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Abstract: Smart Grid is a power grid that improves flexibility, reliability, and
efficiency through smart meters. Due to extensive data exchange over the
Internet, the smart grid faces many security challenges that have led to data
loss, data compromise, and high power consumption. Moreover, the lack of
hardware protection and physical attacks reduce the overall performance of
the smart grid network. We proposed the BLIDSE model (Blockchain-based
secure quantum key distribution and Intrusion Detection System in Edge
Enables Smart Grid Network) to address these issues. The proposed model
includes five phases: The first phase is blockchain-based secure user authenti-
cation, where all smart meters are first registered in the blockchain, and then
the blockchain generates a secret key. The blockchain verifies the user ID and
the secret key during authentication matches the one authorized to access
the network. The secret key is shared during transmission through secure
quantum key distribution (SQKD). The second phase is the lightweight data
encryption, for which we use a lightweight symmetric encryption algorithm,
named Camellia. The third phase is the multi-constraint-based edge selection;
the data are transmitted to the control center through the edge server, which
is also authenticated by blockchain to enhance the security during the data
transmission. We proposed a perfect matching algorithm for selecting the
optimal edge. The fourth phase is a dual intrusion detection system which acts
as a firewall used to drop irrelevant packets, and data packets are classified into
normal, physical errors and attacks,which is done byDoubleDeepQNetwork
(DDQN). The last phase is optimal user privacy management. In this phase,
smartmeter updates and revocations are done, for whichwe proposed Forensic
based Investigation Optimization (FBI), which improves the security of the
smart grid network. The simulation is performed using network simulator
NS3.26, which evaluates the performance in terms of computational com-
plexity, accuracy, false detection, and false alarm rate. The proposed BLIDSE
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model effectively mitigates cyber-attacks, thereby contributing to improved
security in the network.

Keywords: Smart grid; edge computing; intrusion detection system;
blockchain; quantum key distribution; deep reinforcement learning

1 Introduction

In recent years, there is an increasing requirement of properly managing renewable resources
and distribution of power based on the requirement. The smart grid has been evolved as a
promising technology for proper management of the power resources by providing a decentralized
supply of power from all sources. The smart grid network’s clean distribution and operational
efficiency has been achieved by integrating the electric flow and communication network [1]. This
integration results in an increased number of security threats to the smart grid network. The
security requirement for the smart grid network has been stated as confidential, full of integrity
and availability (CIA). Several existing works implemented authentication of smart meters to
provide anonymity to the users, but most of the users end in improper key distribution, ultimately
affecting the performance of the network [2,3].

Few random tree methods were incorporated for attack detection. However, only known
attacks were detected which will not be sufficient for the overall security of the smart grid
network [4]. Few asymmetric encryption functions were deployed to ensure authentication of
users, but these functions had higher complexity, which increased the latency of the smart grid
network [5]. Various methods deployed multi agents and Q learning approaches in edge server
and in the neighbor gateway in order to take precise decision in attack circumstances [6]. Several
works implemented homomorphic encryption of data, to provide data integrity, but it degraded
the performance as it had high overhead. Various monitoring techniques have emerged to improve
the security on the server-side by deploying significant techniques, including blockchain however,
these methods had their own limitations and were not suited for smart grid networks [7,8].

The prekeying technique emerged as an alternative keying method in which the key for the
upcoming data was generated priory to reduce the latency involved in it; nevertheless, this method
also had a key distribution problem [9]. Some methods implemented dynamic detection of attacks
in the smart grid network, but they had less efficiency in learning which affected the network’s
performance [10]. Few unique methods constructed graphs for better visualization of attacks, but
they also addressed only prevailing attacks [11]. The network similarity was observed, and the odd
one out method was practiced to detect the attack, which was considered simple and significant
in detecting them.

Few existing works were used for the correction of parameters for the detection of most
prevailing false data injection attacks. The integrity of the data was improved by executing the dig-
ital signature of packets for anomaly device detection in the smart grid-based edge network [12].
Smart grid network has been emerged as an on-demand technology to satisfy the increasing
requirements of energy resources. Several existing works addressed the cyber security of the
smart grid network but the overall solution for the security problems is not provided till now.
Additionally, the following research problems are encountered, Lack of user anonymity, Poor key
distribution and improper user privacy management. Motivated by these problems, the objectives
of this research work address the cybersecurity threats in the smart grid network and to provide
the solutions to ensure unconditional security in the power network.
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The goal of the research are;

• To maximize the anonymity of the users by authenticating only the legitimate users in the
smart grid network and to improve the security using blockchain technology,

• To maximize the integrity of the data by performing lightweight encryption of data without
increasing the latency of the network, to overcome the key distribution problem, and to
provide a secure transmission channel for transmission of data packets,

• To maximize the scalability in the smart grid network by optimal selection of the edge node
(gateway) based on significant parameters,

• To maximize the security of the smart grid network in the control center side by imple-
menting intrusion detection,

• To maximize the availability of the smart grid network in real-time by properly managing
the users and providing updated and revocation phases.

To meet the abovementioned research objectives, in this paper, we proposed a Blockchain-
based secure quantum key distribution and Intrusion Detection System in Edge Enabled Smart
Grid Network (BLIDSE) model; we summarize our research contributions as;

• Firstly, we proposed a lightweight block cipher algorithm for smart meters’ authentication,
namely, Camellia cipher, which is in comparison with the Advanced Encryption Standard
(AES) quite easier to use. It is a symmetric block cipher that provides better security
compared to AES with an ultralow latency.

• Secondly, we particularly forwarded the data from the smart meters using an encrypted
format and for particularly that, the procedure of Camellia is put to use. Confidentiality of
the data is being secured and protected against transmission is ensured by implementation
of lightweight Camellia encryption as well as the key distribution problem is overcome by
performing quantum key distribution in which the key is transmitted in the form of photon,
thereby providing unconditional security.

• Thirdly, we proposed a multi-constraints-based edge selection model which was presented
for optimum selection to avoid any packet loss. The proper selection of edge nodes is
carried out by performing a perfect matching algorithm that considers distance, load,
makespan time, connectivity, delay and congestion, thereby facilitating reliable transmission
of data. Here edge nodes are constructed into a hypergraph, and a perfect edge node is
selected based on multiple constraints.

• Fourthly, we proposed Bi-Fold IDS in which the D-DQN is used in sync with historical
data and the classification of data is done based on the dynamic threshold is performed,
which will detect the new attacks as it computes the threshold for normal data. The
D-DQN is trained with historical data from which the received data will be checked and
the classification of data based on the dynamic threshold is performed, thereby the false
alarm rate associated with the physical failure of devices will be reduced resulting in precise
ID’s. The training of the proposed D-DQN is carried out with comparatively low time
consumption, thereby improving the proposed work’s performance. The proposed work
provides security to the users through blockchain-based secure authentication and provides
security as well as the integrity of the data by executing Bi-Fold IDS which is performed
to mitigate the physical attacks.

Finally, the optimal user privacy management ID’s carried out by FBI optimizer solves the
optimization problem involved in updation and revocation to improve the security and scala-
bility of the smart grid network. In the final analysis, the performance of the BLIDSE model
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is analyzed and evaluated during experiments, and we proved that as an outcome, it is more
significant than the earlier models.

This paper is organized as follows; Section 1: Literature of intrusion detection in smart grid
network, and edge assisted energy management is discussed, while in Section 2: A background of
research problems is summarized and discussed in related work section. In Section 3: A detailed
discussion of the proposed BLIDSE model is discussed, while, in Section 4: An experimental
analysis of the proposed model and the previous works are compared. Further, this particular
section covers the performance evaluation and security analysis of the proposed model. Finally,
in the Section 5: there is a conclusion of the paper by stating the future directions and aspects
of the same.

2 Related Work

A multi-agent-based attack resilient system is presented for [13] protecting the integrity of
a smart grid. The Multi-Agent System (MAS) was deployed in the substations to protect the
system’s integrity. The data sources available for the MAS are physical measurements such as
voltage magnitude, power injection, relative phase angle, power flow, brake status, and frequency
of the system. This multi-agent system integrity protection method is suitable for accountability
and confidentiality attacks where user authentication and data encryption is necessary. All the
users in the network were first registered to the smart grid network, then the private key and
public key for the user is generated and only the public key of the user is revealed during the
transaction. The load balancing between two users was performed using blockchain and was found
obtaining efficient load balancing with less energy consumption, but when the number of nodes
increased, the efficiency degraded [14]. A multi-step attack detection model is presented [15] based
on alerts of smart grid monitoring systems. The multi-step attack detection model based on alerts
is not suitable for real-world scenarios in which there are many node failure reasons to raise an
alert and it should not be considered as an attack.

In [16], the authors proposed detecting dynamic attacks in smart grids using a spiking delay
feedback reservoir-based computing. The proposed attack detection approach implemented a spike
in neural network for dynamic detection of attacks but it has major limitation of learning the
data, which affects the accuracy of the approach. Authors in [17] proposed an approach to detect
hidden electricity theft by exploiting multiple pricing schemes in smart grids. The purpose and
possibilities of hidden electricity theft were addressed, and an optimization problem was proposed
to increase the detection of these types of attacks, and two algorithms were designed to overcome
these attacks. The vulnerabilities of the smart meters were demonstrated, and the detection of
these intrusions was addressed [18]. The intrusion detection process involved two phases in which
initially the abnormal behavior of the smart meters was observed by implementing the support
vector machine, while the attack events were identified by generating the attack routes by temporal
failure propagation graph (TFPG) technique.

A cyber-physical security model is presented in [19] for smart grids based on parameter
correction against unbalanced false data injection attacks. Authors in [20] proposed a lightweight
privacy-preserving Q learning-based energy management for the internet of things enabled smart
grid. However, the Q learning model deployed for the lightweight privacy management is a
reinforcement learning model which is efficient, but the optimal result will be made through the
trial, and error method which will affect the performance of the smart grid network. In [21],
the authors proposed, permissioned blockchain model for enhancing privacy in the smart grid
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network. The proposed model consists of three layers: super nodes, edge nodes, and intelligent
contact layer.

Two authorization methods are involved in validating the edge nodes in the proposed sys-
tem, such as identity authorization and convert channel authorization. To manage security, and
privacy, a blockchain-based anonymous authentication. With key management is presented for
smart grid edge computing infrastructure. Mostly, attackers use hardware for capturing-sensitive
energy-related information. A lightweight mutual authentication-based PUF scheme is presented
for addressing the insider attacks. The unique properties of PUF are considered for authentication.

Machine learning (ML) approaches are used for intrusion detection and mitigation to protect
cloud-based enterprise solutions [22]. Using machine learning algorithms to predict, and distin-
guish the DDoS attack from normal traffic prediction, detection, and mitigation are fast and
effective. In [23], a highly randomized tree-based scheme is presented for stealthy cyber-attack
detection in the smart grid network. A secure load frequency control of smart grid using AES
is presented in [24]. This method is based on comparing the obtained statistics of the state with
that of the predicted future statistics. The statistical features selected for the comparison were
mean, and standard deviation. Then, [25] Elliptical Curve Cryptography was implemented to
ensure secure authentication of Home Area Network Gateway (HAN-GW) into the smart grid
network. Particularly, these aspects have several drawbacks as follows: In [24], the model based
data integrity method implemented AES encryption, a symmetric cryptography function that has
a major issue of key distribution and management in large scale smart grid system.

The model-based data integrity method used public key encryption for the purpose of dig-
ital signature, but these methods are vulnerable to man-in-the-middle attacks, affecting the data
integrity of the method. Also, it detects the attack by comparing the variation of statistics from
the predicted statistics of the state; this causes unnecessary false alarms as the obtained values may
vary due to other reasons. The lightweight authentication scheme as stated in [25], used elliptical
curve cryptography which is an asymmetric key cryptography, and it posed as a limitation of
increased computational complexity for resource smart meters. The parameters considered for the
purpose of registration of the HAN-GW was not mentioned in the lightweight authentication
scheme; this affects the integrity of the scheme. The updation and revocation of the same were
not addressed by the lightweight authentication scheme which limited the use of this scheme in a
real-time smart grid network.

3 BLIDSE Model

3.1 System Model
Fig. 1 represents the overall architecture model in edge enabled smart grid network. Firstly, a

HAN model is discussed, consisting of several smart meters and other IoT-based devices, sensors,
and actuators. Every smart meter is connected with the Internet, and protects its communication
with each other. Further, smart meters’ authenticity, confidentiality, and integrity requirements are
analyzed for improving their security strength. It is achieved by integrating blockchain technology
with a lightweight block cipher algorithm without increasing the energy consumption of smart
meters, and latency of the smart grid network. However, smart meters in the smart grid network
is used to measure the energy consumption, and demand of the HAN in which all smart devices
in the home is connected to the smart meter.

It demands the need for user authentication in which only authorized users can access the
smart grid network and provide anonymity for legitimate users, and thus the privacy of smart
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meters is protected. Secondly, the measurements of energy consumption and demand of every
HAN are collected by the control center to generate and distribute the power from various
sources. The data gathered from the HANs are encrypted before being transmitted in order to
improve the confidentiality of the data.

Thirdly, edge servers ES(i) are also authenticated to the blockchain to ensure data security in
transmission. Therefore, an optimum ES(i) is selected by multi-criteria. Then, the control center
receives data monitored in the HAN area and further precedes billing and power generation
processes. Therefore, the received data must be a credible one without any suspicious code in it.
The availability is one of the important factors in the smart grid network. The scalability and
availability of the smart grid network are increased through the optimal management of user
privacy. This is carried out by performing update and revocation of smart meters.
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Figure 1: Proposed BLIDSE model architecture

3.2 Threat Model
Through the BLIDSE model, three kinds of attacks are considered for detection and mitiga-

tion in this research i.e., Man-in-the-Middle (MITM) attacks, Physical attacks, Insider attacks. The
proposed BLIDSE model consists of five phases as blockchain-based secure user authentication



CMC, 2022, vol.70, no.2 2155

via Quantum Key Distribution, Lightweight Data Encryption, Multi-constraint based Edge Selec-
tion, Bi-Fold Intrusion Detection System and Optimal User Privacy Management. Blockchain
technology records all the network transactions, and the smart grid users check the validity of
data.

All the transactions are stored in the blocks with the format of hashing which is not tampered
by any attackers. The hash code is generated and received by Double SHA-256 hash function.
Each block is connected with existing blocks. Smart grid network faces many security challenges
for that we introduced blockchain in smart grid network which improves security. Blockchain has
many benefits described as follows; Blockchain is a distributed ledger that supports multifactor
verification that improves security. It avoids deploying the third party into the verification process
network, thus reducing energy and cost.

Blockchain has four metrics such as block validation processing time, storage cost, transaction
processing time and rate of hash.

(a) Block validation processing time: This metric is used to compute the block validation time
which computes the difference between block validation beginning time and block validation
ending time.

(b) Cost of Storage: This metric calculates the storage cost of the blockchain-based on data
storage size. Storage cost for each block cycle is calculated as follows,

SC =CB×TB (1)

where, SC represents storage cost, and CB is a cycles of block, and TB represent time taken to
create a new block.

(c) Processing time of Transaction: This metric evaluates the processing time of transactions,
for that it calculates the time difference between the transaction starting time, and ending time
which is defined as follows,

PT = 2− (2)

where, PT represent the processing time of transaction, and 2 represent transaction ending time,

and is a transaction starting time.

(d) Rate of hash: Hashrate is calculated based on the count of block cycles which is defined
as follows,

RH = SB
BT

×NH (3)

where, RH represent the rate of hash, and SB represented the size of block, and BT represent
processing time of block, and NH is a number of hash. Based on the procedure of blockchain,
the complete smart grid based edge environment is working.

3.3 Blockchain-Based Secure User Authentication
Initially, the smart meter users (Ui)= {U1, . . . , Un} are registered to the blockchain by using

the parameters such as physically unclonable function (PUF), local time, and geographical location.
Then the key for the meter is generated by the proposed Camellia encryption mechanism and is
registered in the blockchain. After that the blockchain ID for the meter is provided. All the users
(Ui) in the network are registered to the blockchain in which the details, and transactions of each
node are stored in blocks. Once the user (Ui) is registered in the blockchain it will communicate



2156 CMC, 2022, vol.70, no.2

by using its ID and its key is erased from its memory, by doing so, even when the node is
compromised physically, the attacker cannot retrieve its key. This way, the register users (Ui) are
capable to access the data. The registered users (Ui) are authenticated to enter, and access the data
in the smart grid network. The secret key (SKi) is verified, and permits to access the smart grid.
In case the verification is failed then the user does not allow to access the smart grid network.
This provides the improved confidentiality and anonymous nature of the users in the smart grid
network.

Fig. 2 represents the process of user authentication. Initially, the user registers their device
PUF, location time, and geographical location to the blockchain. After completed registration, the
blockchain generates secret key with the help of this formula, (SKi) . This SKi = {SKi, . . . , SKi}
for providing security. SKi is shared via a quantum channel to enhance security, which can detect
the presence of an attack or any third party try to gain the information of the key or data. The
key distribution drawback of symmetric encryption is overcome by implementing QKD in which
the key is distributed in terms of photon, and it is proved to provide unconditional security during
the transmission of data. During authentication, the user validates the key and device ID; if it is
verified then the user allows to access the smart grid network otherwise, the user will be avoided.
The process of QKD is shown in Fig. 3
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3.4 Lightweight Data Encryption
The control center collects the energy consumption and demand of every home area network

(HAN) to generate and distribute the power from various sources. The data generated from
the HAN are encrypted before being transmitted to improve the integrity of the data. For this
purpose, a lightweight symmetric encryption cipher named Camellia is used, which is as secure
as the standard AES, and computes with ultralow latency. The encryption is done by using the
(SKi), which is shared through the sequence of photons. Then the sender compares the emitters
which have sent every photon. The photons collected from the wrong beam collector are discarded
and collect only a specific sequence of bits.

This sequence of bits is used as key for encrypting the data. In this work, we consider the
block length is 128 bits, and the key length is 128 bits. The encryption and decryption are done
based on the secret key. The key is divided into two sub keys; each one has a 64-bit length. We
consider two variables with the size of 128 bits, and four variables with the size of 64 bits, which
is defined as follows,

kll = left bit of kl (64) (4)

klr = right bit of kl (64) (5)

krl = left bit of kr (64) (6)

krr = right bit of kr (64) (7)

This connection is determined for the length of the secret key k. For 128-bit length key consist

kl = k, kr = 0. For 192-bit length key,

kl = 128 left bit of k, krl = 64 right bit of k,

krr =∼ krl for 256 bits length key,

kr = 128 left bit of k, kr = 128 right bit of k.

where, the four 128 bit length created the variables kl, kr, ka and kb that calculates all the sub
keys which has 64 bit length kn, kwn, and kln. Sub keys are used for encryption, and decryption.
In our work we generate the key with the length of 128 bits. Camellia algorithm includes five
functions: S function, P function, F function, FL function, and FL−1 function. S function is
placed inside the F function. The input key (64 bits) is replaced by other 8 bytes that return for
further processing. The input is split into eight bytes I1, . . . , I8. I1 has 8 leftmost bits, and I8 have
final rightmost bits. S blocks change the received bits into other bits. S function of the camellia
is defined as follows,

J1 = S1 (I1) , J2 = S2 (I2) , J3 = S3 (I3) , J4 = S4 (I4) , J5 = S5 (I5) , J6 = S6 (I6) ,

J7 = S7 (I7) , J8 = S8 (8)

where J represents the output bits, and I represent the input bits. The next function is the P
function which is also run inside the F function which also takes the input (8 bit), and modifies
the input as like the S function. In p function performs the XOR function, which is defined
as follows, J1 = I1XORI3XORI4XORI6XORI7XORI8,…, J8 = I1XORI4XORI5XORI6XORI7. The
next function is the F function, one of the main functions in camellia used in encryption, and
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decryption during generating sub keys. The F function result is modified by the two functions S
and P, which is defined as follows,

(I , kl)→ (Il ‖Ir, Ill‖ Ilr)→ Jl || Jr (9)

Next function is the FL function which is performed during encryption and decryption, which
is defined as follows,

(J, kl)→ I → (Jl ‖Jr, Jll‖Jlr)→ Jl || Jr (10)

Finally, the data is encrypted by using the camellia algorithm. The process of encryption
and decryption of camellia is shown in Fig. 4. With the use of lightweight cipher, the energy
consumption of smart meters is reduced. And also, it is a strong security algorithm.

Figure 4: Encryption and decryption block diagram of camellia

In the following, data encryption and decryption is discussed. After completing authentication,
the user (Ui) data are encrypted by using SKi.

• Step 1: Initially, Ui sends a request blockchain server for getting SKi.
• Step 2: Blockchain server send a response to the user Ui to send their UserID that is

encrypted by the proposed encryption method for verification.
• Step 3: Ui sends the encrypted UserID using quantum method.
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• Step 4: Server decrypts the UserID using key which is obtained by quantum key distribu-
tion.

• Step 5: If is it matched then the blockchain server ready to share SKi, using quantum
method.

• Step 6: During this process session key is generated by server that is used to encrypt the
overall communication to provide confidentially of the data.

By doing so, the most prevailing attacks such as MITM, physical attacks, insider attacks, and
eavesdropping are mitigated, hence the confidentiality of the data is ensured.

3.5 Multi-Constraint Based Edge Selection
When multiple edge nodes are presented in the smart grid network, there is a huge likelihood

for smart meters that may reside in the coverage area of multiple edge nodes. Some characteristics
inherit from the proposed architecture as follows.

• Smart meters transmit measurements from HAN to the nearby ES(i), and it receives real-
time data from the smart meters for processing, and storing of records.

• Measure data from sensors, actuators and other devices collects information by ES(i) that
stores and processes the collected data for further processing.

The HAN network transmits the data to the perfect edge server from the available number of

server based on the parameters such as distance d, makespan mj , load , connectivity C, congestion
rate , delay in order to facilitate the proper transmission of data. A problem here is to
search for optimum edge servers to the arrived data i.e., perfect matching over the HyperGraph.
Furthermore, an optimum edge selection is considered the bipartite matching problem in which
agents compute edges for data in bipartite matching theory for different parameters. This selection
of optimal edge server is carried out by perfectly matching 2 algorithm in which the edge nodes
are constructed as a hypergraph, and an optimal edge node is selected based on the condition. A
hypergraph with perfect matching for edge selection is illustrated in Fig. 5.
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HyperGraph Construction: In this study, we use a HyperGraph which is asymmetric to
represents the relationship between data, and edge servers.

HG= {
v1, ...,n, e1, ..., e

}
(11)

where v1, ...,n, and e1, ..., e represent the vertices (edge servers), and weight values of edge servers,
respectively. In this paper, a hypergraph is constructed by similarity among ES(i). Edges in the
graph are connected from one node in the category to the other node in the same category. For
that similarity, Si is computed between two edge servers.

A mathematical formulation of the above bipartite matching problem is represented by fol-
lows. X = {x1, x2, . . . , xm} is the set of agents (edge servers) on one side, and Xi is the ith server
i.e., i ∈ I = {1, 2, . . . , m}. Similarly, Y = {y1, y2, . . . , ym} is the set of agents (data) on the other
side where n≥m, and Yi is the ith data i.e., j ∈ J = {1, 2, . . . , n}. Here, ai is computed between Xi,
and Yi, which is the matching aspiration that is determined by the multiple constraints of XiYi.
Therefore, it is given by,

ai (Xi, Yi)=
∑

(i, j)∈M

w (i, j) (12)

where w (i, j) is the weighted score between edge servers and data. M represents the matching
allocation for node pairs Xi and Yi. The maximum weight of edge servers are selected as the final
solutions. Hence, the above equation is redefined by follows,

ai (Xi, Yi)=MAX
∑

(i, j)∈M

w (i, j) (13)

3.6 Bi-Fold IDS
In the control center, the received data are monitored to obtain each HAN’s energy con-

sumption and further precede with billing and power generation processes. Therefore, the received
data must be a credible one without any suspicious code in it. The false data injection attack
is most commonly occurring in the smart grid network in which the smart meters are either
compromised logically or physically, and the false data are manipulated with the original data
before being transmitted to the control center. These types of attacks affect the performance of
the power grid. To ensure that the received data is legitimate and doesn’t contains any false data.
The Bi-Fold IDS is performed in which the packet flow based firewall is deployed which will
drop all the irrelevant packets and this is performed based on the parameters such as source IP,
destination IP, IP protocol, source port number, destination port number, APDU type, ASDU type,
cause of transmission.

To ensure that the received data is legitimate and doesn’t contain any false data. The Bi-Fold
IDS is performed in which the packet flow based firewall is deployed, which will drop all the
irrelevant packets, and this is performed based on the parameters such as source IP, destination
IP, IP protocol, source port number, destination port number, APDU type, ASDU type.

The next layer of IDS checks the integrity of the relevant message packets and classifies the
data into three classes: normal, physical failure and attack. On both firewall features and packets
are considered as F . The proposed Bi-Fold IDS as shown in Fig. 6 is executed by D-DQN in
which the output of the first DQN is led into the processing of the second one, which is trained
by the historical data, and a dynamic threshold value is generated form the trained data, which
is used for the purpose of classification.
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Figure 6: Double DQN for bi-fold IDS

D-DQN belongs to the Q-learning family, and it is the updated method that works similar to
the Q-target of DQN as follows,

YDQN
t =Nt+1 + rmax

a
Q

(
St+1, a, θ−t

)
(14)

where θ−t represents the integral Q-parameters and in single DQN accumulated i.e., optimized
reward is not possible, larger than the actual value. To address this issue, double DQN is presented
which selects the best action than DQN and the value of Q-target is computed as follows,

YDQN
t =Nt+1 + rQ(St+1argmax

a
Q (St+1,a, θt) θ−t (15)

For two different DQNs, θt and θ−t are used. In D-DQN, mean μi and standard deviation σi
of data packets are computed as follows,

μi =
∑n

di=1
w(i)tj

N
(16)

σi =
√∑n

di=1

(
witj −μ1(i)

)2
N

(17)

where w(i) is the weight value computed for all data packets for time interval tj. Based on the
threshold values computation for the number of packets in D-DQN, the classification of abnormal
behaviors are executed. It is defined by follows,

Bi− IDSC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if D (i)=Class1(Attack)

0 if D (i)=Class2(Normal)

−1 if D (i)=Class3(Physical Failure)

(18)
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The algorithm for Bi-Fold IDS using Double DQN is given above. This algorithm is used
to detect the abnormal packets transmitted from the smart meter is predicted. For temporal and
spatial constraints between the packet, D-DQN learns the inputs and predicts the corresponding
result. Through this process, the security of the smart grid network is ensured.

3.7 Optimal User Privacy Management
The availability is one of the important factors in the security; the scalability and avail-

ability of the smart grid network are increased by means through the optimal management of
user privacy. This is carried out by performing updation and revocation of smart meters. The
optimal updation and revocation is performed by implementing the Forensic Based Investigation
optimization (FBI), which has improved convergence speed and convergence time than many
other optimization algorithms. This algorithm has two phases such as investigation phase and
the pursuit phase. The investigation phase investigates the suspected location. The investigation is
executed if the user’s timeout for the key is attained or when the meter is suspicious.

In (L1), the new suspected location (SL1i) from SLi is assumed based on SLi and data that
is related to the suspected locations. Every move is under the effect of other individuals. That is
defined as follows,

SL1ij = SLij+ ((R− 0.5)× 2)×
(∑x1

x=1 Sxj
)

x1
, x1 ∈ {1, 2, . . . , n− 1}

where j = 1:d and d represent the dimension number, R and x represents the random integer in
the range [−1, 1] and [0, 1], respectively. x1 represent the individual number that is affecting the
movement of SLij.

SL1ij = SLij+ ((R1− 0.5)× 2)× (SLij −
(
SLmj +SLnj

)
/2

{m, n, i} ∈ {1, 2, . . . , NP} (19)

Eq. (19) represents the updated suspected location of SL1i. Where, m and n represent the
randomly selected location, and i represent the current location, d and NP are the numbers of
dimensions and number of locations for the suspect, respectively. In (L2), represent direct inquiry
section. Pmin represent the minimum probability that is the minimum objective value, where, Pmax
and SLmax are the maximum possibility and the optimal location, respectively.

Pb (SLi)= (Pmin−PSLi)/(Pmin−Pmax) (20)

Based on L1 and L2, the movement is defined as follows,

SL2i = SLmax+
x2∑
y=1

xy×SLyix2 ∈ {1, 2, . . . , n− 1} (21)

where, SLmax represent the optimal location and x2 represent individual number that affect the
move of SL2i, y = 1, 2, . . . , x2, xb represent the effective coefficient of other individual to move
with the range of [−1, 1]. The suspected location is updated by follows,

SL2ij = SLmax+SLdj+R5 ×
(
SLfj−SLej

) {d, e, f , i} ∈ {1, 2, . . . , NP} (22)

where, SLmax represents the optimal location and R5 denotes the random value between zero and
one, and d, e, f , i represent the four suspected locations.
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In (M1) every Mi agent updates the position, which has the maximum value of the objectives.
The new position is changed when it finds an optimal fitness compared to the previous one.

SM1ij =R6×SMij+R7×
(
SMmax−SMij

)
j= 1, 2, . . . , d (23)

where Smax represent the optimal location which is provided by the investigators, R7 and R8
represent the integer within the range [0, 1].

In (M2), every agent Mi coordinates with the other and Mi shift in the position of direction
of the optimal location, The updated location of the agent is defined as follows,

SM2ij = SMrj+R8×
(
SMrj−SMij

)+R9 ×
(
Smax−SMrj

)
(24)

{i, r} ∈= 1, 2, . . . , NP and j= 1, 2, . . . , d

SM2ij = SMij+R10×
(
SMij−SMrj

)+R11×
(
Smax−SMij

)
(25)

{i, r} ∈= 1, 2, . . . , NP and j= 1, 2, . . . , d

where, Smax represent the optimal location. The revocation of the user is executed when the meter
is found to be compromised or when a user wants to leave the network. All the updation and
revocation are stored in the blockchain in the form of hashed values for further retrieval. The
optimal management of users is necessary to improve the security in smart grid network.

The accuracy is an important factor in determining the intrusions of the smart grid system.
The accuracy can be formulated as,

Accuracy= TrP+TrN
TrP+TrN +FlP+FlN

(26)

4 Experimental Result and Analysis

The experimentation of the proposed BLIDSE model is performed with extensive simulations.
The simulation of the proposed BLIDSE model is carried out using NS 3.26. The validation of
BLIDSE model is performed by creating a smart grid network of 1000 m× 800 m consisting of
number of smart meters, gateways and a control center. Initially, the smart meters are authen-
ticated to improve the anonymity of the users. Then the data from smart meter are encrypted
and then sent to the controller. In the controller side, the validation of packets is executed to
ensure the security of the smart grid network. Fig. 7 illustrates the accuracy of the proposed
BLIDSE models with other existing model like Blockchain-Based Anonymous Authentication with
Key Management for Smart Grid Edge Computing Infrastructure (BAKM) [23] for the number of
compromised meters. The accuracy in detecting the intrusions decreases gradually with an increase
in the number of compromised meters.

The proposed BLIDSE model is found to have higher accuracy particularly; even when the
number of compromised meters increases above 21 the accuracy is maintained with negligible
reduction. This is due to the implementation of Bi-Fold IDS in which initially the firewall is
deployed to filter the packets based on flow parameters, and further, the detection of intrusions is
carried out by D-DQN packets are classified into three classes based on the dynamic threshold.
This facilitates the accurate detection of both already occurred and new intrusions in the network.
Once the meter is compromised, the FBI-based update and revocation are carried out to preserve
the privacy of other users.
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Figure 7: Number of compromised meters vs. accuracy

The accuracy of the proposed BLIDSE model is also compared with existing models for
number of training samples, as shown in Fig. 8. The accuracy of intrusion detection increases
with an increase in the number of training samples.
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Figure 8: Number of training samples vs. accuracy

The proposed BLIDSE model is found to have high accuracy mainly. When the number of
training samples is 1000, the accuracy in detection of intrusion reaches to about 100%, whereas
the existing models have accuracy lesser than the proposed model. This is due to the variation of
threshold in detecting normal, physical failure and attack packets based on the training samples.
Through this, the accuracy of identifying the attack packets is achieved, thereby improving the
integrity of the user data.

4.1 Impact of Computational Overhead
The computational overhead is referred to as the additional load that restricts the reliability of

the smart grid network. The overhead in the network is due to the increased number of requests
from the meters in a particular time. This is caused mainly due to inappropriate selection of
edge nodes, which causes interference resulting in increased latency in the transmission of data.
Fig. 9 depicts the computational overhead of the proposed BLIDSE model and other existing
models for the number of smart meters in the network. The computational overhead increases
with increase in the number of smart meters. The proposed BLIDSE model has less computational
overhead compared to other model due to the execution of multi-constraint based edge selection.
The optimal edge server is selected by constructing a hyper graph and implementing perfectly
matching algorithm. The results in a reduced overhead of about 12 KB, whereas the existing
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approaches acquire overhead up to 20 KB when the number of meters is 100 leading to increased
latency. Hence, the existing approaches possess less reliability in data transmission, which will not
be suitable for smart grid networks.
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Figure 9: Number of meters vs. computational overhead

4.2 Impact of Attack Packets
The attack packets in the smart grid network are detected in order to achieve confidentiality,

integrity and availability. The number of detected attack packets is a measure of accurate detection
of intrusions in the network. The number of detected attack packets increases with increase in the
time taken for detection. Fig. 10 presents the comparison of detected attack packets of BLIDSE
model and other existing for detection time. When the detection time is 200 s, the BLIDSE, and
BAKM [23] model detected 10 attack packets; similarly, when the detection time is 300 s, the
BAKM detects only 12 packets, but the proposed BLIDSE model detected 15 attack packets.
This proves the efficiency of the proposed BLIDSE model in identifying and detecting the attack
packets. This characteristic of the BLIDSE model is due to the implementation of Bi-Fold IDS in
which initially the firewall is used to filter the packets based on flow parameters; then the IDS is
performed by D-DQN, which precisely classifies the attack packets based on a dynamic threshold.
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Figure 10: Detection time vs. number of attack packets

4.3 Impact of False Alarm Rate
The false alarm rate is a significant metric in assessing the efficiency of a model. The false

alarm rate in the smart grid network is caused due to the inaccurate classification of packets
into attack packets which causes unwanted revocation of smart meters from the network. Fig. 11
depicts the comparison of the proposed BLIDSE model’s false alarm rate with other existing
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model for number of packets. The false alarm rate gradually increases with an in the number
of packets. The BLIDSE model is found to have a reduced false alarm rate than other existing
models. From Fig. 11, when 800 packets are analyzed, the BLIDSE model produces a false alarm
rate of 8, which is negligible, whereas the BAKM model produces a false alarm rate of 17,
which affects the efficiency of those models. The BLIDSE model classifies the packets based on
the dynamic threshold by considering the physical failures such as CPU overloading and RAM
exhaustion which affects the normal pattern of the packets. The lack of consideration of these
deviations results increased false alarm in the existing approaches.
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Figure 11: Number of packets vs. false alarm rate

4.4 Impact of False Detection
The false detection of intrusions is affected by the threshold by which it is determined. The

purpose of the threshold is to act as a boundary above which the packets are termed as attack
packets. The threshold must be set accordingly to detect the attack packets accurately. Fig. 12
presents the comparison of false detection of the proposed model and other existing models to
a threshold value. The variation in the threshold to the optimal value reduces the false detection
in the network. For instance, when the threshold value is 60, the false detection of the BLIDSE
model is 14% but when the threshold value varies to 80, the false detection is also reduced to 10%.
The existing models detected intrusions based on distance and other metrics which is inefficient
as it doesn’t consider the spatial and temporal features.
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The comparison results of the proposed BLIDSE model in ensuring the security of the smart
grid network is presented as a numerical representation in Tab. 1.
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Table 1: Comparison results of the proposed BLIDSE model with BAKM [23]

Performance metrics BLIDSE BAKM

Accuracy Compromised meters 91.6± 0.5 83.42± 0.5
Training samples 0.962± 0.01 0.902± 0.01

Computational overhead (KB) 7.4± 1.0 9.8± 1.0
Detected attack packets 8.6± 1.0 7.6± 1.0
False alarm rate (%) 6.2± 0.5 12.6± 0.5
False detection 14± 1.0 22.4± 1.0

Due to the following reasons, the proposed BLIDSE model has obtained the better perfor-
mance, and they are listed as follows,

• The PUF based authentication of smart meters is carried out in which each node is
authenticated in the blockchain, which mitigates insider attacks and physical attacks,
thereby ensuring the anonymity of users. Previous works have presented centralized security
mechanisms that do not resist security attackers.

• The key generation is carried out by implementing camellia cryptography in order to
improve the confidentiality of the data, and the limitation of symmetric key distribution is
overcome by implementing QKD, thereby mitigating MITM attacks. The user’s anonymity
is improved by performing blockchain-based secure user authentication by considering the
factors such as PUF, geographical location, and local time.

• The computational overhead of the smart grid network is reduced by optimally selecting
the edge server, which is performed by using a perfectly matching theorem.

• The intrusion detection is executed by using Bi-Fold IDS in which the firewall is imple-
mented to filter the packets based on flow parameters and the D-DQN is used to classify
the packets into three classes namely normal, physical failure and attack based on the
dynamic threshold thereby increasing the accuracy and F1 score.

• The updation and revocation of smart meters is executed by using FBI optimizer which
ensures the data integrity and reduces false alarm rate in the smart grid network.

5 Conclusion

In this paper, the BLIDSE model is proposed for intrusion detection in edge enabled smart
grid network. Our work solves the problems discussed in the above studies related to intrusion
detection in smart grid networks. The proposed BLIDSE model mitigates MITM, physical, insider,
and DDoS attacks in an effective manner, thereby contributing to improved security in the
network. The main objective of this research is to provide security for smart grid networks.
Blockchain-based secure user authentication is proposed to improve the network’s security. For
this, we shared the secret key through the quantum channel during transmission. By using camel-
lia, the user data is encrypted with the secret key, which improves the security and mitigates
various attacks in the network such as MITM, insider attacks, and eavesdropping attacks. To
achieve efficient transmission of data, we select the optimal edge server using a perfect matching
algorithm. In this research, we perform two layers through Bi-Fold IDS, to improve the accuracy
of the network. In the first level, the firewall is used to drop the irrelevant packets; in the second
level of IDS, the integrity of the relevant message packets is checked, and the data is classified
into three classes such as normal, physical error, and attack. For this we propose the DDQN
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algorithm, the D-DQN is used to classify the packets into three classes namely normal, physical
failure and attack based on the dynamic threshold thereby increasing the accuracy and F1 score.
Finally, user privacy is managed to improve security. The comparison results of the proposed
BLIDSE model in ensuring the security of the smart grid network is presented as a numerical
representation in Tab. 1. The performance of the proposed BLIDSE model is compared with the
existing work BAKM [23] for validation purpose. The computational overhead of the smart grid
network is reduced by optimally selecting the edge server, which is performed by using a perfectly
matching theorem. This is done by updating and revoking the smart counters, which is done by
the optimization algorithm of forensic investigation (FBI). The proposed model has been tested
in NS 3.26 network simulator, and our work provides high security and detects intrusion in smart
grid networks accurately. In the future, trust management in smart grid network will be further
focused improving energy management’s security and privacy. In addition, blockchain technology
will be modified to reduce the energy consumption of smart meters.
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