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Abstract: Skin cancer is one of themost severe diseases, andmedical imaging is
among themain tools for cancer diagnosis. The images provide informationon
the evolutionary stage, size, and location of tumor lesions. This paper focuses
on the classification of skin lesion images considering a framework of four
experiments to analyze the classification performance of Convolutional Neu-
ral Networks (CNNs) in distinguishing different skin lesions. The CNNs are
based on transfer learning, taking advantage of ImageNet weights. Accord-
ingly, in each experiment, different workflow stages are tested, including data
augmentation and fine-tuning optimization. Three CNN models based on
DenseNet-201, Inception-ResNet-V2, and Inception-V3 are proposed and
compared using the HAM10000 dataset. The results obtained by the three
models demonstrate accuracies of 98%, 97%, and 96%, respectively. Finally,
the best model is tested on the ISIC 2019 dataset showing an accuracy of 93%.
The proposed methodology using CNN represents a helpful tool to accurately
diagnose skin cancer disease.

Keywords: Deep learning; skin lesion; convolutional neural network; data
augmentation; transfer learning

1 Introduction

Cancer is one of the most important diseases because it is a leading cause of death before the
age of 70 years in 112 of 183 countries, reducing life expectancy in every country [1]. In 2020, 19.3
million people worldwide were diagnosed with cancer and almost 10.0 million deaths occurred.
These numbers are expected to increase to 24.6 million diseased people and 12.9 million deaths [2].
Skin cancer is the most diagnosed type of cancer; one out of every three diagnostics is skin cancer.
There two main categories, namely, melanoma and nonmelanoma, which account for 324,635
and 1.2 million cases, respectively. Nonetheless, skin cancer could be prevented or successfully
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treated if countries develop efficient cancer prevention and early detection programs [3]. Even
melanoma and keratinocyte carcinoma, the most aggressive skin cancers, including basal cell
carcinoma and squamous cell carcinoma, can have a 5-year survival rate of 98% if diagnosed
at an early stage [4,5]. Therefore, early diagnosis and treatment of skin cancer can minimize
the damage caused. Nonetheless, its accurate recognition through skin lesion images is complex
due to the similarity between different skin lesions and the limited number of dermatologists
with professional knowledge [6,7]. Therefore, skin cancer identification based on image processing
techniques and artificial intelligence applied to skin lesion images has become a serious scientific
challenge.

Diagnosis and skin cancer detection based on image analysis have been traditionally per-
formed by screening and visual inspection. However, these approaches depend on the derma-
tologist’s expertise and, consequently, the results are time-consuming, complex, subjective, and
error-prone [8]. This fact is caused by the complex nature of the skin lesion images due to two
factors: the characteristics of the lesions including texture, size, color, shape, and location; and the
presence of multiple artifacts in the images, such as hair, veins, and charts of color calibration
and ruler marks [9–11]. Furthermore, the skin cancer diagnostics’ paradigm is far from a binary
problem (i.e., melanoma or nonmelanoma). Nowadays, the challenge includes multiple skin lesions
that restrict specialized analyses, including Melanoma (Mel), Melanocytic nevus (Nv), Basal cell
carcinoma (Bcc), Actinic Keratosis (Ak), Benign keratosis lesion (Bkl), Dermatofibroma (Df),
Vascular lesion (Vasc), and Squamous cell carcinoma (Scc) [12]. Consequently, computer-aided
diagnosis (CAD) systems become necessary for the preliminary diagnosis of different lesions.

CAD systems have employed traditional machine learning techniques for skin lesion image
processing, following the conventional medical image analysis pipeline. This pipeline includes
image preprocessing, image segmentation, feature extraction, and classification, where multiple
techniques and approaches have been tested without achieving a successful performance [6,8].
The limited generalization capacity of current approaches can be attributed to the selection of a
preprocessing approach, the high complexity of segmentation of the region of interest, the require-
ment of specific expertise to extract useful features related to physical skin lesion characteristics,
and the low accuracy rate of the classical classifiers [6,9,10,13,14]. For these reasons, CAD systems
are still human-dependent.

Recently, as a natural next step, computers have learned the features that optimally represent
image characteristics, leading to the development of a new machine learning branch called deep
learning [15,16]. The deep learning method can automatically mine the deep-seated nonlinear
relationship in target images and does not need to establish feature estimation and extraction that
are required in the traditional image recognition methods [17,18]. The first kind of deep learn-
ing model used for skin lesion image processing was the convolutional neural network (CNN).
This architecture was demonstrated to exceed a dermatologist’s performance in distinguishing
melanoma from non-melanoma [9,19,20]. Li et al. [6] provided an extensive review of CNN deep
learning models and compared the most popular architectures such as AlexNet, VGG, GoogleNet,
Inception, ResNet, DenseNet, and others. The most accurate model is based on residual learning
and separable convolution, with an accuracy of 99.5% [21]. However, this accuracy was achieved
for a binary problem.

When the skin lesion classification problem is treated as a multi-class problem, the CNN
models require additional steps, either data augmentation [10,12,22–26] or an ensemble of clas-
sifiers [22,27–29], to reach an accuracy above 80%. Another deep learning technique named
transfer learning improves the performance by taking advantage of previously trained architectures
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to fix former layers into the new deep learning model. Commonly, the model weights are
obtained from ImageNet [30] and the transfer learning approach is used for two purposes: feature
extraction [11,31] (while another approach performs the classification step); or direct classifica-
tion [10,13,32,33]. Since transfer learning provides a base model setup, it provides the possibility
to incorporate the optimization and fine-tuning process [34,35], which is an open issue. Hence,
new models could improve the performance in skin cancer diagnostics.

In this paper, an optimization process of transfer learning models is proposed for multiple
skin lesion classification. This was successfully addressed by using DenseNet-201, Inception-V3,
and Inception-ResNet-V2 architectures and pre-training the weights of each model with ImageNet.
Two datasets of skin lesion images, HAM10000 and ISIC 2019, are used to compare model
performances. Since the datasets present class imbalance, we conducted four experiments: pre-
trained models without data augmentation, without optimization, with data augmentation, and the
proposed optimization. As a result, the convolutional layers added to the former transfer model
improved the overall performance.

The paper is organized as follows. Section 2 presents the datasets and the proposed method-
ology. The experimental results are provided in Section 3, followed by a discussion of the results
in Section 4. Finally, the paper is concluded in Section 5.

2 Materials and Methods

The methodology illustrated in Fig. 1 and developed for skin lesion image classification
comprises the following stages: first, the number of images is increased by data augmentation;
then, transfer learning is used for each tested model; and last, the model’s accuracy is obtained.
The methodology consists of four different processing experiments, in which the feature space is
treated as follows: i) the unbalanced dataset is composed of the raw images; ii) the dataset is
balanced; iii) the transfer learning models are optimized for the unbalanced dataset, and iv) the
parameter optimization stage and the balanced dataset were tested.

Figure 1: Diagram of the methods developed for skin lesion images classification

2.1 Dataset
One of the used datasets was the Human Against Machine (HAM10000), an excellent series

of multi-source dermatoscopic images of common pigmented skin lesions. This dataset is collected
from different populations and stored by other modalities. It consists of 10015 dermatoscopic
images released as a training set for academic machine learning purposes and is publicly available
through the ISIC archive [36,37]. HAM10000 includes a representative collection of all essential
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diagnostic categories in the realm of pigmented lesions. As shown in Tab. 1, it includes seven skin
lesion types, where label 5 (nv) is the most abundant, indicating that the labels are unbalanced.
The other dataset was ISIC 2019 that contains the HAM10000 dataset. It comprises 25328 der-
matoscopic images from many sites, applying different preprocessing methods. It contains images
of the classes actinic keratosis (akiec), basal cell carcinoma (bcc), benign keratosis (bkl), dermatofi-
broma (df), melanoma (mel), melanocytic nevus (nv), vascular lesion (vasc), and squamous cell
carcinoma (scc) [29,38]. This dataset has one more class than HAM10000, for a total of eight
classes. Tab. 2 shows the number of images for each class in the ISIC 2019 dataset.

Table 1: Details of the human against machine dataset with 10,000 training images

Types of skin lesions Class abbrevation Label Sample number Data augmentation

Actinic Keratoses akiec 0 327 5918
Basal cell Carcinoma bcc 1 514 6519
Benign Keratosis bkl 2 1099 6462
Dermatofibroma df 3 115 5294
Melanoma mel 4 1113 6016
Melanocytic nervi nv 5 6705 6705
Vascular skin lesions vasc 6 142 6011

Table 2: Description of the ISIC 2019 dataset

Types of skin lesions Class abbrevation Label Sample number Data augmentation

Actinic Keratoses akiec 0 867 7870
Basal cell Carcinoma bcc 1 3322 10805
Benign Keratosis bkl 2 2624 9938
Dermatofibroma df 3 239 7437
Melanoma mel 4 4521 11647
Melanocytic nervi nv 5 12874 12874
Vascular skin lesions vasc 6 253 7364
Squamous cell carcinoma scc 7 628 7753

The images were preprocessed before the authors published them. All images were manually
cropped based on the center of the lesion, and manual histogram corrections were applied to
enhance visual contrast and color reproduction. Additionally, the authors manually selected the
images with correct labeling and filtered them to eliminate disturbances such as jewelry and
bubbles that alter the skin injury, as described in [36]. Several image samples for different skin
lesion classes are shown in Fig. 2.

2.2 Data Augmentation
To ensure that the learning model is not affected by the class with the most images (nv),

we increased the classes with fewer images for all datasets. For this purpose, we performed an
analysis on each label and applied translations, random rotates, and other transformations using
the Data generator Keras function to generate different images. For the HAM10000 dataset, we
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increased the dataset to a total of 42925. The image input size was transformed from 450 × 600
× 3 to 224 × 224 × 3 since it improves the transfer learning model design [24]. Additionally,
the dataset was split into ≈ 75% training (32201 images), ≈ 17% validation (7150), and ≈ 8%
testing (3574 images). For ISIC 2019, the dataset was augmented to 75688 images and split into ≈
75% training (56774 images), ≈ 17% validation (12611 images), and ≈ 8% testing (6303 images).
Furthermore, the image size was changed to 150 × 150 × 3 for the design of the transfer learning
model since the number of images was higher and the size of each image was initially 767 × 1022
× 3. Image size reduction is used to decrease the training time, considering that previously the
ImageNet weights were previously fixed.

Figure 2: Sample images of each class in HAM10000 (a–g) and ISIC 2019 (a–h). (a) akiec, (b)
bcc, (c) bkl, (d) df, (e) mel, (f) nv, (g) vasc, (h) sec

2.3 Transfer Learning and Architectures
Transfer learning is prevalent and beneficial because it considers a pre-trained architecture

with weights. For this, datasets with millions of images are used. References [16,39] demonstrated
that a pre-trained architecture is the best alternative for medical image analysis containing a priori
information on the images. We used fine-tuning to modify some of the feature extraction layers
by changing some network weights; the base weights were taken from ImageNet [30], then a new
configuration of the dense layers was proposed. The fully connected layers are outlined in purple
in Figs. 3–5.

The architectures of DenseNet-201, Inception-V3, and Inception-ResNet-V2 are used for
transfer learning and displayed in (Figs. 3–5). There are different block colors in each figure that
indicate the fine-tuned layers in red, the non-modified in blue, and the dense layers in purple.
DenseNet was proposed to resolve the vanishing gradient problem since it preserves information
through additive identity transformations, increasing its complexity. DenseNet uses layer-to-layer
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connectivity and connects each previous layer to the incoming layer in a feed-forward fashion. It
utilizes dense blocks, and feature maps of all the last layers are used as inputs into all subsequent
layers [8]. The best result provided by Keras on ImageNet is 0.936 using a specific DenseNet-201.

Figure 3: DenseNet-201 model optimization, where the number of hidden layers are 512, 128, 64,
32, and the ReLU function and a Softmax activation function are used

Inception-ResNet-V2 uses a sophisticated architecture to retrieve essential features from the
images. The initial layers of the network consist of standard convolutional layers followed by a
maximum accumulation layer. The next stage simultaneously convolutes an entry using different
filter sizes for each convolution and merges them. The following parts of the network repeat
inceptions and residual 10 or 20 times, where the network uses desertion layers to make the filter
values equal to 0 to prevent overfitting [40]. The best result provided by Keras on ImageNet is
0.953.

Inception-V3 CNN architecture is based on inception modules. A series of parallel convolu-
tions with different kernel sizes are used for feature extraction. The input image is projected onto
a sequence of convolutional and pooling layers; then, inception modules for feature extraction
are stacked [22]. The activation function of all convolutions is ReLU. The classifier is developed
with a dropout layer and softmax output layers to reduce overfitting. The best result provided by
Keras on ImageNet is 0.937.
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Figure 4: Inception-ResNet-V2 model optimization, where the number of hidden layers are 512,
128, 64, 32, and the ReLU function and a Softmax activation function are used

Figure 5: Inception-V3 model optimization, where the number of hidden layers are 512, 128, 64,
32, and the ReLU function and a Softmax activation function are used
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2.4 Optimization
Optimization focused on fine-tuning each model to modify the network weights and selecting

the convolutions to be modified. Then, an exhaustive search was performed to determine the
appropriate number of hidden layers for the model’s classification layers. Figs. 3–5 for DenseNet-
201, Inception-ResNet-V2, and Inception-V3, respectively, show that the number of fully con-
nected hidden layers are 512, 128, 64, 32. Here, we use the ReLU as a nonlinear activation
function. We initially normalized the dataset by applying a division by 255 and converting it
to float, which allows better learning of the model. Furthermore, we used batch normalization
layers in the model’s dense blocks between dense layers and the activation function, as outlined
in the purple blocks in Figs. 3–5. This type of normalization modified its variance between 0
and 1, allowing deeper networks to converge more easily. Also, we determined the optimizer
for the three chosen models, which consisted of analyzing optimizers such as Adam, Adamax,
Adamgrad, SGD, among others provided by Keras. The output layer was set to the number
of classes contained in each dataset. The classification blocks of each model, with a Softmax
activation function, are outlined in purple in Figs. 3–5. The Learning Rate Scheduler function was
employed to decrease the rate of change across time so the model learns slower and we avoid
overfitting. The model was trained for an initial rate of 0.001 and 30 epochs.

3 Results

In this work, the Google Collaboratory platform based on Python was used, which is available
to work with GPU in the cloud. For all experiments, three commonly used transfer learning
models were selected to solve the classification task of skin lesion images: DenseNet-201 [11],
Inception-ResNet-V2 [41], Inception-V3 [32]. As explained in Section 2, we applied models with-
out tuning the raw images, and their model performance is shown in Tab. 3. The models with
the balanced dataset have a high performance compared to previous experiments, as shown in
Tab. 4. Parameter tuning was performed as described in Section 2.4, and the learning rates and
classification accuracy are shown in Tab. 5. We found that the best optimizer is Adamax for all
models; therefore, this configuration was used for experiments 3 and 4. Experiment 3 tested the
models with the tuned parameters and the imbalanced dataset (see Tab. 6), while experiment 4
used both a balanced dataset and tuned transfer learning models (Tab. 7). As shown in Tab. 7,
it is possible to identify each specific label accurately, and there were cases in which the model
ultimately distinguished a label from the others.

The models are stable and error-free during the training and validation stages. Fig. 6 shows
the evolution of accuracy and loss of the training and validation processes for experiment 4.
The confusion matrix shown in Fig. 7 helps to observe the errors that the models must identify
in some classes. The ROC curve represents true positives and false positives, allowing us to
distinguish the success rate achieved by our model for the dataset of seven classes as shown in
Fig. 8.

To validate the high performance obtained on the HAM10000 dataset, we used the optimized
DenseNet-201 transfer learning model to classify the eight classes of the ISIC 2019 dataset,
including data augmentation (see Tab. 8).

Fig. 9 shows the evolution of accuracy and loss of training and validation tasks using the
ISIC2019 dataset. Furthermore, it displays the confusion matrix and ROC curves with confidence
intervals at 95% of confidentiality.
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Table 3: Performance of the models with the dataset imbalanced and no tuning

Class DenseNet-201 Inception-ResNet-V2 Inception-V3

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

0 0.61 0.63 0.62 0.52 0.59 0.55 0.62 0.59 0.60
1 0.74 0.76 0.75 0.53 0.69 0.60 0.67 0.57 0.62
2 0.58 0.62 0.60 0.79 0.57 0.66 0.62 0.68 0.65
3 1.00 0.44 0.62 0.80 0.44 0.57 0.75 0.33 0.46
4 0.65 0.36 0.46 0.67 0.33 0.44 0.70 0.38 0.49
5 0.88 0.93 0.90 0.87 0.96 0.91 0.87 0.94 0.91
6 0.85 1.00 0.92 0.73 0.73 0.73 0.67 0.73 0.70
Macro avg 0.76 0.68 0.70 0.70 0.62 0.64 0.70 0.60 0.63
Micro avg 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81
Weighted avg 0.80 0.81 0.80 0.80 0.81 0.80 0.80 0.81 0.80
Accuracy 0.81 0.81 0.81

Table 4: Performance of the models with the dataset balanced and no tuning

Class DenseNet-201 Inception-ResNet-V2 Inception-V3

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

0 0.96 0.99 0.97 0.93 0.92 0.95 0.96 0.98 0.97
1 0.98 0.96 0.97 0.92 0.99 0.95 0.98 0.99 0.99
2 0.88 0.95 0.91 0.91 0.87 0.89 0.91 0.93 0.91
3 1.00 0.99 1.00 0.98 1.00 0.99 1.00 0.99 1.00
4 0.94 0.87 0.90 0.94 0.81 0.87 0.93 0.88 0.90
5 0.94 0.93 0.93 0.92 0.95 0.93 0.94 0.94 0.94
6 1.00 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00
Macro avg 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95
Micro avg 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95
Weighted avg 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95
Accuracy 0.95 0.94 0.95

Table 5: Performance of the models using different optimizers and the HAM10000 dataset

Optimizers DenseNet-201 Inception-ResNet-V2 Inception-V3

Adamax 0.978 0.964 0.967
RMSprop 0.972 0.959 0.954
Nadam 0.970 0.963 0.845
Adam 0.962 0.959 0.960
Adagrad 0.921 0.762 0.768
SGD 0.902 0.622 0.651
Adadelta 0.634 0.491 0.471
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Table 6: Performance of tuned models with the dataset imbalanced

Class DenseNet-201 Inception-ResNet-V2 Inception-V3

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

0 0.73 0.59 0.65 0.63 0.44 0.52 0.70 0.52 0.60
1 0.84 0.64 0.73 0.77 0.57 0.66 0.74 0.69 0.72
2 0.66 0.65 0.66 0.69 0.65 0.67 0.60 0.70 0.65
3 1.00 0.67 0.80 0.80 0.44 0.57 0.83 0.56 0.67
4 0.64 0.57 0.60 0.60 0.54 0.57 0.70 0.46 0.55
5 0.91 0.95 0.93 0.89 0.95 0.92 0.90 0.95 0.92
6 0.79 1.00 0.88 0.82 0.82 0.82 0.75 0.82 0.78
Macro avg 0.80 0.72 0.75 0.74 0.63 0.67 0.75 0.67 0.70
Micro avg 0.85 0.85 0.85 0.82 0.82 0.82 0.83 0.83 0.83
Weighted avg 0.84 0.85 0.84 0.83 0.83 0.82 0.83 0.83 0.83
Accuracy 0.85 0.83 0.83

Table 7: Performance of tuned models with the dataset balanced

Class DenseNet-201 Inception-ResNet-V2 Inception-V3

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

0 0.99 1.00 0.99 0.98 0.99 0.98 0.97 0.98 0.97
1 1.00 1.00 1.00 0.98 1.00 0.99 0.98 0.98 0.98
2 0.95 0.96 0.96 0.96 0.92 0.94 0.93 0.92 0.92
3 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
4 0.96 0.94 0.95 0.92 0.91 0.91 0.93 0.90 0.92
5 0.96 0.96 0.96 0.94 0.96 0.95 0.94 0.96 0.95
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Macro avg 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.96
Micro avg 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.96
Weighted avg 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.96
Accuracy 0.98 0.97 0.96

4 Discussion

In this work, four experiments were performed to demonstrate the capacity of CNNs to
classify different skin cancer images from two relevant datasets. In these experiments, a robust
study was conducted to show the reliability of the results obtained based on multiple metrics such
as ROC curves with AUC by class with confidence intervals, Precision, Recall, F1-Score, Accuracy,
confusion matrices, and training curves of accuracy and loss. The best results were achieved
by DenseNet-201, obtaining 98% accuracy on the 2018 dataset and 93% on the 2019 dataset.
Concerning the first experiment (Tab. 3), using models without tuning, the performance varied
according to the number of images per class. The only exception was class 6 (vasc) on model
DenseNet-201, which showed the highest F1 score. Class 5 (nv) contained the highest number of
images and showed a high and similar performance across all models in this experiment.
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Figure 6: Evolution of training and validation for (a) accuracy and (b) loss of the proposed
models

The second experiment (Tab. 4) corresponded to the use of non-optimized transfer learn-
ing models with the balanced dataset. A data augmentation stage in essential to achieve high
performance. As shown in this experiment, the number of augmented images depends on the
difference between each class and class 5 (nv). Classes 0 (akiec), 1 (bcc), 3 (df), and 6 (vasc)
initially contained the fewest images (Tab. 1), and displayed a remarkable increase in precision,
recall, and F1 score, compared to the results shown in Tab. 3. Moreover, class 5 (nv) showed a
minor increase in performance and was the only class without added images. The third experiment
tested the models using the tuned parameters and the imbalanced dataset. In comparison to the
results shown in Tab. 4, the performance for each model increased by one percentage point with
the tuned the parameters as shown in Tab. 6. Finally, the fourth experiment used a balanced
dataset and tuned transfer learning models (Tab. 7). For this experiment, label 6 (vasc) obtained
a percentage of accuracy, recall, and F1-Score of 100%. Overall, promising results were obtained,
which may help to diagnose the skin lesion correctly. Fig. 6 shows that the DenseNet-201 model
obtains the lowest losses in its validation stage and this is reflected by its accuracy since it is the
best performing. Both Inception-ResNet-V2 and Inception-V3 have similar behaviors for accuracy
and loss.

In general, class 4 (mel) is the lowest-performing, followed by 2 (bkl) and 5 (nv). Moreover,
the classifier tends to confuse classes 2, 4, and 5, as shown in Fig. 7. As a result, an average
accuracy of 98% is reached for all classes using DenseNet-201 (the best performing model). Fur-
thermore, Inception-ResNet-V2, with 97% average accuracy, and Inception-V3, with 96%, present
the lowest-performance for classes 2 (bkl) and 4 (mel) as mentioned above in Fig. 8. Tab. 8 shows
the different metric values for the best model, indicating that the proposed method achieves high
performance for all classes with an overall accuracy of 93%. Moreover, class 3 (df) is the lowest-
performing, and classes 2 (bkl), 6 (vasc) are the highest-performing. DenseNet-201 model obtains
low loss in its validation stage and high performance (see Fig. 9). However, this model achieves a
maximum accuracy and lowest loss for the training set in very few epochs. The confusion matrix
shows that class 3 (df) is the most difficult to classify, followed by class 1 (bcc) (Fig. 9). However,
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with HAM10000, the classification of class 3 showed one of the highest accuracies. The ROC
curves show the proposed model’s high performance for each of the classes, as seen in Fig. 9 using
95% of confidentiality. The AUC obtained shows the capacity of the methodological approach to
classify skin lesions using deep learning models based on transfer learning and hyper-parameters
optimization.

Figure 7: Confusion matrices of the proposed transfer learning models, where classes 0 to 6
represent ‘akiec’, ‘bcc’, ‘bkl’, ‘df’, ‘mel’, ‘nv’ and ’vasc’, respectively

A comparison with state-of-the-art models that were applied to HAM10000 is depicted in
Tab. 9. The best accuracy results are obtained with our methodology, “optimized DenseNet-201
including data augmentation”. The improvements differ between 3% to 8% from other models of
different authors. Concerning the ISIC 2019 dataset (see Tab. 10), our results do not outperform
the state-of-the-art methods. The best model reported is “1D fractal and DenseNet-201 that
uses features for ensemble classifiers like k-NN and SVMs.” The network proposed here is the
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best obtained for the HAM10000 dataset (DenseNet-201 optimized). However, for the ISIC 2019
dataset, different techniques, such ensembles of CNNs, 1D fractal can be applied and classification
with traditional machine learning models, such as k-NN and SVM can be performed.

Figure 8: ROC Curves of the proposed transfer learning models with a confidence interval of
95%. Note that classes 0 to 6 represent ‘akiec’, ‘bcc’, ‘bkl’, ‘df’, ‘mel’, ‘nv’, and ‘vasc’, respectively
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Table 8: Performance of the best model obtained with the dataset balanced on dataset ISIC 2019

Class DenseNet-201

Precision Recall F1-Score

0 0.95 0.97 0.96
1 0.90 0.87 0.88
2 0.99 1.00 1.00
3 0.90 0.82 0.86
4 0.88 0.94 0.91
5 0.95 0.98 0.97
6 0.99 1.00 1.00
7 0.93 0.94 0.93
Macro avg 0.94 0.94 0.94
Micro avg 0.94 0.93 0.93
Weighted avg 0.93 0.93 0.93
Accuracy 0.93

Figure 9: Evolution of training and validation for (a) accuracy, (b) loss, and (c) confusion matrix
and (d) ROC curves of the proposed DenseNet-201 model on dataset ISIC 2019. Confidence
intervals are presented at 95%
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Table 9: Performance of the best models on the HAM1000 dataset balanced

Methods Description Accuracy

[42] Specific convolutional neural network 0.94
[31] Pretrained ResNet50 and ResNet101 with SVM 0.90
[13] DenseNet-201 plain classifier∗ 0.95
[24] MobileNet network∗ 0.93
[24] DenseNet-121 network∗ 0.91
[22] Ensemble of ResNet and Inception V3∗ 0.90

Optimized DenseNet-201∗ 0.98
The proposed Optimized InceptionResnet V2∗ 0.97

Optimized Inception-V3∗ 0.96

Note: Superscript ∗ indicates methods that include data augmentation stage.

Table 10: Comparison with state-of-the-art methods on the ISIC 2019 dataset for eight-class
classification

Methods Description Accuracy

[29] Ensemble of multi-res Efficient Nets with SENet-154 and
ResNext

0.93

[28] Ensemble of CNNs (Xception, Inception-ResNet-V2, and
NasNetLarge)

0.94

[27] Ensemble of CNNs (PNASNet, SENet and VGG-19) 0.92
[11] 1D fractal and DenseNet-201 features with ensemble

classifiers (kNN, SVMs)
0.97

[35] Pre-trained GoogleNet with mult-class SVM 0.94
[12] Specific DCNN called CLSNet 0.90
The proposed Optimized DenseNet-201 0.93

5 Conclusions

In this work, a total of four experiments for the classification of skin lesions were described.
We showed the use of transfer learning, hyper-parameter optimization, and data augmentation
to improve the ability to identify skin lesions. Three novel models in transfer learning were used
namely, DenseNet-201, Inception-ResNet-V2, and Inception-V3. The first model achieved the best
performance under different metrics. The last experiment incorporated all the techniques and
allowed obtaining accuracy values up to 98% on the HAM10000 dataset and 93% on the ISIC
2019 dataset. In future studies, we aim to work more in-depth on the ISIC 2019 dataset by
testing more complex CNNs architectures. Additionally, we propose to design new architectures
and computational elements of CNNs to detect skin lesions, using preprocessing techniques such
as contrast enhancement and segmentation to provide better information as input to the CNNs
to improve detection accuracy.
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