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Abstract: The present investigation is intended to demonstrate the magnetic
field, relaxation time, hydrostatic initial stress, and two temperature on the
thermal shock problem. The governing equations are formulated in the context
of Lord-Shulman theory with the presence of bodily force, two tempera-
tures, thermal shock, and hydrostatic initial stress. We obtained the exact
solution using the normal mode technique with appropriate boundary condi-
tions. The field quantities are calculated analytically and displayed graphically
under thermal shock problem with effect of external parameters respect to
space coordinates. The results obtained are agreeing with the previous results
obtained by others when the new parameters vanish. The results indicate that
the effect of magnetic field and initial stress on the conductor temperature,
thermodynamic temperature, displacement and stress are quite pronounced.
In order to illustrate and verify the analytical development, the numerical
results of temperature, displacement and stress are carried out and com-
puter simulated results are presented graphically. This study helpful in the
development of piezoelectric devices.

Keywords: Thermoelastic; thermal shock; initial stress; two temperatures;
magnetic field; relaxation time

1 Introduction

Recently, more attentions have been considered by researchers and engineers to the thermoe-
lasticity theory to release the confliction of infinite speed due to the thermal signals, because of
the importance in diverse fields as geophysics, acoustics, engineers, plasma physics, and industries.
Biot [1] is the prior who presented the classical coupled thermoelasticity theory due to the coupled
interaction between the thermal field and strain. The generalized thermoelasticity models have
been introduced by Lord et al. [2] considering one relaxation time. Chen et al. [3] and Chen
et al. [4,5] investigated the theory of heat conduction depending on two temperatures. Youssef [6]
investigated the theory of two-temperature generalized thermoelasticity. Green et al. [7] who
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inserted two relaxation times and advocating finite wave speed thermal in solids by correcting the
energy equation and Neuman-Duhamel relation or modifying Fourier’s conduction heat equation.
Chandrasekharaiah et al. [8] studied the thermoelastic interactions without energy dissipation
due to a point heat source. Chandrasekharaiah et al. [9] studied the temperature-rate-dependent
thermo-elastic interactions due to a line heat source. The magnetoelastic earth’s material nature
may affect on the wave propagation, especially surface waves. A literature review of the earli-
est contributions to the subject has been discussed in details by Puri [10]. Nayfeh et al. [11]
who studied the plane wave propagation under the electromagnetic field in a solid medium.
Choudhuri et al. [12] discussed the rotation effect on magneto-thermoelastic media in an elastic
medium. Ezzat et al. [13] investigated the electromagneto-thermoelastic plane waves with two
relaxation times in a medium of perfect conductivity Ezzat et al. [14] studied the electromagneto-
thermoelastic plane waves with thermal relaxation in a medium of perfect conductivity. Zhuang
et al. [15] studied the explicit phase field method for brittle dynamic fracture. Rabczuk et al. [16]
investigated the nonlocal operator method for partial differential equations with application to
the electromagnetic waveguide problem. Bahar et al. [17] introduced the formulation of state
space in thermoelastic problems which also developed in Sherief [18] including the heat sources
effectively. Sherief et al. [19] studied the two dimensional generalized thermoelasticity problem
for an infinitely long cylinder. Youssef et al. [20] analysis a generalized thermoelastic infinite
layer problem with the state space approach considering three models. Formulation of state space
for the vibration of gold nano-beam in femtoseconds scale pointed out by Elsibai et al. [21].
Biot [22] clears that under stress free state would be fundamentally different from initial stresses
states acoustic propagation and obtained the longitudinal and transverse wave velocities along the
coordinate axes only. Chattopadhyay et al. [23] explained the plane wave reflection and refraction
in an unbounded medium under initial stresses. Montanaro [24] studied the linear thermoelas-
ticity problem with hydrostatic initial stress. Othman et al. [25] studied the reflection waves in
a generalized thermoelastic medium from a free surface under hydrostatic initial stress under
different thermoelastic theories. Youssef [26] studied the problem of generalized thermoelastic
infinite medium with a cylindrical cavity subjected to a ramp-type heating and loads.

The main purpose of the present investigation is intended to demonstrate the magnetic field,
relaxation time, hydrostatic initial stress, and two temperature on the thermal shock problem. The
governing equations are formulated in the context of Lord-Shulman theory with the presence
of body force, two temperatures, thermal shock, and hydrostatic initial stress. We obtained the
exact solution using the normal mode technique with appropriate boundary conditions. The field
quantities are calculated analytically and displayed graphically under thermal shock problem with
effect of external parameters respect to space coordinates.

2 Formulation of the Problem

Considering that the medium is a perfect electric conductor and the absence of the displace-
ment current (SI) [10], the linearized Maxwell equations governing the electromagnetic field as the
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form as shown in Fig. 1

curl �h= �J

curl �E =−μe ∂
�h
∂t

div �h= 0, div �E= 0

where �h= curl (�u × �H0), �H = �H0+ �h(x,y, t)

(1)

in which �h is the perturbed magnetic field over the primary magnetic field, �J represents the electric
current density, μe represents the magnetic permeability, H0 represents the constant primary
magnetic field, and �u represents the displacement vector, �H = (0, 0, H0), �u= (u, v, 0).

Figure 1: Schematic of the problem

The equation of heat conduction given [15] as

K

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)
=
(
∂

∂t
+ τ0 ∂

2

∂t2

)
ρCET + γT0

(
∂

∂t
+ τ0 ∂

2

∂t2

)(
∂u
∂x

+ ∂v
∂y

)
(2)

The stress–displacement relations for the isotropic material are

σxx = (2μ+λ)∂u
∂x

+λ ∂v
∂y

− γ T −P (3)

σyy = (2μ+λ)∂v
∂y

+λ ∂u
∂x

− γ T− P (4)

σxy =
(
μ+ 1

2
P
)
∂u
∂y

+
(
μ− 1

2
P
)
∂v
∂x

, σyx =
(
μ+ 1

2
P
)
∂v
∂x

+
(
μ− 1

2
P
)
∂u
∂y

(5)

The Maxwell’s equation formulated as

τij =μe[Hihj+Hjhi − Hk.hk δij] (6)

The motion equation splits to
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The heat conduction and dynamical heat related by the form

ϕ−T = a

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)
(9)

The non-dimensional variables for simplifying gives as

(x′,y′, u′, v′)= c0η(x,y, u, v), (t′, τ ′0)= c20η(t, τ0), (θ ′, ϕ′)= (T ,ϕ)−T0

T0
,

σ ′
ij =

σij

2μ+λ , h′ = h
2μ+λ , P′ = P

2μ+λ , τ ′ = τ

2μ+λ , (10)

where η= ρCE
K , C2

2 = μ
ρ

and c20 = 2μ+λ
ρ

By dropping the dashed for convenience, and substitute Eq. (10), then Eqs. (2) and (9) take
the following form
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where ε= γ
ρCE

and β = aη2c20

Assuming the scalar and vector potential functions �(x, y, t) and ψ(x, y, t) in the non-
dimensional form defined as:

u= ∂�

∂x
+ ∂ψ

∂y
, v= ∂�

∂y
− ∂ψ

∂x
(13)

By using (15) and (10) in Eqs. (7) and (8), we obtain.[
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Also Eq. (11) tends to

∇2ϕ−
(
1+ τ0 ∂

∂t

)
∂θ

∂t
− ε

(
1+ τ0 ∂

∂t

)
∂

∂t
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3 The Solution to the Problem

The solution of the previous physical variables can be decomposed in terms of normal mode
technique in the exponential harmonic form

[�,ψ ,ϕ, θ ,σij](x,y, t)= [u∗(x),ϕ∗(x), θ∗(x),σ ∗
ij (x)] exp(ω t+ iby) (17)

where i=√−1, b be a wave number, ω is the time constant, and u∗(x),ϕ∗(x), θ∗(x) and σ ∗
ij (x) are

the amplitudes of the physical field quantities.

Using Eq. (17), into Eqs. (12) and (14)–(16), we obtain

[D2−A1]�
∗ −A2θ

∗ = 0 (18)

[D2− b2]ϕ∗ −Aθ∗ +B [D2 − b2]�∗ = 0 (19)

[D2−A3]ϕ
∗ =−β∗θ∗ (20)

[D2− m2]ψ∗ = 0 (21)

where A=ω(1+ωτ0) , A1 = b2+ ω2

a2
, A2 = a∗, A3 = (βb2+ 1)/β,B=−εA,β∗ = 1

β
, m2 = b2+ ω2

a3

and D= d
dx

Solving Eqs. (18)–(20) by eliminating θ∗(x), �∗(x), and ϕ∗(x), we obtain the partial differen-
tial equation satisfied by θ∗(x)

[D4−ED2 +F ] θ∗(x)= 0 (22)

where

E = A1+ b2+βA(A1+A3)−βBA2(A3+ b2)
1+βA−βBA2

, (23)

F = b2A1+βA3(AA1−BA2b2)
1+βA−βBA2

, (24)

Similarly, we get

[D4−ED2 +F ] (�∗,ϕ∗)(x)= 0 (25)

which can be factorized to

(D2 − k21)(D
2 − k22) θ

∗(x)= 0 (26)

where k2n (n= 1, 2) are the roots of the characteristic equation

k4 −Ek2 +F = 0 (27)
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as x→∞, the solution of Eq. (26) is given by

θ∗(x)=
2∑

n=1

Mn(b,β,ω) exp(−knx) (28)

Similarly

ϕ∗(x)=
2∑

n=1

M′
n(b,β,ω) exp(−knx) (29)

�∗(x)=
2∑

n=1

M′′
n (b,β,ω) exp(−knx) (30)

The solution of Eq. (21) has the form

ψ∗(x)=M3 e
−mx. (31)

u∗(x)=D�∗ + i bψ∗ (32)

v∗(x)= i b�∗ −Dψ∗ (33)

e∗(x)=Du∗ + i bv∗ (34)

To get the amplitudes of the displacements u and v, which bounded as x→∞, then Eqs. (32)
and (33) tend to
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where Mn, M′
n and M′′

n are parameters depend on β,b and ω.

From Eqs. (28)–(30) into Eqs. (18)–(20), we get

M′
n(b,β,ω)=H1nMn(b,β,ω), n= 1, 2 (37)

M′′
n (b,β,ω)=H2nMn(b,β,ω), n= 1, 2 (38)

where

H1n=
(

β∗

A3− k2n

)
, n= 1, 2 (39)
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H2n= A2

(k2n−A1)
, n= 1, 2 (40)

Thus
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Substitution of Eqs. (35) and (36) into Eqs. (3)–(5), we obtain
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gn=−
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The normal mode analysis is, in fact, to look for the solution in Fourier transformed domain.
Assuming that all the field quantities are sufficiently smooth on the real line such that normal
mode analysis of these functions exists.

4 Applications

Now we will obtain the parameters Mn(n= 1, 2, 3), we will suppress the positive exponentials
that are unbounded at infinity. The constants M1, M2, M3 must choose such that the boundary
conditions on the surface atx= 0 take the form:

1) Boundary conditions for the thermal at surface under thermal shock

θ(0,y, t)= f (0, y, t) (53)

2) Boundary condition for the mechanic at surface under initial stress

σxx(0, y, t)+ τxx(0, y, t)= −P (54)

3) Boundary condition for the mechanic at the surface is traction free

σxy(0,y, t)+ τxy(0, y, t)= 0 (55)

Substitute into the above boundary conditions in the physical quantities, we obtain

2∑
n=1

Mn(b,β,ω)= f ∗(y, t) (56)

2∑
n=1

(hn+ gn)Mn(b,β,ω) − q1M3 = 0 (57)

2∑
n=1

h′′n Mn(b,β,ω) − q2M3 = 0 (58)

In the context of the boundary conditions in Eqs. (56)–(58) at the surface x = 0, we get a
system of three Algebraic equations, we will apply the inverse matrix method, we will get the
three constants Mj, j = 1,2,3, after that by substituting into the main expressions to obtain the
displacements, temperature and other physical quantity.

5 Numerical Results and Discussions

To illustrate the analytical variable obtained earlier, we will consider a numerical example
consider copper material. The results display the variation of displacements, temperature and
stress in the context of LS theory.

λ= 7.59× 109 N/m2, μ= 3.86× 1010 kg/ms2, CE = 383.1 J/(kgk), ε= 0.0168
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α =−1.28× 109 N/m2, ρ = 7800 kg/m2, K = 386 N/Ks, τ0 = 0.02, f ∗ = 1

αt = 1.78× 10−5 N/m2, a= 1, T0 = 293 K, ω=ω0+ iξ , ω0 = 2, ξ = 1, η= 8886.73 m/s2

We took the constants: y=−1, time t= 0.1, b= 0.25, H = 105, P= 1010,β = 0.1, τ = 0.1 for
all computations, and we used for the real part of the displacement u, v, strain e and the stresses
(σxx,σyy,σxy), thermal temperature θ and conductive temperature φ. All the field quantities don’t
depend only on space x and time t, also on the relaxation time τ and in dimensionless form:

The output is plotted in Figs. 2–7.

Fig. 2 displays the values of the conductive temperature φ, which decreases with increasing
of axial x. They indicate that the medium along the axial x tends to zero as x tends to infinity.
The effect of time t, wave number b, longitudinal wave velocity, β, relaxation time τ , magnetic
field H and initial stress P on the conductive temperature. The conductive temperature increases
with increasing of time and longitudinal wave velocity, while it decreases with increasing of wave
number and relaxation time, also, there isn’t any effect due to the magnetic field and initial stress
on the conductive temperature.

Fig. 3 plots the values of the thermodynamic temperature θ , which decreases with increasing
of axial x. These figures indicate that the medium along axial x. The effect of time t, wave number
b, longitudinal wave velocity β, relaxation time τ , magnetic field H and initial stress P on the
conductive temperature. The thermodynamic temperature increases with increasing of time and
longitudinal wave velocity, while it decreases with increasing of wave number and relaxation time,
as well, there is no effect of magnetic field and initial stress on the thermodynamic temperature.

Fig. 4 shows the values of displacement u, which has an oscillatory behavior in the whole
range of axial x under the effects of time t, wave number b, longitudinal wave velocity β,
relaxation time τ , magnetic field H and initial stress P. In these figures, it is clear that the
displacement has a nonzero value only in the bounded region of space, while it increases with
increasing of time, wave number and longitudinal wave velocity, as well it decreases with increasing
relaxation time and magnetic field, while there is no effect of initial stress on the displacement.

Fig. 5 displays the value of displacement v which has an oscillatory behavior in the whole
range of axial x under the effects of time t, wave number b, longitudinal wave velocity, β,
relaxation time τ , magnetic field H and initial stress P. In these figures, it is clear that the
displacement has a non-zero value only in the bounded region of space, while it increases with
increasing of time, wave number and longitudinal wave velocity, as well it decreases with increasing
relaxation time and magnetic field, while there is no effect of initial stress on the displacement.

Fig. 6 clears the values of stress, σxy which has an oscillatory behavior in the whole range of
axial x under the effects of time t, wave number b, longitudinal wave velocity, β, relaxation time
τ , magnetic field H and initial stress P. In these figures, it is clear that the stress has a nonzero
value only in the bounded region of space, while it increases with increasing of time, wave number
and longitudinal wave velocity, as well it decreases with increasing temperature, magnetic field and
initial stress.
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Figure 2: Conductive temperature φ with respect to x and variation of t, b, β, τ , H and P

Fig. 7 shows the values of the stress σyy, which increases with increasing of axial x. These
figures indicate that the medium along axial x the effect of time t, wave number b, longitudinal
wave velocity, β, relaxation time τ , magnetic field H and initial stress P on the stress. The stress
decreases with increasing of time, wave number, longitudinal wave velocity and initial stress, while
it increases with increasing relaxation time, as well, there is no effect of magnetic field on the
stress.
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Figure 3: Thermodynamical temperature θ with respect to x and variation of t, b, β, τ , H and P
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Figure 4: Displacement u with respect to x and variation of t, b, β, τ , H and P
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Figure 5: Displacement v with respect to x and variation of t, b, β, τ , H and P
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Figure 6: Stress σxy with respect to x and variation of t, b, β, τ , H and P



CMC, 2022, vol.70, no.2 3379

Figure 7: Stress σyy with respect to x and variation of t, b, β, τ , H and P
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6 Conclusion

The results and conclusions can be summarized as follows

1) Normal mode analysis of the problem of magneto-thermoelastic solid has been applied
and developed.

2) The generalized magneto-thermoelasticity with thermal shock, two temperatures, initial
stress described with characteristic by fourth order equation.

3) The role of the initial stress, thermal shock, magnetic field clears strongly on the physical
quantities depending on the nature of the medium, horizontal and vertical distances x and
y respectively. The nature of forced applied as well as the type of boundary conditions
deformation.

4) Finally, it is concluded that all the external parameters affect strongly on the physical
quantities of the phenomenon which has more applications, especially, in engineering,
geophysics, astronomy, acoustics, industry, structure, and other related topics.
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