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Abstract: Acceptance sampling is a well-established statistical technique in
quality assurance. Acceptance sampling is used to decide, acceptance or rejec-
tion of a lot based on the inspection of its random sample. Experts concur
that the Bayesian approach is the best approach to make a correct decision,
when historical knowledge is available. This paper suggests a Bayesian new
group chain sampling plan (BNGChSP) to estimate average probability of
acceptance. Binomial distribution function is used to differentiate between
defective and non-defective products. Beta distribution is considered as a
suitable prior distribution. Derivation is completed for the estimation of the
average proportion of defectives. This study includes four quality regions
namely: (i) probabilistic quality region (PQR), (ii) quality decision region
(QDR), (iii) limiting quality region (LQR), and (iv) indifference quality region
(IQR). The estimated values for the BNGChSPare tabulated and the inflection
point values are derived, based on different combinationsof design parameters
including both consumer’s and producer’s risks. For comparison with the
existing plan, the operating characteristic curves expose that BNGChSP is a
better substitute for industrial practitioners.

Keywords: Binomial; beta distribution; consumer’s risk; producer’s risk;
quality region

1 Introduction

Quality assurance is one of the most important factors for industrial production in the
world. Since the last century, its applications in the manufacturing and service industries have
been increasing. As the people are concerned with their critical importance in the production of
manufacturing products [1]. A technique in statistical quality assurance is acceptance sampling,
where based on different attributes inspection is performed on a sample of items selected from
the lot under inspection. To make a decision about a lot under inspection, one option is to do
a hundred percent inspection and the other is acceptance sampling. The cost and the time on
inspection can be reduced by using acceptance sampling because they are directly related to sample
size [2]. For example, one or few grapes can be tasted to find out whether the bunch of grapes
is good or bad. It can be purchased if the selected grapes are good and if selected are bad it
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means the whole bunch is bad, then purchase is refused. This sampling inspection method can be
used to determine whether a product is defective or non-defective. Based on their applications, a
variety of acceptance sampling plans are used for inspection of products in industry. For example,
in electronics manufacturing, hospital pharmacy, and food control [3–5].

Several acceptance sampling plans have been introduced over the decades. Based on single
sample inspection, a single sampling plan (SSP) was proposed by Epstein et al. [6]. SSP is
most famous in industrial engineering applications due to its simplicity and user-friendliness [7].
Dodge [8] developed a chain sampling plan (ChSP-1) to improve the probability of lot acceptance.
Later, by considering the previous sample in SSP and a general family of chain sampling was
suggested [9]. A process for attribute single sampling plan was given by Hald [10], to minimize
average inspection cost. A single sampling plan was modified by using the acceptable quality
limit (AQL) and limiting quality level (LQL). The Bayesian single sampling plan was considered,
with weighted Poisson distribution [11,12] and Poisson distribution [13]. Latha et al. [14] used
the gamma prior and proposed Bayesian chain sampling plan for construction and performance
measures. Through quality regions, Nirmala et al. [15] designed a plan for Bayesian conditional
repetitive group sampling.

Mughal et al. [16] assessed the design parameters for group acceptance sampling plan (GASP).
GASP is evaluated in the form of group by using several testers at a time. In GASP sample size,
n is divided into different groups, g based on the available number of testers r. Mughal et al. [17]
developed an economic reliability GASP by using a group sampling plan for Pareto 2nd kind
distribution. They used Poisson distribution for biased data theory in finding the necessary design
parameters and weighted Poisson distributions. The proposed designs were found to require a
shorter testing time. Later same work was applied in GChSP for a product’s lifetime, following
Pareto distribution of 2nd kind [18,19]. To satisfy pre-assumed design parameters at several
quality levels, lot acceptance probability was obtained. Recently, Hafeez et al. [20] worked on
GChSP [18] plan and introduced the idea of Bayesian in GChSP.

By considering quality variation, a plan namely Bayesian group chain sampling plan
(BGChSP) for binomial distribution with beta distribution as prior was suggested [20]. It is
to be noted that BGChSP used five acceptance criteria and can be improved by using more
tight acceptance criteria. The main objective of this study is to update the acceptance criteria
from five to four. This is more tight criteria against the defective product. Therefore, by tight
acceptance criteria for a good plan both producer’s and consumer’s risks need to be minimized.
The producer’s risk associated with type I error and the consumer’s risk associated with type II
error. To achieve a good decision, both errors should be minimized to increase the correct decision
power. With these objectives, this study is proposing a BNGChSP by considering i preceding lots.
Also, this paper considers the indexed parameters to design BNGChSP, which are the producer’s
risk (α) associated with an acceptable quality level (AQL) and consumer’s risk (β) associated with
limiting quality level (LQL). Also for prior distribution parameters, the numerical illustrations are
provided for QDR, PQR, LQR, and IQR.

2 Methodology

Operating procedure for the proposed plan is based on the following steps:

(1) Select an ideal number of g groups for each lot and assign r items to each group which is
the sample size required (n= g ∗ r).

(2) Count the number of defectives d.
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(3) If d = 0 in the current sample, given that the preceding i sample has at most one defective
(di ≤ 1), accept the lot.

(4) If d = 1 in the current sample, given that the preceding i sample has no defective (di = 0)
accept the lot, otherwise reject the lot.

(5) If d > 1 in the current sample, reject the lot.

All the above steps can be summarized in a flow chart presented in Fig. 1.

Start

Inspect a sample of size = , from current lot

Count number of defectives, 

> 1 = 0 = 1

= 0 > 0

Reject
Accept

≤ 1

*

Figure 1: Operating procedure of the proposed sampling plan

For i = 2, tree diagram is presented in Fig. 2, where non-defective and defective items are
represented by D and D respectively.

With reference to Fig. 2, for i = 2, all possible outcomes that meet the acceptance criteria
of NGChSP are

{
DDD,DDD,DDD,DDD

}
. From Fig. 2, it can be observed that the proposed

sampling plan has four acceptance criteria. Let consider P0 and P1 as the probability of D and
D respectively, hence the probability of current lot acceptance L(p) can be written as:

L (p)=P0P0P0+ 3P0P0P1 (1)

L (p)= (P0)
3+ 3P1(P0)

2 (2)

and finally, for i= 2 the general expression of L(p) is given by

L(P)= (P0)
i+1+ (i+ 1) (P0)

i P1. (3)
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Figure 2: Tree diagram for the proposed sampling plan

Based on the properties of a binomial experiment, binomial distribution can be used to obtain
the probability of zero and one defective product. It is valid because lot consists of indepen-
dent and identical trials. The output from the inspection is based on two mutually exclusive
outcomes either defective or non-defective. For large population with sample fraction less than
0.10, binomial distribution can be applied [21]. Hence the probability of acceptance for zero and
one defective can be estimated by the binomial likelihood function.

L (c)=
1∑
c=0

(
r ∗ g
c

)
pc (1− p)r∗g−c , (4)

where parameter p, the probability of defectives and c is the number of defectives. For zero and
one defective product, after solving Eq. (4) we get:

P0 = (1− p)r∗g , (5)

P1 = (r ∗ g)p (1− p)r∗g−1 , (6)

After replacing P0 and P1 from Eqs. (5) and (6) in L (p) from Eq. (3), we get:

L (p)= (1− p)rg(i+1) + (i+ 1) (1− p)rgi rgp (1− p)rg−1 , (7)

L (p)= (1− p)rg(i+1) + (i+ 1) rgp (1− p)rg(i+1)−1 (8)
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If the sample has a binomial distribution, then suitable prior distribution is beta distribu-
tion [22]. This means that the unknown parameter p follows beta distribution. Hence, the prior
PDF for proposed sampling plan is:

f (p)= 1
β (s, t)

ps−1 (1− p)t−1 (9)

where s, t > 0 are shape parameters and
s

s+ t
is the mean for beta. To estimate the average

probability of acceptance, the general expression used in Bayesian is:

P=
∫ 1

0
L (p) f (p)dp (10)

After replacing Eqs. (8) and (9) in Eq. (10), we obtain:

P=
∫ 1

0

(
(1− p)rg(i+1) + (i+ 1)rgp (1− p)rg(i+1)−1

)
∗ 1

β (s, t)
ps−1 (1− p)t−1 dp (11)

P= 1
β (s, t)

[β (s, rg(i+ 1)+ t)+ (i+ 1)rgβ (s+ 1, rg (i+ 1)+ t− 1)] (12)

P= Γ (s+ t) Γ (rg(i+ 1)+ t)
Γ(t)Γ (rg(i+ 1)+ s+ t)

+ rg (i+ 1)
sΓ (s+ t) Γ (rg (i+ 1)+ t− 1)

Γ (t) Γ (rg (i+ 1)+ s+ t)
(13)

This is mixed distribution of beta and binomial, after simplify for s = 1, 2, 3, Eq. (13) will
obtain.

P= 1−μ

rgμ(i+ 1)+ 1−μ
+ rgμ(i+ 1) (1−μ)

(rgμ(i+ 1)+ 1−μ) (rgμ(i+ 1)+ 1− 2μ)
; (14)

P= (2−μ) (2− 2μ)

(rgμ(i+ 1)+ 2−μ) (rgμ(i+ 1)+ 2− 2μ)

+ 2rgμ(i+ 1) (2−μ)(2− 2μ)

(rgμ(i+ 1)+ 2−μ) (rgμ(i+ 1)+ 2− 2μ)(rgμ(i+ 1)+ 2− 3μ)
; (15)

P= (3−μ) (3− 2μ)(3− 3μ)

(rgμ(i+ 1)+ 3−μ) (rgμ(i+ 1)+ 3− 2μ) (rgμ(i+ 1)+ 3− 3μ)

+ 3rgμ(i+ 1) (3−μ)(3− 2μ)(3− 3μ)

(rgμ(i+ 1)+ 3−μ) (rgμ(i+ 1)+ 3− 2μ)(rgμ(i+ 1)+ 3− 3μ) (rgμ(i+ 1)+ 3− 4μ)
. (16)

Newton’s approximation is used in Eqs. (14)–(16) to find the quality regions for BNGChSP.
Where μ is used as the point of control by reducing P. Tab. 1 represents the average proportion
of defectives, that are generated from Eqs. (14)–(16) for all the prespecified design parameters.

Example 1: In Tab. 1, for s = 1,g = 2, r = 3, i = 2 and P = 0.50 the corresponding value of
average proportion of defective is 0.1213 and for s = 2,g= 3, r= 3 and i = 2, the corresponding
value is 0.0714. From Tab. 1, it can be noticed that as the values of s and g increase the average
proportion of defective product will decrease.
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Table 1: Average proportion of defectives, μ for specified probabilities in BNGChSP

s g r i 0.99 0.95 0.90 0.75 0.5 0.25 0.10 0.05 0.01

1 1 2 1 0.0311 0.0769 0.1181 0.2249 0.4125 0.6531 0.8435 0.9182 0.983
3 2 0.0129 0.0329 0.0517 0.1055 0.2217 0.4328 0.6858 0.8197 0.9591
4 3 0.0071 0.0183 0.029 0.0607 0.1349 0.2945 0.5442 0.7131 0.9276

2 2 1 0.0147 0.0371 0.0583 0.118 0.2442 0.4639 0.7123 0.8375 0.9637
3 2 0.0063 0.0162 0.0258 0.0541 0.1213 0.2699 0.5139 0.6876 0.9191
4 3 0.0035 0.0091 0.0145 0.0308 0.0712 0.1703 0.3699 0.55 0.8631

3 2 1 0.0096 0.0245 0.0387 0.0801 0.1737 0.3602 0.6169 0.7703 0.9453
3 2 0.0042 0.0108 0.0172 0.0364 0.0835 0.1961 0.411 0.5924 0.8823
4 3 0.0023 0.006 0.0096 0.0206 0.0484 0.1198 0.2802 0.4477 0.8069

4 2 1 0.0071 0.0183 0.029 0.0607 0.1349 0.2945 0.5442 0.7131 0.9276
3 2 0.0031 0.0081 0.0129 0.0274 0.0637 0.1541 0.3425 0.5203 0.8483
4 3 0.0018 0.0045 0.0072 0.0155 0.0366 0.0924 0.2255 0.3775 0.7576

2 1 2 1 0.0352 0.0847 0.1274 0.2312 0.4003 0.6123 0.7993 0.8859 0.9738
3 2 0.0146 0.0359 0.055 0.1052 0.2001 0.3541 0.55 0.6821 0.893
4 3 0.008 0.0199 0.0307 0.0597 0.1176 0.2216 0.3766 0.5021 0.7696

2 2 1 0.0165 0.0406 0.0621 0.118 0.2222 0.3871 0.5879 0.7175 0.9109
3 2 0.0071 0.0177 0.0273 0.0532 0.1053 0.2001 0.3452 0.4662 0.7378
4 3 0.0039 0.0099 0.0153 0.0301 0.0606 0.1193 0.2177 0.3096 0.5653

3 2 1 0.0108 0.0267 0.0411 0.0793 0.1538 0.282 0.4598 0.5923 0.8385
3 2 0.0047 0.0117 0.0181 0.0356 0.0714 0.1394 0.2508 0.352 0.6178
4 3 0.0026 0.0065 0.0102 0.0201 0.0408 0.0816 0.1529 0.2233 0.4427

4 2 1 0.008 0.0199 0.0307 0.0597 0.1176 0.2216 0.3766 0.5021 0.7696
3 2 0.0035 0.0088 0.0136 0.0268 0.0541 0.1069 0.1969 0.2824 0.5289
4 3 0.002 0.0049 0.0076 0.0151 0.0308 0.062 0.1179 0.1746 0.3631

3 1 2 1 0.0371 0.0882 0.1315 0.2343 0.3954 0.5931 0.7713 0.8605 0.9638
3 2 0.0154 0.0373 0.0566 0.1055 0.193 0.3267 0.491 0.6054 0.8196
4 3 0.0084 0.0207 0.0315 0.0597 0.1124 0.1995 0.3203 0.4163 0.6395

2 2 1 0.0174 0.0422 0.0639 0.1185 0.2151 0.3592 0.5308 0.6461 0.8502
3 2 0.0075 0.0183 0.028 0.0531 0.1004 0.1795 0.2912 0.3817 0.5998
4 3 0.0041 0.0102 0.0156 0.03 0.0575 0.1054 0.1777 0.2408 0.4144

3 2 1 0.0114 0.0277 0.0422 0.0794 0.1477 0.2567 0.4001 0.5075 0.7342
3 2 0.0049 0.0121 0.0186 0.0355 0.0679 0.1237 0.2065 0.2774 0.4663
4 3 0.0028 0.0068 0.0104 0.02 0.0386 0.0716 0.1228 0.1691 0.3049

4 2 1 0.0084 0.0207 0.0315 0.0597 0.1124 0.1995 0.3203 0.4163 0.6395
3 2 0.0037 0.0091 0.0139 0.0267 0.0513 0.0943 0.1599 0.2177 0.3804
4 3 0.0021 0.0051 0.0078 0.015 0.0291 0.0542 0.0939 0.1303 0.241

2.1 Designing Sampling Plans for Given AQL and LQL
For the selection of BNGChSP, Tabs. 1 and 2 are used for specified AQL, LQL, α and β by

applying the following three steps: (i) construct a plan for the given points (AQL, 1−α) and (LQL,
β), then compute the required operating ratio; (ii) from Tab. 2, find the value of the operating
ratio that is equal to or just less than the desired operating ratio in the desired columns for α,β;
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(iii) obtain the corresponding values of s, r,g and i, from Tab. 1 for the corresponding located
value of the operating ratio given in Tab. 2.

Table 2: For given α and β in BNGChSP, the values of operating ratio are tabulated against s,g, r
and i

s g r i α = 0.05 α = 0.01 α = 0.1

β = 0.1 β = 0.05 β = 0.01 β = 0.1 β = 0.05 β = 0.01 β = 0.1 β = 0.05 β = 0.01

1 1 2 1 12.782 11.939 12.782 27.111 29.513 31.596 7.141 7.774 8.322
3 2 29.195 24.951 29.195 53.063 63.424 74.212 13.258 15.847 18.542
4 3 50.755 39.02 50.755 76.346 100.048 130.137 18.78 24.611 32.012

2 2 1 25.99 22.585 25.99 48.612 57.158 65.774 12.227 14.376 16.543
3 2 56.644 42.381 56.644 81.48 109.031 145.725 19.954 26.702 35.688
4 3 95.076 60.59 95.076 105.551 156.942 246.268 25.566 38.014 59.651

3 2 1 38.632 31.48 38.632 64.439 80.457 98.738 15.929 19.889 24.408
3 2 81.866 54.966 81.866 97.787 140.934 209.908 23.957 34.528 51.426
4 3 134.444 74.585 134.444 119.915 191.592 345.356 29.06 46.43 83.694

4 2 1 50.755 39.02 50.755 76.346 100.048 130.137 18.78 24.611 32.012
3 2 105.257 64.553 105.257 109.885 166.928 272.185 26.637 40.465 65.98
4 3 167.871 83.632 167.871 128.625 215.302 432.166 31.192 52.212 104.802

2 1 2 1 11.492 10.454 11.492 22.7 25.159 27.655 6.277 6.957 7.647
3 2 24.859 18.99 24.859 37.744 46.817 61.286 9.994 12.396 16.227
4 3 38.685 25.236 38.685 46.872 62.493 95.797 12.256 16.34 25.048

2 2 1 22.449 17.681 22.449 35.527 43.356 55.046 9.473 11.561 14.678
3 2 41.775 26.396 41.775 48.435 65.41 103.52 12.659 17.096 27.057
4 3 57.301 31.387 57.301 55.158 78.457 143.233 14.245 20.262 36.992

3 2 1 31.382 22.167 31.382 42.626 54.916 77.745 11.187 14.412 20.404
3 2 52.757 30.056 52.757 53.054 74.45 130.68 13.852 19.438 34.119
4 3 67.715 34.16 67.715 58.088 84.824 168.147 15.06 21.992 43.596

4 2 1 38.685 25.236 38.685 46.872 62.493 95.797 12.256 16.34 25.048
3 2 60.376 32.236 60.376 56.032 80.377 150.539 14.499 20.798 38.953
4 3 73.757 35.467 73.757 59.641 88.347 183.726 15.427 22.853 47.524

3 1 2 1 10.921 9.751 10.921 20.814 23.221 26.008 5.867 6.545 7.331
3 2 21.969 16.227 21.969 31.953 39.397 53.336 8.68 10.702 14.489
4 3 30.96 20.152 30.96 37.941 49.303 75.745 10.171 13.217 20.305

2 2 1 20.168 15.327 20.168 30.539 37.173 48.914 8.313 10.119 13.315
3 2 32.731 20.831 32.731 38.896 50.983 80.109 10.418 13.655 21.456
4 3 40.516 23.538 40.516 42.885 58.101 100.011 11.357 15.387 26.486

3 2 1 26.459 18.29 26.459 35.214 44.67 64.623 9.476 12.02 17.389
3 2 38.397 22.841 38.397 41.976 56.392 94.8 11.106 14.921 25.083
4 3 44.849 24.871 44.849 44.406 61.127 110.23 11.792 16.232 29.271

4 2 1 30.96 20.152 30.96 37.941 49.303 75.745 10.171 13.217 20.305
3 2 41.88 23.971 41.88 43.294 58.96 103.011 11.488 15.645 27.334
4 3 47.583 25.725 47.583 45.218 62.743 116.054 12.007 16.661 30.817
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Example 2: Suppose that, the value of AQL 0.0095 and LQL 0.18, with calculated operating
ratio 18.9474. The approximate equal value that is closed to the calculated operating ratio in
Tab. 2, is 18.542 having corresponding parametric values s= 1,g= 1, r= 3, i= 2 with α = 0.10 and
β = 0.05. Now from Tab. 1, the corresponding values according to the above parameters for AQL
is 0.0517 and LQL is 0.9591.

2.2 Designing for Quality Intervals
2.2.1 Probabilistic Quality Region

In PQR, the product is accepted with maximum probability 0.95 and minimum probability
0.05, where 0.95 corresponds to AQL (1− α) and 0.05 corresponds to LQL (β). In other words,
PQR (R1) is exactly the conventional setting of AQL=μ1 and LQL=μ2. In Fig. 3 it is indicated
that the PQR lies between two points μ1 ≤μ≤μ2.

µ

0.95

0.05

µ

β

α1 -

0.50

Figure 3: OC curve with pair of coordinates for PQR

This quality region considers the same values for consumer’s and producer’s risk, that is α =
β = 0.05 and the range of PQR is R1 =μ2−μ1 provided in Tab. 3.

2.2.2 Quality Decision Region
In this quality region, the product is accepted with a maximum probability of 0.95 and the

minimum probability of 0.25. Where 0.95 corresponds to AQL (1− α) and 0.25 corresponds to
LQL (β). In other words, QDR (R2) is exactly the conventional setting of AQL=μ1 and LQL=
μβ. In Fig. 4 it can be observed that QDR lies between two points μ1 ≤μ≤μβ.

Hence the values considered for consumer’s and producer’s risk are α = 0.05 and β = 0.25
respectively and the range of QDR is R2 =μβ −μ1 given in Tab. 3.

2.2.3 Limiting Quality Region
In LQR, the product is accepted with a maximum probability of 0.75 and the minimum

probability of 0.05. Where 0.75 corresponds to AQL (1− α) and 0.05 corresponds to LQL (β).
In other words, LQR (R3) is exactly the conventional setting of AQL=μα and LQL=μ2. Fig. 5
defines that the LQR lies between two points μα ≤μ≤μ2.
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Table 3: Certain values of QDR, PQR, LQR, IQR and operating ratios for specified values of
s,g, r and i

s g r i R1 R2 R3 R4 T T1 T2

1 1 2 1 0.8413 0.5762 0.6933 0.5057 1.4601 1.2135 1.6635
3 2 0.7868 0.3999 0.7141 0.5979 1.9675 1.1018 1.3159
4 3 0.6949 0.2762 0.6525 0.5783 2.5155 1.0649 1.2016

2 2 1 0.8004 0.4268 0.7195 0.5933 1.8752 1.1125 1.3491
3 2 0.6714 0.2537 0.6336 0.5663 2.6469 1.0598 1.1856
4 3 0.5409 0.1612 0.5193 0.4788 3.3556 1.0418 1.1297

3 2 1 0.7458 0.3358 0.6902 0.5966 2.2212 1.0806 1.2502
3 2 0.5816 0.1854 0.556 0.5088 3.1374 1.0461 1.1429
4 3 0.4417 0.1138 0.427 0.3993 3.882 1.0343 1.1061

4 2 1 0.6949 0.2762 0.6525 0.5783 2.5155 1.0649 1.2016
3 2 0.5122 0.146 0.4929 0.4566 3.5081 1.0392 1.1218
4 3 0.3729 0.0879 0.3619 0.3408 4.2431 1.0304 1.0942

2 1 2 1 0.8012 0.5276 0.6548 0.4859 1.5186 1.2236 1.6488
3 2 0.6462 0.3182 0.577 0.4821 2.0307 1.12 1.3403
4 3 0.4822 0.2017 0.4423 0.3844 2.3908 1.0901 1.2543

2 2 1 0.6769 0.3465 0.5994 0.4952 1.9536 1.1292 1.3668
3 2 0.4485 0.1825 0.413 0.3609 2.4577 1.086 1.2428
4 3 0.2998 0.1094 0.2796 0.249 2.7393 1.0723 1.2038

3 2 1 0.5656 0.2552 0.513 0.4385 2.216 1.1026 1.2899
3 2 0.3403 0.1277 0.3164 0.2806 2.6649 1.0755 1.2129
4 3 0.2168 0.075 0.2032 0.1825 2.89 1.0668 1.1878

4 2 1 0.4822 0.2017 0.4423 0.3844 2.3908 1.0901 1.2543
3 2 0.2736 0.0982 0.2557 0.2283 2.7879 1.0704 1.1984
4 3 0.1697 0.057 0.1595 0.1438 2.9752 1.0639 1.1797

3 1 2 1 0.7723 0.5049 0.6263 0.4651 1.5297 1.2331 1.6605
3 2 0.5681 0.2893 0.4999 0.4124 1.9634 1.1364 1.3776
4 3 0.3956 0.1789 0.3566 0.3038 2.2119 1.1095 1.302

2 2 1 0.604 0.3171 0.5276 0.4311 1.9048 1.1447 1.4012
3 2 0.3634 0.1612 0.3286 0.2813 2.2543 1.1059 1.2919
4 3 0.2305 0.0952 0.2108 0.1832 2.4214 1.0936 1.258

3 2 1 0.4798 0.2289 0.4281 0.3599 2.096 1.1206 1.3332
3 2 0.2652 0.1115 0.2419 0.2095 2.3783 1.0965 1.266
4 3 0.1623 0.0648 0.1491 0.1305 2.5036 1.0886 1.2441

4 2 1 0.3956 0.1789 0.3566 0.3038 2.2119 1.1095 1.302
3 2 0.2086 0.0852 0.1911 0.1664 2.4477 1.0919 1.2535
4 3 0.1252 0.0492 0.1152 0.1012 2.5464 1.0866 1.2377

In this region, the values considered for consumer’s and producer’s risk are α = 0.25 and
β = 0.05. The range of LQR is R3 =μ2−μα as given in Tab. 3.
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Figure 5: OC curve with pair of coordinates for LQR

2.2.4 Indifference Quality Region
In this quality region, the product is accepted with a maximum probability of 0.5 and the

minimum probability of 0.05, where 0.5 corresponds to AQL (1−α) and 0.05 corresponds to LQL
(β). In other words, IQR (R4) is exactly the conventional setting of AQL = μ∗ and LQL = μ2.
Fig. 6 expresses that the IQR lies between two points μ∗ ≤μ≤μ2.

In IQR the values considered for consumer’s α = 0.5 and producer’s risk β = 0.05 and the
range is R4 =μ2−μ∗ given in Tab. 3.

2.3 Selection of Sampling Plans
In Tab. 3 the range of quality regions, PQR (R1), QDR (R2), LQR (R3), IQR (R4) are

presented with their corresponding design parameters s, g, r, and i. For any given values of
the quality region, we can find operating ratios T = R1

R2
, T1 = R1

R3
and T2 = R1

R4
. The value

corresponding to the design parameters s, g, r and i, which is equal to or less than the specified
ratio can be obtained from the columns T , T1 and T2 in Tab. 3. For this ratio, the parameters
for the BNGChSP can be determined.
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3 Numerical Examples

3.1 For Specified PQR and QDR
Suppose a manufacturer produces defectives within the regions of PQR 0.5% and QDR

0.25%, then R1 = 0.005, R2 = 0.0025 and the calculated operating ratio T = 2.00. From Tab. 3,
find the value of T that is equal to or just less than the specified ratio. The observed value is
T = 1.9675, with corresponding design parameters s= 1, g = 1, r = 3 and i = 2. Therefore, from
Tab. 3 for this operating ratio, the range of PQR and QDR are R1 = 0.7868 and R2 = 0.3999
respectively. Hence the required design parameters for BNGChSP are s= 1, g= 1, r= 3 and i= 2,
with μ1 = 0.0329, μβ = 0.4328, and μ2 = 0.8197 from Tab. 1.

3.2 For Specified PQR and LQR
Let in a manufacturer defective product is found in PQR 0.5% and LQR 0.44%. Then R1 =

0.005, R3 = 0.0044 and the calculated operating ratio T1 = 1.136. From Tab. 3, find the value
of T1 that is equal or just less than the stipulated ratio. The located value is T1 = 1.1292, with
corresponding design parameters s = 2, g = 2, r = 2 and i = 1. Therefore, from Tab. 3, for this
operating ratio the range of PQR and LQR is R1 = 0.6769 and R3 = 0.5994 respectively. Hence the
required design parameters for BNGChSP are noted s= 2, g= 2, r= 2 and i= 1, with μ1 = 0.0406,
μα = 0.1180, and μ2 = 0.7175 from Tab. 1.

3.3 For Specified PQR and IQR
Let a producer found defective in PQR 0.5% and in IQR 0.4%, then R1 = 0.005, R4 = 0.004

and the operating ratio T2 = 1.25. From Tab. 3, find the value of T2 that is equal or just less
than the required ratio. The value is found to be T2 = 1.2441, with corresponding values of design
parameters are s = 3, g = 3, r = 4 and i = 3. Therefore, from Tab. 3, for this operating ratio
the range of PQR and IQR are R1 = 0.1623 and R4 = 0.1305 respectively. The required design
parameters for BNGChSP are s = 3, g = 3, r = 4 and i = 3, with μ1 = 0.0068, μ2 = 0.1691, and
μ∗ = 0.0386 from Tab. 1.



4196 CMC, 2022, vol.70, no.2

4 Graphical Results and Discussion

For the specified values of s= 3, r= 3, i= 2, and various values of g= 1, 2, 3, 4, OC curves
for BNGChSP are given in Fig. 7. It can observe that as increase in the number of groups, the
OC curve tends to the ideal OC curve.
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Figure 7: OC curve for BNGChSP for g= 1, 2, 3, 4

For the specified value of g= 2, r= 3, i= 2, and different values of s= 1, 2, 3 the OC curves
for BNGChSP are presented in Fig. 8. As the value of the shape parameter increases, it can be
observed that the OC curve becomes the ideal OC curve.
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Figure 8: OC curve for BNGChSP for s= 1, 2 and 3

To measure the performance between proposed and existing plan. The OC curve of the
proposed BNGChSP is compared with the OC curve of existing BGChSP [20]. Both plans are
using binomial distribution with beta prior distribution. For the same values of design parameters
s= 2, g= 1, r= 3 and i= 2, their OC curves are presented in Fig. 9.

With the average probability of acceptance P= 0.5 and same values of other design param-
eters, BGChSP gives μ = 0.2748, that is 27.48 percent and BNGChSP gives μ = 0.20 that is
20 percent. Also, for P = 0.9 BGChSP gives μ = 0.074, that is 7.4 percent and BNGChSP
gives μ = 0.055, that is 5.5 percent. Based on these results, it can be concluded that BNGChSP
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provides a smaller proportion of defectives than the BGChSP, for the same parameter values [20].
Consequently, it can be noticed from both OC curves that BNGChSP perform better than
BGChSP.
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Figure 9: OC curves of BNGChSP and BGChSP

5 Conclusion

Quality interval sampling plans have wider application potential in industry to ensure that the
product or process complies with a higher quality standard. Thus, quality interval sampling could
be useful for outlining product quality, planning, and quality control arrangements that are ready
for electronic industrial applications. For quality control practitioners, BNGChSP will be useful
because it is less expensive than other plans in terms of inspection cost and time. To save the time
and cost of the experiment, this research suggests the proposed plan to make the same decision as
the existing plans. Many electronic components like; transport electronics systems, wireless systems,
global positioning systems, and computer-supported and integrated manufacturing systems can be
evaluated with proposed plan. In future many other distributions and other quality and reliability
characteristics can be explored with proposed plan.
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