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Abstract: Acceptance sampling is a statistical quality control technique that
consists of procedures for sentencing one or more incoming lots of finished
products. Acceptance or rejection is based on the inspection of sampled
products drawn randomly from the lot. The theory of previous acceptance
sampling was built upon the assumption that the process from which the lots
are produced is stable and the process fraction nonconforming is a constant.
Process variability is inevitable due to random fluctuations, which may inad-
vertently lead to quality variation. As an alternative to traditional sampling
plans, Bayesian approach can be used by considering prior information of
the process. Using different combinations of design parameters, this study
introduces a Bayesian group chain sampling plan (BGChSP). For the first
time in group chain sampling plan, the probability of lot acceptance is derived
by using Poisson distribution to estimate an average number of defectives.
Gamma distribution is used as a prior distribution with Poisson distribu-
tion. Taking into account both consumer’s and producer’s risks, this research
considers two quality regions namely, probabilistic quality region (PQR) and
indifference quality region (IQR). By minimizing consumer’s and producer’s
risks, BGChSP can be used to minimize the average number of defective
products in industry.

Keywords: Bayesian; acceptance sampling; gamma; produce risk; consumer
risk

1 Introduction

There is tough competition in the industry by rapidly increasing the needs of statistical and
analytical techniques towards the improvement of product quality [1–3]. This study is related
to Bayesian group chain sampling plan (BGChSP) by using a novel approach called quality
region. Instead of considering a point estimate of the quality of a process, this plan is based
on a range of quality levels. The producer’s risk and consumer’s risk are associated with every
sampling plan [4]. A good plan delivers decision rules of acceptance for both producer and
consumer to meet the present quality condition of the product [5]. Improvement in technology
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is rapidly increasing with the passage of time and supplier needs high-quality products with low
defective fraction [6]. Unfortunately, in some situations, traditional methods cannot detect the
defective product with such quality level. Thus, quality regions were introduced to overcome such
problems [7,8]. By involving probabilistic quality region (PQR) and indifference quality region
(IQR), this study designs the parameters for the plan indexed with quality region.

Bayesian approach is based on the combination of current and prior information for the
selection of distribution. In acceptance sampling plan, Bayesian approach is required to specify
a distribution of defectives from lot to lot [7]. Prior distribution is the expected distribution of
the lot quality, that is under inspection. Prior distribution is formulated before taking the sample
and empirical knowledge is based on the sample under study called the distribution of sample or
data. The combination of prior and empirical information leads to a decision about the current
lot either it will be accepted or rejected.

2 Literature Review

Epstein [9] was the first who introduced the idea of single sampling plan (SSP), to distinguish
between good and bad lot for zero and one acceptance number. Dodge [10] introduced the chain
sampling plan to overcome the deficiency of SSP, with more than one acceptance number and
for the general family of chain sampling inspection plan [11]. Under an assumption that cost
is linear in p that is the fraction of defectives. Hald [12] provides a system of attribute single
sampling plan obtained by minimizing average cost. Later, single sampling plan was modified
by using acceptable quality level (AQL) and limiting quality level (LQL) for Bayesian single
sampling plan with weighted Poisson distribution [13] and Poisson distribution [14]. Later, in the
construction and performance measure, a Bayesian chain sampling plan was discussed for gamma
prior [15]. For Beta prior, a Bayesian double sampling plan was considered for the construction
and performance measure through quality region [16]. Mathew et al. [17] also work in two-sided
complete Bayesian chain sampling plan with Poisson and gamma as prior distribution.

Aslam et al. [18] developed a group sampling plan (GSP), by considering multiple testers at
the same time. In GSP the sample size is divided into g number of groups based on the available
number of testers n = r ∗ g. Aslam et al. [19] designed group acceptance sampling plan (GASP)
for truncated life tests, with the product lifetime following Pareto distribution of the second kind.
Later, for a family of Pareto distribution, an efficient GASP was introduced by Mughal et al. [20];
they assumed the total number of defectives as groups. The number of defectives in the proposed
plan was recorded based on all groups instead of an individual group. Moreover, for a family of
Pareto distribution, an economic reliability acceptance sampling plan was proposed for an efficient
group sampling technique [21]. By satisfying design parameters for a given group and acceptance
number, a minimum termination time was required for the proposed plan. Using GASP for Pareto
distribution of 2nd kind, an economic reliability group acceptance sampling plan was developed
by Mughal et al. [22]. For the biased data theory to find the required design parameters, they
used Poisson and weighted Poisson distributions. It was proven that their proposed plans required
minimum testing time.

Mughal et al. [23] developed a GChSP plan for the lifetime of a product following Pareto
distribution of 2nd kind. Satisfying pre-assumed design parameters at several quality levels, prob-
ability of lot acceptance was obtained. Based on their sampling plan, Mughal [24] extended and
proposed a generalized GChSP. By considering several values of the proportion of defectives,
the minimum sample size and probability of lot acceptance were found to satisfy pre-specified
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consumer’s risk. Recently, Hafeez et al. [25] also worked on this plan and estimated AQL and
LQL for the average proportion of defective products in their study.

Based on Mughal et al. [23] plan, this study concerns with the development of a Bayesian
group chain sampling plan (BGChSP). In group chain sampling plan, the probability of lot
acceptance is derived by using Poisson distribution and gamma is used as a prior distribution.
For PQR and IQR, this study designs the plan indexed parameters which are: AQL, LQL,
producer’s risk α, consumer’s risk β, for the specified values of the number of testers r and shape
parameter s. Also, the numerical illustrations are provided for prior distribution parameters.

3 Methodology

The operating procedure for the proposed plan is based on the following steps:

(1) Select an ideal number of g groups for each lot and assign r items to each group with the
sample size required n= g ∗ r.

(2) Count the number of defectives d.
(3) If d = 0, accept the lot.
(4) If d > 1, reject the lot.
(5) If d = 1, and no defectives was found in the immediately preceding i samples, then accept

the lot.

All the above steps can be summarized in a flow chart presented in Fig. 1.

Start

Inspect a sample of size = * , from current lot

Count number of defectives, d 

> 1 = 0 = 1

= 0 > 0

Reject
Accept

Figure 1: Operating procedure of the proposed sampling plan

In attribute acceptance sampling, lot inspection is based on the number of defectives (dis-
crete variable). The procedure of GChSP for i = 2, is illustrated through a tree diagram,
represented in Fig. 2, where defective and non-defective products are denoted by D and D,
respectively. From Fig. 2, for i = 2 it can observed that GChSP has five acceptance criteria
(AC) {DDD,DDD,DDD,DDD,DDD}. Here {DDD,DDD,DDD,DDD} concern with the current
lot, hence the probability of lot acceptance is P0 and

{
DDD

}
has a probability of lot acceptance

P0P0P1. Finally in the group chain, the probability of lot acceptance can be written as:

L(p)GChSP =P0+P0P0P1 (1)
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Figure 2: Tree diagram for the proposed sampling plan

L(p)GChSP=P0+P1(P0)
2 (2)

The general expression for i= 2 is like the operating characteristics (OC) function of ChSP-1
given by Dodge [10].

L(p)GChSP=P0+P1(P0)
i (3)

For the average number of defectives, consider Poisson distribution with mean μ = np and
n= r ∗ g, to achieve the probability of lot acceptance for zero and one defective product which
are respectively:

P0 = e−(r∗g)p, (4)

P1 = (r ∗ g)pe−(r∗g)p. (5)

After replacing Eqs. (4) and (5) in Eq. (3), we get:

L(p)GChSP= e−(r∗g)p
{
1+ (r ∗ g)pe−(r∗g)pi

}
. (6)

Let us consider gamma distribution as a suitable prior for the Poisson distribution [26,27],
with pdf:

f (p)= ts

Γ (s)
ps−1e−tp, (7)

where shape parameter, s > 0 and rate parameter, t > 0 with mean μ = s
t under the proposed

sampling plan. For the average probability of lot acceptance, the general expression used in
Bayesian is as follows:

P=
∫ ∞

0
L (p) f (p)dp. (8)
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After replacing Eqs. (6) and (7) in Eq. (8) and then from simplification we get:

P= ts

Γ (s)

[
Γ (s)

(r ∗ g+ t)s
+ (r ∗ g) Γ (s+ 1)

(r ∗ g ∗ (1+ i)+ t)s+1

]
, (9)

P=
(

t
r ∗ g+ t

)s

+ (r ∗ g) sts

(r ∗ g (1+ i)+ t)s+1 . (10)

Upon substituting mean μ= s
t in Eq. (10) and simplifying:

P=
(

s
rgμ+ s

)s

+ rgμss+1

(rgμ(1+ i)+ s)s+1 . (11)

Further simplification of Eq. (11), for s= 1, 2, 3 gives:

P= 1
(rgμ+ 1)

+ rgμ

(rgμ(1+ i)+ 1)2
, (12)

P= 4

(rgμ+ 2)2
+ 8rgμ

(rgμ(1+ i)+ 2)3
, (13)

P= 27

(rgμ+ 3)3
+ 81rgμ

(rgμ(1+ i)+ 3)4
. (14)

It is to be noted that Newton’s approximation is employed in Eqs. (12)–(14) to find the quality
regions of BGChSP, where μ is used as a point of control by reducing P. Tab. 1 presents the
average number of defectives for the specified values of shape parameter s= 1, 2, 3; the number of
testers r = 2, 3, 4 and number of preceding lots i = 1, 2, 3, 4. Operating ratios for different values
of consumer’s risk and producer’s risk are presented in Tab. 2.

Example 1: In Tab. 1, for s = 1, r = 2, i = 3 and P = 0.50 the corresponding value of the
average number of defectives is 0.5788 and for s= 2, r= 3 and i = 4, the corresponding value is
0.3017. From Tab. 1, it can be concluded that as the values of s, r and i are increased the average
number of defective products decreases.

3.1 Designing Sampling Plans for Given AQL and LQL
For the selection of BGChSP, Tabs. 1–2 are used for specified AQL, LQL, α and β by using

the following three steps: (i) construct a plan for the given points (AQL, 1− α) and (LQL, β),
then compute the desired operating ratio; (ii) from Tab. 2, find the value of the operating ratio
that is equal to or just less than the desired operating ratio in the desired columns for α,β; (iii)
obtain the corresponding values of s, r,g and i, from Tab. 1 for the corresponding located value
of the operating ratio given in Tab. 2.

3.2 Construction of Quality Regions
3.2.1 Probabilistic Quality Region (PQR)

In this quality region, the product is accepted with the maximum probability of 0.95 and
minimum probability of 0.10, where 0.95 corresponds to (AQL, 1− α) and 0.10 corresponds to
(LQL, β). In other words, PQR (R1) is exactly the conventional setting of AQL=μ1 and LQL=
μ2. In Fig. 3, we can see the PQR lies between μ1 <R1 < μ2.
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Table 1: For specified values of s, r, i and P, the average number of defectives for BGChSP

s r i 0.99 0.95 0.9 0.5 0.25 0.1 0.05 0.01

1 2 1 0.0323 0.0843 0.1363 0.7339 1.9938 5.7479 11.9990 62.0005
2 2 0.0253 0.067 0.1096 0.6247 1.7383 5.0722 10.6279 55.0740
2 3 0.0216 0.0581 0.0963 0.5788 1.6408 4.8277 10.1401 52.6412
2 4 0.0193 0.0526 0.0881 0.5546 1.5931 4.7121 9.9119 51.5148
3 1 0.0215 0.0562 0.0908 0.4892 1.3292 3.8319 7.9994 41.3347
3 2 0.0168 0.0447 0.0731 0.4164 1.1588 3.3814 7.0852 36.7168
3 3 0.0144 0.0388 0.0642 0.3859 1.0939 3.2185 6.7600 35.0959
3 4 0.0128 0.0351 0.0587 0.3697 1.0620 3.1414 6.6079 34.3417
4 1 0.0161 0.0422 0.0681 0.3669 0.9969 2.8739 5.9995 31.0002
4 2 0.0126 0.0335 0.0548 0.3123 0.8691 2.5361 5.3140 27.5374
4 3 0.0108 0.0291 0.0481 0.2894 0.8204 2.4139 5.0700 26.3206
4 4 0.0096 0.0263 0.0440 0.2773 0.7965 2.3561 4.9560 25.7573

2 2 1 0.0363 0.0914 0.1429 0.6055 1.2760 2.5818 4.0480 10.2300
2 2 0.0284 0.0722 0.1141 0.5123 1.1180 2.3188 3.6742 9.4007
2 3 0.0242 0.0624 0.0995 0.4730 1.0615 2.2367 3.5647 9.1760
2 4 0.0215 0.0561 0.0905 0.4526 1.0361 2.2032 3.5219 9.0921
3 1 0.0242 0.0609 0.0953 0.4037 0.8506 1.7212 2.6987 6.8200
3 2 0.0189 0.0482 0.0761 0.3415 0.7454 1.5458 2.4494 6.2671
3 3 0.0161 0.0416 0.0663 0.3153 0.7077 1.4911 2.3765 6.1173
3 4 0.0143 0.0374 0.0603 0.3017 0.6907 1.4688 2.3479 6.0614
4 1 0.0182 0.0457 0.0715 0.3027 0.6380 1.2909 2.0240 5.1149
4 2 0.0142 0.0361 0.0571 0.2561 0.5590 1.1594 1.8371 4.7002
4 3 0.0121 0.0312 0.0498 0.2365 0.5308 1.1184 1.7823 4.5880
4 4 0.0108 0.0281 0.0452 0.2263 0.5180 1.1016 1.7609 4.5461

3 2 1 0.0381 0.0946 0.1461 0.5690 1.1049 2.0096 2.8989 5.9575
2 2 0.0298 0.0746 0.1164 0.4798 0.9698 1.8209 2.6659 5.5848
2 3 0.0253 0.0643 0.1012 0.4421 0.9234 1.7682 2.6076 5.5052
2 4 0.0225 0.0577 0.0917 0.4226 0.9037 1.7492 2.5881 5.4810
3 1 0.0254 0.0631 0.0974 0.3794 0.7366 1.3397 1.9326 3.9717
3 2 0.0198 0.0498 0.0776 0.3199 0.6465 1.2139 1.7773 3.7232
3 3 0.0169 0.0429 0.0674 0.2947 0.6156 1.1788 1.7384 3.6702
3 4 0.0150 0.0385 0.0611 0.2817 0.6024 1.1661 1.7254 3.6540
4 1 0.0191 0.0473 0.0731 0.2845 0.5525 1.0048 1.4494 2.9788
4 2 0.0149 0.0373 0.0582 0.2399 0.4849 0.9104 1.3329 2.7924
4 3 0.0127 0.0321 0.0506 0.2210 0.4617 0.8841 1.3038 2.7526
4 4 0.0113 0.0289 0.0459 0.2113 0.4518 0.8746 1.2941 2.7405

The range of probability is R1 = μ2 −μ1 which is derived from the equation of the average
probability of acceptance Eq. (11). This Eq. (11) is used in the same way to find AQL, LQL and
operating ratios represented in Tab. 3.
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Table 2: For specified α and β in BGChSP, operating ratio μ2/μ1 values are tabulated against s, r
and i

s r i α = 0.01 α = 0.05 α = 0.10

β = 0.01 β = 0.05 β = 0.10 β = 0.01 β = 0.05 β = 0.10 β = 0.01 β = 0.05 β = 0.10

1 2 1 1919.5201 371.4861 177.9536 735.4745 142.3369 68.1839 454.8826 88.0337 42.1709
2 2 2176.8379 420.0751 200.4822 822 158.6254 75.7045 502.5 96.9699 46.2792
2 3 2437.0926 469.4491 223.5046 906.0448 174.5284 83.0929 546.6376 105.297 50.1319
2 4 2669.1606 513.5699 244.1503 979.3688 188.4392 89.5837 584.731 112.5074 53.4858
3 1 1922.5442 372.0651 178.2279 735.4929 142.3381 68.1833 455.228 88.0991 42.2015
3 2 2185.5238 421.7381 201.2738 821.4049 158.5056 75.6465 502.2818 96.9248 46.2572
3 3 2437.2153 469.4444 223.5069 904.5335 174.2268 82.951 546.6651 105.296 50.1324
3 4 2682.9453 516.2422 245.4219 978.396 188.2593 89.4986 585.0375 112.5707 53.5162
4 1 1925.4783 372.6398 178.5031 734.6019 142.1682 68.1019 455.2159 88.0984 42.2012
4 2 2185.5079 421.746 201.2778 822.0119 158.6269 75.7045 502.5073 96.9708 46.2792
4 3 2437.0926 469.4444 223.5093 904.488 174.2268 82.9519 547.2058 105.4054 50.185
4 4 2683.0521 516.25 245.4271 979.365 188.4411 89.5856 585.3932 112.6364 53.5477

2 2 1 281.8182 111.5152 71.124 111.9256 44.2888 28.2473 71.5885 28.3275 18.0672
2 2 331.0106 129.3732 81.6479 130.2036 50.8892 32.1163 82.39 32.2016 20.3225
2 3 379.1736 147.3017 92.4256 147.0513 57.1266 35.8446 92.2211 35.8261 22.4794
2 4 422.8884 163.8093 102.4744 162.0695 62.779 39.2727 100.4652 38.916 24.3448
3 1 281.8182 111.5165 71.124 111.9869 44.3136 28.2627 71.5635 28.3179 18.0609
3 2 331.5926 129.5979 81.7884 130.0228 50.8174 32.0705 82.3535 32.1866 20.3127
3 3 379.9565 147.6087 92.6149 147.0505 57.1274 35.8438 92.267 35.8446 22.4902
3 4 423.8741 164.1888 102.7133 162.0695 62.7781 39.2727 100.5207 38.937 24.3582
4 1 281.0385 111.2088 70.9286 111.9234 44.2888 28.2473 71.5371 28.3077 18.0545
4 2 331 129.3732 81.6479 130.1994 50.8892 32.1163 82.3152 32.1734 20.3047
4 3 379.1736 147.2975 92.4298 147.0513 57.125 35.8462 92.1285 35.7892 22.4578
4 4 420.9352 163.0463 102 161.7829 62.6655 39.2028 100.5774 38.958 24.3717

3 2 1 156.3648 76.0866 52.7454 62.9757 30.6438 21.2431 40.7769 19.8419 13.755
2 2 187.4094 89.4597 61.104 74.8633 35.7359 24.4088 47.9794 22.9029 15.6435
2 3 217.5968 103.0672 69.8893 85.6174 40.5537 27.4992 54.3992 25.7668 17.4723
2 4 243.6 115.0267 77.7422 94.9913 44.8544 30.3154 59.771 28.2236 19.0752
3 1 156.3661 76.0866 52.7441 62.9429 30.6276 21.2314 40.7772 19.8419 13.7546
3 2 188.0404 89.7626 61.3081 74.7631 35.6888 24.3755 47.9794 22.9034 15.643
3 3 217.1716 102.8639 69.7515 85.5524 40.5221 27.4779 54.454 25.7923 17.4896
3 4 243.6 115.0267 77.74 94.9091 44.8156 30.2883 59.8036 28.239 19.0851
4 1 155.9581 75.8848 52.6073 62.9767 30.6427 21.2431 40.7497 19.8276 13.7456
4 2 187.4094 89.4564 61.1007 74.8633 35.7346 24.4075 47.9794 22.9021 15.6426
4 3 216.7402 102.6614 69.6142 85.7508 40.6168 27.5421 54.3992 25.7668 17.4723
4 4 242.5221 114.5221 77.3982 94.827 44.7785 30.263 59.7059 28.1939 19.0545

3.2.2 Indifference Quality Region (IQR)
In IQR, the product is accepted with maximum and minimum probabilities 0.95 and 0.50,

that correspond to (AQL, 1 − α) and (LQL, β) respectively. Hence, R0 = μ0 − μ1 is the range
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of IQR and lies in the interval μ1 < R0 < μ0. This is obtained from the average probability of
acceptance Eq. (11).

β

µ

0.95

0.10

µ

1 - α

0.50

Figure 3: OC curve with pair of coordinates for PQR

Example 2: Let s= 1 at α = 0.10 and β = 0.05, μ1 = 0.008 and μ2 =0.90, then the operating
ratio μ2

μ1
= 112.5. From Tab. 2 the value 112.6364 with design parameters s = 1, r = 4, i = 4 is

approximately equal to this calculated operating ratio. With the same design parameters s= 1, r= 4
and i = 4 from Tab. 1, the corresponding value of gμ1 = 0.044. The number of groups can be
obtained by gμ1

μ1
= 5.5-the required minimum number of groups is approximately 6 in order to

get the required operating ratio. For this operating ratio, the parametric values are s = 1,g = 6,
r = 4, i = 4 at α = 0.10 and β = 0.05. Also, the corresponding value of AQL is μ1 = 0.008 and
LQL is μ2 = 0.9.

3.3 Selection of Sampling Plans

For different values of s and r in Tab. 3 the operating ratio T is given, i.e., T = μ2−μ1
μ0−μ1

= R1
R0
,

where R1 and R0 are used to characterize the sampling plan. Operating ratio T = R1
R0

can be found

for any given values of PQR (R1) and IQR (R0). First we find the value in Tab. 3 under the
column of T , that is equal to or just less than the specified ratio. Then for this operating ratio,
the corresponding parameters values can be determined for s, r and i in BGChSP.
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Table 3: For specified s, r and i values of PQR, IQR and operating ratio μ2/μ1

s r i gμ1 gμ0 gμ2 gR1 gR0 T μ2/μ1

1 2 1 0.0843 0.7339 5.7479 5.6636 0.6496 8.7186 68.1839
2 2 0.0670 0.6247 5.0722 5.0052 0.5577 8.9747 75.7045
2 3 0.0581 0.5788 4.8277 4.7696 0.5207 9.1599 83.0929
2 4 0.0526 0.5546 4.7121 4.6595 0.5020 9.2819 89.5837
3 1 0.0562 0.4892 3.8319 3.7757 0.4330 8.7199 68.1833
3 2 0.0447 0.4164 3.3814 3.3367 0.3717 8.9768 75.6465
3 3 0.0388 0.3859 3.2185 3.1797 0.3471 9.1607 82.9510
3 4 0.0351 0.3697 3.1414 3.1063 0.3346 9.2836 89.4986
4 1 0.0422 0.3669 2.8739 2.8317 0.3247 8.7209 68.1019
4 2 0.0335 0.3123 2.5361 2.5026 0.2788 8.9763 75.7045
4 3 0.0291 0.2894 2.4139 2.3848 0.2603 9.1617 82.9519
4 4 0.0263 0.2773 2.3561 2.3298 0.2510 9.2820 89.5856

2 2 1 0.0914 0.6055 2.5818 2.4904 0.5141 4.8442 28.2473
2 2 0.0722 0.5123 2.3188 2.2466 0.4401 5.1048 32.1163
2 3 0.0624 0.473 2.2367 2.1743 0.4106 5.2954 35.8446
2 4 0.0561 0.4526 2.2032 2.1471 0.3965 5.4151 39.2727
3 1 0.0609 0.4037 1.7212 1.6603 0.3428 4.8434 28.2627
3 2 0.0482 0.3415 1.5458 1.4976 0.2933 5.1060 32.0705
3 3 0.0416 0.3153 1.4911 1.4495 0.2737 5.2959 35.8438
3 4 0.0374 0.3017 1.4688 1.4314 0.2643 5.4159 39.2727
4 1 0.0457 0.3027 1.2909 1.2452 0.2570 4.8451 28.2473
4 2 0.0361 0.2561 1.1594 1.1233 0.2200 5.1059 32.1163
4 3 0.0312 0.2365 1.1184 1.0872 0.2053 5.2957 35.8462
4 4 0.0281 0.2263 1.1016 1.0735 0.1982 5.4162 39.2029

3 2 1 0.0946 0.5690 2.0096 1.915 0.4744 4.0367 21.2431
2 2 0.0746 0.4798 1.8209 1.7463 0.4052 4.3097 24.4089
2 3 0.0643 0.4421 1.7682 1.7039 0.3778 4.5101 27.4992
2 4 0.0577 0.4226 1.7492 1.6915 0.3649 4.6355 30.3154
3 1 0.0631 0.3794 1.3397 1.2766 0.3163 4.0360 21.2314
3 2 0.0498 0.3199 1.2139 1.1641 0.2701 4.3099 24.3760
3 3 0.0429 0.2947 1.1788 1.1359 0.2518 4.5111 27.4779
3 4 0.0385 0.2817 1.1661 1.1276 0.2432 4.6365 30.2883
4 1 0.0473 0.2845 1.0048 0.9575 0.2372 4.0367 21.2431
4 2 0.0373 0.2399 0.9104 0.8731 0.2026 4.3095 24.4075
4 3 0.0321 0.2210 0.8841 0.8520 0.1889 4.5103 27.5421
4 4 0.0289 0.2113 0.8746 0.8457 0.1824 4.6365 30.2629
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Example 3: At α = 0.05 and β = 0.1 let μ1 = 0.01 and μ2 = 0.25, then the operating ratio
will be μ2/μ1 = 25. From Tab. 3 for this operating ratio, the nearer values are 24.4089, 24.376
and 24.4075. The nearest values of PQR and IQR corresponding to s= 3 and i= 2 will be found
based on the minimum number of groups g.

Hence from Tab. 4, through quality region the required plan has parameters s = 3, g = 5
and r = 3. The nearest values of PQR and IQR are R1 = 0.2328, R0 = 0.0540 and T = 4.3099
corresponding to s= 3, g= 5, r= 3, i= 2 and μ1 = 0.0107.

Table 4: For s= 3 and i= 2 and specified r the values of PQR, IQR, μ2/μ1 and T

r μ2/μ1 gμ1 g μ1 μ2 R1 R0 T

2 24.4089 0.0746 8 0.0093 0.2276 0.2183 0.0507 4.3097
3 24.3760 0.0498 5 0.0100 0.2428 0.2328 0.0540 4.3099
4 24.4075 0.0373 4 0.0093 0.2276 0.2183 0.0507 4.3095

4 Conclusion

In this acceptance sampling plan, both risks are used to balance the expected losses for the
consumers and producers. The presented work is limited to BGChSP and estimate PQR and
IQR for the specified producer’s and consumer’s risks. This research gives the idea to estimate
an interval of average number of defectives for prespecified design parameters. Quality interval
sampling plans have wider potential applications in the industry to ensure that the product
or process complies with a higher quality standard. Thus, quality interval sampling could be
useful for outlining product quality, planning, and quality control arrangements that are ready
for electronic industrial applications. Many electronic components such as transport electronics
systems, wireless systems, global positioning systems, and computer-supported and integrated
manufacturing systems can be evaluated by using the proposed plan. Many other distributions
and other quality and reliability characteristics can be explored in the future.
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