Complete information of these objective
functions is provided in the Appendix (Tabs. A1 to A3).
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3.1 Experimental Setup
In order to analyze the performance of the proposed AMBO in providing the quasi-optimal

solution, AMBO is compared with eight other optimization algorithms namely Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teach-
ing Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization
Algorithm (WOA), Marine Predators Algorithm (MPA), and Tunicate Swarm Algorithm (TSA).

To solve each of the objective functions, 20 independent runs of the proposed AMBO
has been performed, where each run includes 1000 iterations. The average (Ave) and standard
deviation (std) of the best solutions have been used to present the results of optimization for the
objective functions.

3.2 Evaluation Results for Objective Functions
The objective functions F1 to F7 belong to unimodal category. These functions have been

selected to evaluate the performance of the optimization algorithms. The optimization results for
these objective functions using the proposed AMBO and eight other optimization algorithms are
presented in Tab. 1. According to this table, AMBO is the best optimizer for F1, F2, F3, F4, and
F6 objective functions.

Table 1: Results of applying optimization algorithms on unimodal objective functions

AMBO MPA TSA GOA GWO TLBO GSA PSO GA

F1 Ave 0 3.2715E-21 7.71E-38 2.1741E-09 1.09E-58 8.3373E-60 2.0255E-17 1.7740E-05 13.2405
Std 0 4.6153E-21 7.00E-21 7.3985E-25 5.1413E-74 4.9436E-76 1.1369E-32 6.4396E-21 4.7664E-15

F2 Ave 0 1.57E-12 8.48E-39 0.5462 1.2952E-34 7.1704E-35 2.3702E-08 0.3411 2.4794
Std 0 1.42E-12 5.92E-41 1.7377E-16 1.9127E-50 6.6936E-50 5.1789E-24 7.4476E-17 2.2342E-15

F3 Ave 0 0.0864 1.15E-21 1.7634E-08 7.4091E-15 2.7531E-15 279.3439 589.4920 1536.8963
Std 0 0.1444 6.70E-21 1.0357E-23 5.6446E-30 2.6459E-31 1.2075E-13 7.1179E-13 6.6095E-13

F4 Ave 0 2.6E-08 1.33E-23 2.9009E-05 1.2599E-14 9.4199E-15 3.2547E-09 3.9634 2.0942
Std 0 9.25E-09 1.15E-22 1.2121E-20 1.0583E-29 2.1167E-30 2.0346E-24 1.9860E-16 2.2342E-15

F5 Ave 20.1578 46.049 28.8615 41.7767 29.8607 146.4564 36.10695 50.26245 310.4273
Std 2.22E-14 0.4219 4.76E-03 2.5421E-14 6.95E-13 1.9065E-14 3.0982E-14 1.5888E-14 2.0972E-13

F6 Ave 0 0.398 7.10E-21 1.6085E-09 0.6423 0.4435 0 20.25 14.55
Std 0 0.1914 1.12E-25 4.6240E-25 6.2063E-17 4.2203E-16 0 0 3.1776E-15

F7 Ave 1.41E-05 0.0018 3.72E-04 0.0205 0.0008 0.0017 0.0206 0.1134 5.6799E-03
Std 6.06E-21 0.0010 5.09E-05 1.5515E-18 7.2730E-20 3.87896E-19 2.7152E-18 4.3444E-17 7.7579E-19

Six high-dimensional multimodal objective functions F8 to F13 have been selected to evaluate
the performance of the optimization algorithms in providing a suitable quasi-optimal solution.
Tab. 2 shows the optimization results for these objective functions using AMBO and eight other
optimization algorithms. AMBO is the best optimizer for F8, F9, and F10 objective functions.

The third group of objective functions, including F14 to F23, is selected from the fixed-
dimensional multimodal type. The results of the implementation of the proposed algorithm and
eight other optimization algorithms on these objective functions are presented in Tab. 3. The
results in this table show that AMBO is the best optimizer for F15, F16, and F17 target functions.
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Table 2: Results of applying optimization algorithms on High-dimensional multimodal objective
functions

AMBO MPA TSA GOA GWO TLBO GSA PSO GA

F8 Ave −9164.21 −3594.16321 −5740.3388 −1663.9782 −5885.1172 −7408.6107 −2849.0724 −6908.6558 −8184.4142
Std 2.03E-13 811.32651 41.5 716.3492 467.5138 513.5784 264.3516 625.6248 833.2165

F9 Ave 0 140.1238 5.70E-03 4.2011 8.5265E-15 10.2485 16.2675 57.0613 62.4114
Std 0 26.3124 1.46E-03 4.3692E-15 5.6446E-30 5.5608E-15 3.1776E-15 6.3552E-15 2.5421E-14

F10 Ave 4.44E-15 9.6987E-12 9.80E-14 0.3293 1.7053E-14 0.2757 3.5673E-09 2.1546 3.2218
Std 2.65E-35 6.1325E-12 4.51E-12 1.9860E-16 2.7517E-29 2.5641E-15 3.6992E-25 7.9441E-16 5.1636E-15

F11 Ave 0 0 1.00E-07 0.1189 0.0037 0.6082 3.7375 0.0462 1.2302
Std 0 0 7.46E-07 8.9991E-17 1.2606E-18 1.9860E-16 2.7804E-15 3.1031E-18 8.4406E-16

F12 Ave 5.13E-07 0.0851 0.0368 1.7414 0.0372 0.0203 0.0362 0.4806 0.0470
Std 4.74E-22 0.0052 1.5461E-02 8.1347E-12 4.3444E-17 7.7579E-19 6.2063E-18 1.8619E-16 4.6547E-18

F13 Ave 9.68E-06 0.4901 2.9575 0.3456 0.5763 0.3293 0.0020 0.5084 1.2085
Std 4.65E-18 0.1932 1.5682E-12 3.25391E-12 2.4825E-16 2.1101E-16 4.2617E-14 4.9650E-17 3.2272E-16

Table 3: Results of applying optimization algorithms on Fixed-dimensional multimodal objective
functions

AMBO MPA TSA GOA GWO TLBO GSA PSO GA

F14 Ave 0.998004 0.9980 1.9923 0.9980 3.7408 2.2721 3.5913 2.1735 0.9986
Std 2.23E-16 4.2735E-16 2.6548E-07 9.4336E-16 6.4545E-15 1.9860E-16 7.9441E-16 7.9441E-16 1.5640E-15

F15 Ave 0.000307 0.0030 0.0004 0.0049 0.0063 0.0033 0.0024 0.0535 5.3952E-02
Std 5.82E-18 4.0951E-15 9.0125E-04 3.4910E-18 1.1636E-18 1.2218E-17 2.9092E-19 3.8789E-19 7.0791E-18

F16 Ave −1.03163 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 7.45E-16 4.4652E-16 2.6514E-16 9.9301E-16 3.9720E-16 1.4398E-15 5.9580E-16 3.4755E-16 7.9441E-16

F17 Ave 0.397887 0.3979 0.3991 0.4047 0.3978 0.3978 0.3978 0.7854 0.4369
Std 4.97E-17 9.1235E-15 2.1596E-16 2.4825E-17 8.6888E-17 7.4476E-17 9.9301E-17 4.9650E-17 4.9650E-17

F18 Ave 3 3 3 3 3.0000 3.0009 3 3 4.3592
Std 1.19E-15 1.9584E-15 2.6528E-15 5.6984E-15 2.0853E-15 1.5888E-15 6.9511E-16 3.6741E-15 5.9580E-16

F19 Ave −3.86278 −3.8627 −3.8066 −3.8627 −3.8621 −3.8609 −3.8627 −3.8627 −3.85434
Std 2.78E-15 4.2428E-15 2.6357E-15 3.1916E-15 2.4825E-15 7.3483E-15 8.3413E-15 8.9371E-15 9.9301E-17

F20 Ave −3.322 −3.3211 −3.3206 −3.2424 −3.2523 −3.2014 −3.0396 −3.2619 −2.8239
Std 3.28E-15 1.1421E-11 5.6918E-15 7.9441E-16 2.1846E-15 1.7874E-15 2.1846E-14 2.9790E-16 3.97205E-16

F21 Ave −10.1532 −10.1532 −5.5021 −7.4016 −9.6452 −9.1746 −5.1486 −5.3891 −4.3040
Std 6.75E-15 2.5361E-11 5.4615E-13 2.3819E-11 6.5538E-15 8.5399E-15 2.9790E-16 1.4895E-15 1.5888E-15

F22 Ave −10.4029 −10.4029 −5.0625 −8.8165 −10.4025 −10.0389 −9.0239 −7.6323 −5.1174
Std 2.78E-15 2.8154E-11 8.4637E-14 6.7524E-15 1.9860E-15 1.5292E-14 1.6484E-12 1.5888E-15 1.2909E-15

F23 Ave −10.5364 −10.5364 −10.3613 −10.0003 −10.1302 −9.2905 −8.9045 −6.1648 −6.5621
Std 6.75E-15 3.9861E-11 7.6492E-12 9.1357E-15 4.5678E-15 1.1916E-15 7.1497E-14 2.7804E-15 3.8727E-15

3.3 Discussion
Two important indicators for evaluating the performance of the optimization algorithms in

solving optimization problems are the exploitation index and the exploration index.

Exploitation index indicates the ability of an optimization algorithm to provide a suitable
quasi-optimal solution close to the global optimum for an optimization problem. An optimization
algorithm must be able to provide a suitable solution at the end of its iterations. whatever this
solution is closer to the global optimum, that algorithm has higher exploitation power. Unimodal
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objective functions (F1 to F7) have only one optimal solution. Therefore, they are suitable for
evaluating the exploitation power of the optimization algorithms. The optimization results of these
objective functions show that AMBO has the best performance for all F1 to F7 functions and has
higher exploitation power than the other eight optimization algorithms.

Exploration power means the ability of an algorithm to scan the search space properly and
accurately. This indicator is especially important for optimization problems that have several local
optimal solutions. Therefore, an algorithm that can provide a suitable quasi-optimal solution
by accurately scanning the search space and passing through local optimal solutions has high
exploration power. The multimodal objective functions of the second and third groups (F8 to F13
and F14 to F23) have several local optimums. Hence, they are suitable for evaluating exploration
power. The optimization results of these objective functions presented in Tabs. 3 and 4 indicate
the high exploration ability of the proposed AMBO algorithm in solving this type of objective
functions.

Table 4: Results of the algorithm sensitivity analysis to the maximum number of iterations

Objective function Maximum number of iterations

100 500 800 1000

F1 8.4E-178 0 0 0
F2 2.41E-90 0 0 0
F3 1.02E-53 5.1E-299 0 0
F4 6.17E-76 0 0 0
F5 23.9188 22.79437 21.83367 21.25926
F6 0 0 0 0
F7 0.000166 3.87E-05 2.52E-05 2.31E-05
F8 −6388.5 −8931.93 −9124.55 −9416.32
F9 0 0 0 0
F10 4.44E-15 4.44E-15 4.44E-15 4.44E-15
F11 0 0 0 0
F12 0.000106 5.11E-06 2.18E-06 7.46E-07
F13 0.100696 0.110341 2.79E-05 9.21E-06
F14 0.998004 0.998004 0.998004 0.998004
F15 0.020363 0.000307 0.000307 0.000307
F16 −1.03163 −1.03163 −1.03163 −1.03163
F17 0.397888 0.397887 0.397887 0.397887
F18 3 3 3 3
F19 −3.86278 −3.86278 −3.86278 −3.86278
F20 −3.31399 −3.32199 −3.322 −3.322
F21 −10.1519 −10.1532 −10.1532 −10.1532
F22 −10.4023 −10.4029 −10.4029 −10.4029
F23 −10.5356 −10.5364 −10.5364 −10.5364
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3.4 Sensitivity Analysis
In this section, the sensitivity of the AMBO to the two parameters of maximum number of

iteration and number of population members is evaluated.

In order to evaluate the sensitivity of the proposed algorithm to the maximum number of
iterations, the AMBO for the maximum number of iterations of 100, 500, 800 and 1000 has been
implemented independently on all objective functions. The results of these implementations are
presented in Tab. 4. The results show that AMBO converges towards the optimal solution when
the number of iterations is increased.

Also, in order to analyze the sensitivity of the proposed algorithm to the number of popu-
lation members, the AMBO has been implemented independently for different populations with
number of 20, 30, 50 and 80 members. The results of this simulation for the number of different
members of the population are presented in Tab. 5. It is analyzed from Tab. 5 that the value of
fitness function decreases when number of search agents increases.

Table 5: Results of the algorithm sensitivity analysis to the number of population members

Objective function Number of population members

20 30 50 80

F1 0 0 0 0
F2 2.2E-277 0 0 0
F3 1.4E-248 0 0 0
F4 1.4E-235 0 0 0
F5 28.73851 22.06195 20.99871 19.90636
F6 0 0 0 0
F7 0.000123 2.84E-05 1.76E-05 1.73E-05
F8 −5685 −8221.25 −8342.12 −8785.23
F9 0 0 0 0
F10 4.44E-15 4.44E-15 4.44E-15 4.44E-15
F11 0 0 0 0
F12 0.091831 2.51E-06 1.25E-06 2.1E-07
F13 1.417566 0.143312 0.110816 0.097375
F14 0.998004 0.998004 0.998004 0.998004
F15 0.000308 0.000307 0.000307 0.000307
F16 −1.03163 −1.03163 −1.03163 −1.03163
F17 0.397888 0.397887 0.397887 0.397887
F18 3 3 3 3
F19 −3.86278 −3.86278 −3.86278 −3.86278
F20 −3.32199 −3.32199 −3.322 −3.322
F21 −10.1513 −10.1531 −10.1532 −10.1532
F22 −10.4028 −10.4029 −10.4029 −10.4029
F23 −10.5364 −10.5364 −10.5364 −10.5364
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4 Statistical Testing

In this section, statistical analysis on the optimization results obtained by different optimiza-
tion algorithms is presented. Although presenting the results in the form of average and standard
deviation provides useful information about the performance of optimization algorithms, statistical
analysis of the results is also important for better evaluation. For this purpose, the Wilcoxon rank
sum test has been used as a non-parametric statistical test to specify the significance of the results.
Wilcoxon rank test is applied to specify whether the results obtained by the proposed AMBO are
different from other eight optimization algorithms in a statistically significant way.

A p-value specifies whether the given algorithm is statistically significant or not. If p-value of
the given algorithm is less than 0.05, then the corresponding algorithm is statistically significant.
The result of analysis using Wilcoxon rank test for the objective functions is shown in Tab. 6.
It is observed from Tab. 6 that the p-value obtained from AMBO is much smaller than 0.05 for
all the objective functions. Therefore, the proposed AMBO is statistically different from the other
competitor algorithms.

Table 6: Obtained results from the Wilcoxon test (p ≥ 0.05)

Compared algorithms Unimodal High-multimodal Fixed-multimodal

AMBO vs. GA 0.015625 0.03125 0.001953
AMBO vs. PSO 0.015625 0.03125 0.003906
AMBO vs. GSA 0.03125 0.03125 0.019531
AMBO vs. TLBO 0.015625 0.03125 0.005859
AMBO vs. GWO 0.015625 0.03125 0.011719
AMBO vs. WOA 0.015625 0.03125 0.007813
AMBO vs. MPA 0.015625 0.03125 0.003906
AMBO vs. TSA 0.015625 0.0625 0.0625

5 Conclusions and Future Works

Optimization algorithms are one of the most effective and widely-used methods in solv-
ing optimization problems in various fields of science and engineering. In this paper, a new
optimization algorithm called All Members-Based Optimizer (AMBO) was presented for solving
optimization problems. The proposed AMBO was designed to use more information of different
members of the population and to participate all members in updating the algorithm popula-
tion. AMBO was mathematically modeled and implemented on a set of twenty-three standard
objective functions. Also, in order to analyze the results, AMBO was compared with eight
optimization algorithms including Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
Gravitational Search Algorithm (GSA), Teaching Learning-Based Optimization (TLBO), Grey
Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Marine Predators Algorithm
(MPA), and Tunicate Swarm Algorithm (TSA).

The results of optimizing the unimodal objective functions showed that AMBO is more
capable than other algorithms in solving such problems and therefore, it is superior considering
the exploitation index. Also, the results of optimization for multimodal objective functions showed
that AMBO with high exploration power is able to provide suitable quasi-optimal solutions for
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this type of functions. Based on the simulation results, it can be concluded that the proposed
algorithm has an acceptable ability to solve various optimization problems and is superior and
much more competitive than other mentioned optimization algorithms.

The authors suggest some ideas and perspectives for future studies. Design of the binary
version as well as the multi-objective version of the AMBO is an interesting potential for future
investigations. Apart from this, implementing AMBO on various optimization problems and
real-world optimization problems can be considered as some significant contributions, as well.
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Appendix A. Information of objective function

Information on the twenty-three objective functions used in the simulations is presented in
Tabs. A1 to A3.

Table A1: Unimodal objective functions

F1(x)=
m∑
i=1

x2i [−100, 100]m

F2(x)=
m∑
i=1

|xi| +
m∏
i=1

|xi| [−10, 10]m

F3(x)=
m∑
i=1

(
i∑

j=1
xi

)2

[−100, 100]m

F4(x)=max{|xi| , 1≤ i≤m } [−100, 100]m

F5(x)=
m−1∑
i=1

[100(xi+1−x2i )
2+ (xi− 1)2)] [−30, 30]m

F6(x)=
m∑
i=1

([xi+ 0.5])2 [−100, 100]m

F7(x)=
m∑
i=1

ix4i + random(0, 1) [−1.28, 1.28]m

Table A2: High-dimensional objective functions

F8(x)=
m∑
i=1

−xi sin
(√|xi|

)
[−500, 500]m

F9(x)=
m∑
i=1

[ x2i − 10cos(2πxi)+ 10] [−5.12, 5.12]m

F10(x)=−20exp

(
−0.2

√
1
m

m∑
i=1

x2i

)
− exp

(
1
m

m∑
i=1

cos(2πxi)
)
+ 20+ e [−32, 32]m

F11(x)= 1
4000

m∑
i=1

x2i −
m∏
i=1

cos
(
xi√
i

)
+ 1 [−600, 600]m

F12(x)= π
m

{
10 sin(πy1)+

m∑
i=1

(yi − 1)2[1+ 10sin2(πyi+1)]+ (yn − 1)2
}
+

m∑
i=1

u(xi, 10, 100, 4)

u(xi,a, i,n)=
⎧⎨
⎩
k(xi− a)n, xi >−a,
0, −a< xi < a
k(−xi− a)n, xi <−a

,

[−50, 50]m

F13(x)=
0.1

{
sin2(3πx1)+

m∑
i=1

(xi− 1)2[1+ sin2(3πxi + 1)]+ (xn− 1)2[1+ sin2(2πxm)]
}
+

m∑
i=1

u(xi, 5, 100, 4)

[−50, 50]m
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Table A3: Fixed-dimensional objective functions

F14(x)=
(

1
500 +

25∑
j=1

1
j+∑2

i=1 (xi−aij)6

)−1

[−65.53, 65.53]2

F15(x)=
11∑
i=1

[
ai− x1(b2i+bix2)

b2i+bix3+x4

]2
[−5, 5]4

F16(x)= 4x21− 2.1x41+ 1
3x

6
1+x1x2 − 4x22+ 4x42 [−5, 5]2

F17(x)=
(
x2− 5.1

4π2x
2
1 + 5

π
x1− 6

)2+
10
(
1− 1

8π

)
cosx1+ 10

[−5, 10]× [0, 15]

F18(x)=
[1+ (x1 +x2 + 1)2(19− 14x1+ 3x21 − 14x2+ 6x1x2+ 3x22)]×
[30+ (2x1− 3x2)2× (18− 32x1+ 12x21+ 48x2 − 36x1x2+ 27x22)]

[−5, 5]2

F19(x)=−
4∑
i=1

ciexp

(
−

3∑
j=1

aij(xj −Pij)2
)

[0, 1]3

F20(x)=−
4∑
i=1

ciexp

(
−

6∑
j=1

aij(xj −Pij)2
)

[0, 1]6

F21(x)=−
5∑
i=1

[(X − ai)(X − ai)T + 6ci]−1 [0, 10]4

F22(x)=−
7∑
i=1

[(X − ai)(X − ai)T + 6ci]−1 [0, 10]4

F23(x)=−
10∑
i=1

[(X − ai)(X − ai)T + 6ci]−1 [0, 10]4


