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Abstract: The first step in the design phase of the Brushless Direct Current
(BLDC) motor is the formulation of the mathematical framework and is
often used due to its analytical structure. Therefore, the BLDC motor design
problem is considered to be an optimization problem. In this paper, the ana-
lytical model of the BLDC motor is presented, and it is considered to be a
basis for emphasizing the optimization methods. The analytical model used
for the experimentation has 78 non-linear equations, two objective functions,
five design variables, and six non-linear constraints, so the BLDC motor
design problem is considered as highly non-linear in electromagnetic opti-
mization. Multi-objective optimization becomes the forefront of the current
research to obtain the global best solution using metaheuristic techniques.
The bio-inspired multi-objective grey wolf optimizer (MOGWO) is presented
in this paper, and it is formulated based on Pareto optimality, dominance,
and archiving external. The performance of the MOGWO is verified on stan-
dard multi-objective unconstraint benchmark functions and applied to the
BLDCmotor design problem. The results proved that the proposedMOGWO
algorithm could handle nonlinear constraints in electromagnetic optimization
problems. The performance comparison in terms of Generational Distance,
inversion GD, Hypervolume-matrix, scattered-matrix, and coverage metrics
proves that the MOGWO algorithm can provide the best solution compared
to other selected algorithms. The source code of this paper is backed up with
extra online support at https://premkumarmanoharan.wixsite.com/mysite
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and https://www.mathworks.com/matlabcentral/fileexchange/75259-multi-
objective-non-sorted-grey-wolf-mogwo-nsgwo.
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1 Introduction

The BLDC motor is famous and preferable for real-world applications due to its electronic
commutation feature. The BLDC motor is designed with a specific purpose, and it can be suitable
for electronic or power device applications. The BLDC motor has high-quality permanent magnets
in its fixed armature and eliminates problems associated with supplying current to the rotating
armature. The electronic controller replaces the commutator/brush assembly in conventional DC
motors, and its function is similar to power distribution by solid-state circuits [1]. The BLDC
motors offer various benefits over brushed motors, such as high torque per watt, high torque per
weight ratio, low noise, high reliability, etc. The hall-effect position sensors or rotary encoders are
used to locate the position of the rotor pole. The drawback associated with the BLDC motor
is, high cost compared to the brushed DC motor, but this can be overcome by relatively high
efficiency over the motor lifespan. The BLDC motor should be appropriately designed for real-
time applications to achieve high motor efficiency. For the same, the optimal design parameters
of the motor are required. Nevertheless, the performance characteristic of the motors can also
be enhanced further by optimizing the design. Therefore, the optimization algorithm is required
to obtain the optimal design parameters. It results in a reduction of the design period and
overall cost. The BLDC motor design [2] is considered an optimization problem from the detailed
literature, and the benchmark model for the same is formulated and presented in [3,4].

Finite element analysis (FEA) is not the only method available for the design of electromag-
netic devices. Currently, the researchers are working on various global optimization techniques for
the same. During the design process, analytical models are used, in which decisions are made with
respect to the structure of the machine and materials. Certainly, analytical models have certain
benefits over FEA: they are quicker and flexible with a large parameter and consider physical
phenomena. The analytical models are also used to solve the design problems by solving the
conflicting objective, i.e., determining the components’ geometries from the device specifications.
On the other hand, FEA can calculate the design requirements and allow iterative techniques to
solve the problem [5,6] when geometric dimensions are known. However, the results produced by
analytical models are less accurate, and critical skills are required to solve the problems. Therefore,
metaheuristic methods are utilized to solve electromagnetic optimization problems. Nowadays, the
field of global metaheuristics optimization is very active, and researchers are reporting numer-
ous stochastic techniques for optimizing the constrained optimization problem in the continuous
domain. Most of the metaheuristic techniques are inspired by nature. In the global optimization
problem, the solutions may have multiple local optima, and it became a major challenge for
the optimization algorithms. Therefore, many improvements are carried out in bio-inspired meta-
heuristics relating to evolutionary techniques [7,8] and swarm intelligence techniques [9–11] over
the past few decades. Recently, global optimization trends with different metaheuristic techniques
are active among researchers, including electromagnetic optimization problems [12]. The BLDC
benchmark problem has been solved with the nature-inspired Bat Algorithm (BA) [13], where
multi-objective results are compared with Multi-Objective Krill Herd (MOKH) [14] and Non-
Dominated Sorting Genetic Algorithm-Version II (NSGA-II) algorithm, including single-objective
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as well as multi-objective for BLDC wheel motor problem. The same problem has also been
optimized through a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm, and it
is reported in [15]. The NSGA-II is a high-speed and powerful technique for solving various
multi-objective problems. The authors of [16] reported the Tabu search technique for solving the
electromagnetic optimization problem in the continuous domain. However, the search technique
stuck at local optima, and its convergence speed is very low. The authors of [17] reported a
Genetic Algorithm (GA) to handle the BLDC motor design problem. The authors have also
introduced the equivalent magnetic circuit concept along with GA for solving the same problem.
However, the solution coverage is poor in the entire solution space. The authors of [18,19] opti-
mized the core shape of the machine by introducing GA to reduce the cogging torque. However,
the solution accuracy and the convergence speed are poor.

Various metaheuristic algorithms, such as Multi-objective Grey Wolf Algorithm (MOGWO)
[20,21], NSGA-II, Pareto Archived Evolution Strategy (PAES) [22], Multi-objective Firefly
Algorithm (MOFA) [11], Multi-objective Bat Algorithm (MOBA) [11], Multi-objective Flower
Pollination (MOFPA) [11], Multi-objective Shuffle Frog Leaping Algorithm (MOSFLA) [23],
Multi-objective Particle Swarm Optimizer (MOPSO), Multi-objective Ant Lion Algorithm
(MOALO) [24], Multi-objective Grasshopper Algorithm (MOGOA) [25], Multi-objective Salp
Swarm Algorithm (MOSSA) [26], multi-objective heat transfer search algorithm [27], multi-
objective modified adaptive symbiotic organisms search [28], hybrid heat transfer search and
passing vehicle search optimizer [29], multi-objective modified heat transfer search [30], multi-
objective passing vehicle search algorithm [31], multi-objective slime mould algorithm [32], multi-
objective gradient-based optimizer [33], and single-objective equilibrium optimizer [34] are applied
for solving the unconstraint and constraint test benchmark problems. In general, a multi-objective
problem does not have unique optimal solutions. Instead, the multi-objective problem has multiple
solutions that constitute a vast range of compromise results, known as non-dominated solutions
or optimal Pareto solutions.

The grey wolf optimizer (GWO) is a new and exciting metaheuristic method reported by
Mirjalili et al. [20] and stimulated by grey wolves’ hunting behavior. The troop comprises four
wolves, such as alpha, beta, delta, and omega. The wolves in a troop are divided based on the
leadership quality. Alpha wolves dominate over all wolves and decision-makers in the group, and
other wolves have lower dominance, and these wolves are called as follower wolves. According
to the dominance level, the wolves are ordered sequentially as alpha, beta delta, and omega.
Thus, in this paper, the MOGWO algorithm is applied to a multi-objective BLDC motor design
problem to enhance the solution accuracy with a high convergence speed, and the same has been
comprehensively analyzed. The highlights of this paper are as follows.

• The MOGWO algorithm is formulated using non-dominated sorting and crowding distance
mechanism to improve the solution accuracy

• The performance of the MOGWO is validated on four ZDT test functions and applied to
solve BLDC motor design problems to check the ability in handling the constraint problems

• The performance of the MOGWO is compared with other algorithms to prove the
superiority.

The structure of the paper has been planned as follows. Section 2 of the paper discusses the
problem formulation. Section 3 discusses the basic concepts of MOGWO and its application to
the BLDC motor design problem. The simulation results and performance comparison with other
multi-objective algorithms are deliberated in Section 4, and Section 5 concludes the paper.
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2 Problem Formulation

As discussed earlier, BLDC motors are superior to the conventional brushed DC motors
due to their features, such as less maintenance, absence of brushes, high torque, and power
handling capability. Since the BLDC motors are compact in size and volume, it is mostly utilized
in automotive and electronic applications. The BLDC motor design optimization problem is a
well-known and accepted optimization design problem. The BLDC motor optimization problem is
highly non-linear (involves 78 nonlinear equations) consisting of five structural design parameters.
This problem is widely solved by considering both single and multi-objective cases as an electrical
benchmark problem.

The standard benchmark function for the BLDC motor design is accessed directly
from [35,36]. The single-objective problem comprises six constraints, while the multi-objective
problem consists of five constraints. The main objective is to maximize the efficiency by optimizing
the following design parameters: magnetic induction in the air (Be), stator/bore diameter (Ds),
teeth’s average magnetic induction (Bd), the average magnetic induction in back iron of the stator
(Bcs), the current density in the conductor (ζ ), subject to the following constraints: the maximum
current (Imax), total mass (Mtot), temperature (Ta), inner diameter (Dint), outer diameter (Dext),
and the determinant (discr) is used for slot height calculation. In a multi-objective BLDC motor
optimization problem, the total mass (Mtot) is considered to be a minimization objective function.
The main aim of the design problem is to design a BLDC motor with high efficiency (η). The
technical specifications of the BLDC motor are given as follows. The mass (Mtot) should not
exceed 15 kg, the inner diameter should be greater than 76 mm due to its mechanical reasons, the
external diameter should be less than 340 mm so that the motor blends into a wheel’s rim without
demagnetizing the magnet, and the maximum current (Imax) is equal to 125 A (i.e., five times of
the full load current). Therefore, in the BLDC motor design problem, five design parameters, such
as Be, Ds, Bd , Bcs, and ζ , needs to be optimized, whereas other six inequality constraints, such
as the ratio of the rotor length on one stator part (rrs), motor magnetic length (Lm), air-gap (e),
input voltage (Vdc), a number of pole pairs (P), and average magnetic induction in the yoke of
the rotor (Bcr) are fixed values, and the values are equal to 45 mm, 1.11, 0.8 mm, 120 V, 1.2 T
and 6, respectively. The objective function is given in Eq. (1).

Maximize→ f1(η)

Minimize→ f2 (Mtot)

Mtot ≤ 15 Kg, Dext ≤ 340 mm

Dint ≥ 76 mm, Imax ≥ 125 A

Ta ≤ 120◦C, discr (Ds, Bd , Be, ζ)≥ 0

150 mm≤Ds ≤ 330 mm, 0.5 T≤Be ≤ 0.76 T

2 A/mm2 ≤ ζ≤ 5 A/mm2, 0.9 T≤Bd ≤ 1.8 T

0.6 T≤Bcs ≤ 1.6 T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

From Eq. (1), it is observed that there are two objectives: minimization of the total mass
( f2 (Mtot)) and maximization of the motor efficiency ( f1(η)) with the constraint of Mtot ≤ 15.
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3 Multi-Objective Grey Wolf Optimizer (MOGWO) Algorithm

Mirjalili et al. [20] reported the GWO algorithm in 2014 with an inspiration of social lead-
ership and hunting techniques of the grey wolves. The hunting behavior of the grey wolves is
mathematically modeled, in which the solutions obtained by the Alpha (α) wolf is considered as
the fittest solution, whereas the solutions obtained by Beta (β) and Delta (δ) wolves are assumed
as the second and third best, respectively. The rest of the solutions are considered as worst
solution obtained by Omega (ω) wolves. The α, β, and δ wolves are used to direct the hunting,
and the ω wolves follow α, β, and δ wolves to get the global solution. The hunting behavior of
the grey wolves is mathematically modeled as follows.

�D=
∣∣∣ �C · �Xp(l) − �X(l)

∣∣∣ (2)

�X(l+1) = �Xp(l) − �A · �D (3)

where l represents the current iteration, �C and �A are the vector coefficients, �X(l) represents the

position vector, and �X represents the wolf position. The expressions for the vector coefficients are
written in Eqs. (4) and (5).

�A= 2�a · �r1 −�a (4)

�C = 2 · �r2 (5)

where r1 and r2 represent the random vectors and the value of �a is linearly reduced from 2 to 0.
In GWO, the global solution is obtained by the encircling mechanism. The three best solutions
are saved and help the other population to update the position. The following expressions are
used for simulating the hunting mechanism of the wolves in the promising search space.

�Eα =
∣∣∣ �C1 · �Xα − �X

∣∣∣
�Eβ =

∣∣∣ �C2 · �Xβ − �X
∣∣∣

�Eδ =
∣∣∣ �C3 · �Xδ − �X

∣∣∣

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)

�X1 = �Xα − �A1 ·
(
�Eα

)

�X2 = �Xβ − �A2 ·
(
�Eβ

)

�X3 = �Xδ − �A3 ·
(
�Eδ

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

�X(l+1) =
�X1+ �X2+ �X3

3
(8)

The exploration is possible by the random vector (�A) between [−2a, 2a], which helps the
population who deviates from the position of the prey. Another exploration component is �C which
generates a random value between [0, 2] and preys’ random weight are provided to deemphasize
if C < 1 or stochastically emphasize if C > 1. The value of �C is not linearly reduced as similar
to �A. The utilization of this technique begins when |A| < 1. If the values of �A are randomly
varied between [−1, 1] then the position of a wolf is between the location of the prey and the
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wolf’s current location. It supports the search agent/wolves to meet an approximate target/prey
location given by the three best wolf’s solutions. The optimization begins by initializing a set of
random solutions as the first population. The solutions of the best three wolves are saved during
the optimization process. The omega wolf is changing its position with respect to α, β, and δ. The
wolfs deviates from the prey when the value of |�A| > 1 and moves in the direction of the prey
when the value of |�A| < 1. Lastly, the solution and the location of the alpha wolves are considered
as the best solution obtained over the optimization process, and the algorithm terminates when
a terminating condition is met. The Pseudocode of the proposed MOGWO algorithm is given in
Algorithm 1.

Algorithm 1: Pseudocode of the Grey Wolf Optimizer (GWO) Algorithm
Step 1: Initialize the a, A, C, maximum number of iterations (lmax), and search agents (n)
Step 2: Set iteration counter l = 0

for i = 1:n do
Calculate the fitness(solutions)

end for
Step 3: Find the optimal solution of each search agent (Xα, Xβ , and Xδ)

for i = 1:n do
Update A and C by (4) and (5) and each search agent by (6) to (8); Decrease a
from 2 to 0; Calculate the fitness(solutions)

end for
Update the solutions (Xα, Xβ , and Xδ) and Set l= l + 1.

Step 4: Produce the optimal solution and return Xα.

Two mechanisms are integrated to formulate the MOGWO algorithm as similar to multi-
objective Particle Swarm Optimization (MOPSO). The first component of MOGWO is an archive,
and it is accountable for saving the non-dominated best solution obtained until now, and leader
selection strategy is the second component that helps to choose the solutions of α, β, and δ as
the leaders of the hunting hierarchy. An archive is a storing unit that either stores or retrieves
the non-dominated Pareto optimal solution. An archive controller is an archive unit that manages
the archive if the solution enters into the archive or if the archive is occupied completely. It is
noted that a large number of members are required for an archive. The non-dominated Pareto
solution pairs are compared with the members of the archive during the iterations. So, there are
three possible cases and are given as follows.

• The newly obtained solution controls one or more archive solutions. Therefore, the dom-
inated archive solution must be eliminated, and the newer solution enters/adds to the
archive

• If the archive is filled, the grid method is used to reorganize the section/segment of the
target space and then to discover the highest crowded section/segment to delete one of its
solutions. To increase the diversity or variety of the optimal Pareto front, the newer solution
must be added/enter into the less crowded segment/section

• If both archive members and the new solution are not dominated each other, the newer
solution must be entering into the archive.

Suppose the number of solutions in the hypercube is increased, the probability of deleting
the solution is also increased. If the archive is full, the highest crowded sections/segments are
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first chosen, and one of the solutions is eliminated randomly to give space for the newly updated
solution. If the solution is introduced outside the hypercubes, all sections/portions are expanded
to protect the new results. Thus, the other solutions of the segments can also be modified. The
comprehensive details are available in [21]. The Pseudocode of the MOGWO algorithm is given
in Algorithm 2. The latter component is the leader selection mechanism. In the basic version of
GWO, the solutions provided by the α, β, and δ wolves are considered as the three best solutions
attained so far. The α, β, and δ wolves direct the other search agents in promising search space to
find the optimal solutions. Nonetheless, solutions cannot easily be contrasted in a multi-objective
search space due to the Pareto optimal principles, and the leader selection mechanism is employed
to handle this problem. As discussed, the best solutions are stored in an archive that has been
attained until now. The leader selection mechanism selects the least crowded search segments and
suggests one of its non-dominated wolves, either α, or β, or δ. The selection is performed with
the subsequent probability for each hypercube by a roulette wheel process.

Pi = C
Ni

(9)

where N denotes the number of Pareto optimal solutions obtained in the ith section and C repre-
sents a constant number, which is higher than one. The MOGWO’s computational complexity is
O(AB2), where B is the number of objectives, and A is the number of populations. The complexity
of the MOGWO is similar to other famous algorithms, such as MOPSO, PAES, SPEA2, and
NSGA-II. Moreover, the complexity is better than SPEA and NSGA. In multi-objective BLDC
motor design problems, the MOGWO generates a set of non-dominated solutions with the best
trade-off between the mass and efficiency situated on a Pareto front graph. In BLDC motor
design, five design variables must be optimized to achieve the best trade-off between total motor
mass and efficiency. In this paper, to find the best value of all design parameters by satisfying
the design constraints, a multi-objective and mono-objective GWO algorithm is proposed, and its
performance is verified by applying the algorithm to the analytical model of the BLDC motor.

Algorithm 2: Pseudocode of Multi-Objective Grey Wolf Optimizer (MOGWO) Algorithm
Step 1: Initialize the a, A, C, lmax, search agents (n), and initial position
Step 2: Set iteration counter l = 0.

for i = 1:n do
Calculate the fitness(solutions) for each search agent

end for
Step 3: Find the optimal solution of each agent (Xα, Xβ , and Xδ)

for i = 1:n do
Update A and C by (4) and (5) and each search agent by (6) to (8); Decrease a
from 2 to 0; Calculate the fitness(solutions).

end for
Update the solutions (Xα, Xβ , and Xδ).
Calculate the fitness(solutions) for each search agent
Select the Non-dominated optimal solutions

(Continued)
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Update the archive based on the obtained non-dominated optimal solutions
Step 4: if the archive is filled

Using Eq. (9), remove few solutions using Roulette wheel from the archive to save
new solutions

end if
if any new solutions to the archive is positioned outside the hypercubes

Grid is updated to protect the new solutions
end if

Step 5: Xα = SelectLeader(archive)
Exclude α temporarily from the archive to evade the selection same leader
Xβ = SelectLeader(archive)
Exclude β temporarily from the archive to evade the selection same leader
Xδ = SelectLeader(archive)
Add α and β again with the archive

Step 6: l = l + 1; return archive

4 Simulation Results and Discussions

The MOGWO algorithm optimizes the BLDC motor design variables, and the results
obtained by the MOGWO are discussed in this section. The algorithm starts with the initialization
of the population size, archive size, maximum number of iterations, and the boundary condition
of BLDC motor variables. After that, the initial position, and objective function values are
obtained that can proceed through the MOGWO algorithm to find the best optimal tradeoff
points between two objective functions in terms of mass and efficiency. The performance of
the MOGWO algorithm is firstly verified on four unconstrained multi-objective problems and
then applied to the electromagnetic optimization problem. The simulation is carried out using
MATLAB software installed on a PC with 4 GB RAM and 3.20 GHz clock frequency. Each
unconstraint test benchmark function is solved with 30 independent runs. The control parameters
of the proposed MOGWO algorithm are initialized as follows: the population size is equal
to 100, the maximum number of iterations is equal to 300, and an archive size is equal to
100. The performance metrics, such as Generational Distance (GD), Inversion Generational Dis-
tance (IGD), Hypervolume-Matrix (HV-Matrix), Scattered-Matrix (S-Matrix), and Coverage of all
multi-objective algorithms are discussed in this section [37].

4.1 MOGWO Results for Test Benchmark Problems
Before solving real-world problems, first of all, the MOGWO is applied to the unconstraint

test benchmark function suggested in [38] to verify the performance. Four unconstraint test
benchmark functions, ZDT1, ZDT3, ZDT4, and ZDT6, are considered, and a comprehensive
simulation is carried out using all selected metaheuristic algorithms. The control parameters of any
algorithm play a vital role in the solution of the optimization problem. Therefore, the number of
populations is selected after performing a comparative study by considering different population
sizes and keeping all other factors constant. After careful study, for unconstrained test benchmark
functions, the population size, maximum number of iterations, and archive size are selected as
100, 300, and 500, respectively. The other parameter settings of all selected algorithms are listed
in Tab. 1.



CMC, 2022, vol.70, no.2 2443

Table 1: Control parameters of all selected algorithms

Algorithm Parameters Values

NSGA-II pCrossover
nCrossover

0.5
2∗round[pCrossover∗n/2]

PAES pCrossover
nCrossover
β

γ

0.5
2∗round[pCrossover∗n/2]
1
2

MOFA α

β

γ

0.2
1
1

MOBA AL
r
γ

0.9
0.9
0.9

MOFPA p 0.8
MOSFLA NM 100
MOPSO w

c1 and c2
0.4
rand(0,1)

MOGOA and MOALO cmax
cmin

1
0.00004

MOGWO and MOSSA α

nGrid
β

γ

0.1
10
4
2

The performance metrics, such as GD, S-Matrix, HV-Matrix, Coverage, and IGD for conver-
gence measurement, are used to assess the performance of the MOGWO algorithm. Tab. 2 lists
all the performance metrics of algorithms, such as NSGA-II, PAES, MOGWO, MOFA, MOBA,
MOFPA, MOSFLA, MOPSO, MOALO, MOGOA, and MOSSA. Tab. 2 shows that MOGWO
can exhibit the optimal results on all performance metrics. GD, S-matrix, HV-Matrix, IGD, and
Coverage show the convergence and solution accuracy of all algorithms. So, it is concluded that
the suggested MOGWO can offer the best convergence on all the benchmark functions. Fig. 1
shows the results (archive solutions) of all four test benchmark problems. It can be seen that the
MOGWO algorithm can able to approximate the Pareto front. It is also seen that the suggested
MOGWO can able to exhibit satisfactory performance by comparing the Pareto front estimates.
Therefore, it is concluded that the MOGWO algorithm is more appropriate for BLDC motor
parameter design.

4.2 Mono-Objective BLDC Wheel Motor Design Problem
In this context, the BLDC wheel motor is optimized by considering 78 non-linear equations,

including electric, magnetic as well as thermal characteristics. Firstly, the MOGWO algorithm is
tested for the mono-objective problem, i.e., efficiency maximization. The maximum number of
iterations is selected after several trials run and selected as 500. The objective function is evaluated
using MATLAB software for various search agents to find the optimal search agent. The results
obtained by the MOGWO algorithm for various search agents are demonstrated in Fig. 2, and
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five optimized parameters are listed in Tab. 3. From Tab. 3, it is decided to select the search agents
as 100.

Table 2: Performance analysis of all algorithms on various multi-objective test benchmark
problems

Functions MOGWO NSGAII PAES MOFA MOBA MOFPA MOSFLA MOPSO MOALO MOGOA MOSSA

GD-Metric

ZDT1 1.1854e-5
(3.93e-6)

3.0469e-3
(3.56e-4)

2.1860e-2
(1.96e-3)

1.3653e-3
(4.78e-4)

1.1764e-3
(3.17e-4)

1.1259e-1
(1.10e-2)

1.1971e-3
(1.57e-4)

6.0846e-3
(1.85e-3)

6.8235e-4
(1.70e-4)

9.4358e-1
(1.45e-1)

1.3509e-2
(1.42e-2)

ZDT3 1.1325e-2
(9.84e-3)

1.6856e-3
(3.57e-5)

3.1611e-2
(9.56e-3)

9.7976e-4
(2.91e-4)

7.7030e-4
(5.13e-5)

1.4810e-1
(8.93e-3)

7.5713e-4
(2.34e-4)

4.9060e-4
(1.88e-4)

6.9038e-4
(1.00e-4)

8.8887e-1
(3.55e-2)

1.5079e-2
(1.54e-2)

ZDT4 3.0678e-5
(3.67e-5)

1.3643e-1
(7.15e-2)

3.6328e-1
(2.24e-1)

1.0313e-2
(7.70e-3)

1.5136e-2
(3.27e-3)

2.3712e+1
(1.79e+0)

7.7289e-2
(4.08e-2)

1.3422e+0
(1.25e+0)

3.7366e-2
(4.97e-2)

1.9521e-1
(4.99e-2)

5.4685e-2
(4.40e-2)

ZDT6 9.7403e-6
(2.24e-6)

5.5373e-2
(2.22e-2)

9.2334e-2
(3.45e-2)

6.0688e-3
(1.69e-3)

2.8137e-3
(1.26e-3)

6.5048e-2
(3.94e-2)

7.8612e-3
(3.80e-3)

5.1279e-2
(6.10e-2)

7.2365e-3
(3.21e-3)

1.4217e-1
(1.47e-2)

3.5883e-6
(1.50e-7)

S-Metric

ZDT1 2.0974e-1
(3.04e-2)

4.7555e-1
(9.85e-3)

6.1139e-1
(8.13e-2)

3.5980e-1
(5.66e-2)

4.8064e-1
(1.65e-1)

7.5632e-1
(6.42e-2)

7.0505e-1
(4.31e-2)

9.6687e-1
(1.37e-2)

8.2127e-1
(3.20e-2)

9.0990e-1
(1.99e-2)

4.8527e-1
(1.05e-1)

ZDT3 3.0144e-1
(7.56e-2)

6.3097e-1
(8.31e-2)

6.2057e-1
(9.03e-2)

3.5611e-1
(6.22e-2)

9.3443e-1
(2.27e-1)

9.0356e-1
(5.82e-2)

8.4423e-1
(1.11e-1)

9.1231e-1
(9.65e-3)

8.0745e-1
(5.33e-2)

9.4915e-1
(8.15e-2)

7.0068e-1
(1.53e-1)

ZDT4 7.4230e-1
(2.02e-1)

7.5810e-1
(1.45e-1)

9.1425e-1
(9.36e-2)

8.6925e-1
(7.57e-2)

1.1286e+0
(4.17e-1)

9.8950e-1
(7.38e-2)

9.0525e-1
(6.74e-2)

1.5930e+0
(5.16e-1)

8.7249e-1
(1.44e-1)

8.7478e-1
(7.07e-2)

8.2102e-1
(1.23e-1)

ZDT6 6.5986e-1
(7.13e-2)

8.4077e-1
(1.41e-1)

7.9116e-1
(1.42e-1)

5.1083e-1
(1.59e-1)

1.0750e+0
(1.49e-1)

1.5127e+0
(2.18e-1)

6.8641e-1
(1.14e-1)

1.1246e+0
(3.00e-1)

7.2191e-1
(1.07e-1)

1.0872e+0
(1.31e-1)

1.3518e-1
(1.53e-3)

HV-Metric

ZDT1 7.0587e-1
(4.06e-3)

6.8335e-1
(4.06e-3)

5.4746e-1
(1.85e-2)

7.0415e-1
(5.76e-3)

6.6233e-1
(5.30e-3)

2.7918e-2
(1.13e-2)

7.0290e-1
(1.97e-3)

4.7338e-1
(1.78e-2)

6.8061e-1
(1.84e-2)

0.0000e+0
(0.00e+0)

5.9783e-1
(1.23e-1)

ZDT3 5.9296e-1
(1.61e-3)

5.8155e-1
(2.86e-3)

4.7986e-1
(1.71e-2)

5.9132e-1
(6.72e-4)

5.6208e-1
(1.91e-2)

2.6870e-2
(2.68e-2)

5.9141e-1
(2.67e-3)

6.9309e-1
(3.01e-3)

5.9331e-1
(1.16e-3)

0.0000e+0
(0.00e+0)

5.8775e-1
(6.42e-2)

ZDT4 6.3933e-1
(2.28e-2)

2.3338e-1
(2.32e-1)

4.2822e-3
(7.42e-3)

5.9413e-1
(8.64e-2)

5.5176e-1
(4.61e-2)

0.0000e+0
(0.00e+0)

3.1174e-1
(2.00e-1)

1.9826e-1
(1.03e-1)

4.4623e-1
(1.90e-1)

1.8247e-1
(2.86e-2)

3.1645e-1
(2.97e-1)

ZDT6 3.5636e-1
(1.33e-2)

1.4002e-1
(4.94e-2)

6.3351e-2
(6.71e-2)

3.2602e-1
(1.58e-2)

3.0545e-1
(4.32e-2)

3.8868e-1
(1.25e-4)

3.1366e-1
(3.01e-2)

2.2963e-1
(6.74e-3)

3.1787e-1
(2.51e-2)

6.1694e-2
(8.10e-2)

3.8888e-1
(8.80e-6)

IGD-Metric

ZDT1 1.2694e-2
(2.86e-3)

2.9246e-2
(2.99e-3)

1.3392e-1
(2.39e-2)

1.4203e-2
(4.36e-3)

5.4775e-2
(1.09e-2)

8.0474e-1
(4.03e-2)

1.3699e-2
(1.30e-3)

2.4392e-1
(1.20e-2)

5.3953e-2
(3.30e-2)

2.3184e+0
(1.30e-1)

9.6979e-2
(9.77e-2)

ZDT3 1.0753e-2
(4.81e-4)

2.2599e-2
(1.80e-3)

1.5829e-1
(1.88e-2)

1.4716e-2
(5.47e-3)

8.1660e-2
(6.23e-3)

9.1902e-1
(9.28e-2)

1.5555e-2
(2.79e-3)

2.6514e-1
(1.94e-2)

1.2802e-2
(1.52e-3)

1.9352e+0
(6.24e-2)

1.9051e-1
(8.70e-2)

ZDT4 1.8655e-1
(5.15e-2)

4.8867e-1
(2.85e-1)

1.0098e+0
(1.31e-1)

1.0384e-1
(7.18e-2)

7.7450e-2
(2.98e-2)

3.2685e+1
(4.20e+0)

4.0358e-1
(2.21e-1)

4.9224e-1
(1.62e-1)

3.1447e-1
(2.42e-1)

4.8455e-1
(1.50e-2)

3.7296e-1
(2.85e-1)

ZDT6 2.5794e-2
(1.03e-2)

2.4429e-1
(7.19e-2)

3.8872e-1
(1.57e-1)

4.8670e-2
(1.23e-2)

9.5711e-2
(5.49e-2)

3.2764e-3
(1.44e-4)

5.9115e-2
(2.37e-2)

1.5147e-1
(5.01e-3)

5.4988e-2
(1.95e-2)

4.9013e-1
(3.02e-1)

3.1287e-3
(9.70e-6)

Coverage-Metric

ZDT1 4.5378e-3
(5.05e-4)

1.0197e-2
(1.43e-3)

2.2759e-2
(2.13e-3)

6.6134e-3
(1.15e-3)

9.4698e-2
(4.00e-2)

1.6239e-2
(2.09e-3)

8.7829e-3
(5.02e-4)

4.7353e-3
(4.87e-4)

9.4167e-3
(1.49e-3)

1.7117e-1
(6.60e-2)

1.5347e-2
(5.23e-3)

ZDT3 6.1749e-3
(9.53e-4)

1.1180e-2
(2.58e-4)

3.9338e-2
(1.18e-2)

7.0505e-3
(7.35e-4)

1.7768e-1
(5.63e-2)

3.5811e-2
(1.15e-2)

1.3036e-2
(6.19e-3)

2.2958e-3
(6.13e-4)

1.3363e-2
(2.36e-4)

2.8257e-1
(1.69e-2)

2.0995e-2
(9.51e-3)

ZDT4 1.4369e-2
(4.93e-3)

5.1773e-2
(1.73e-2)

1.0452e-1
(3.16e-2)

3.4338e-2
(1.55e-2)

1.4755e-1
(4.86e-2)

1.5383e+0
(2.46e+0)

5.0181e-2
(1.31e-2)

3.3387e+0
(3.03e+0)

2.2417e-2
(1.87e-2)

1.0538e-1
(1.81e-2)

3.2446e-2
(1.85e-2)

ZDT6 1.0397e-2
(1.25e-3)

3.9409e-2
(2.12e-2)

4.0004e-2
(1.49e-2)

6.8168e-3
(1.81e-3)

7.8593e-2
(4.65e-2)

3.7632e-1
(3.24e-1)

1.0948e-2
(4.56e-3)

8.4287e-2
(1.10e-1)

1.2788e-2
(5.24e-3)

1.1691e-1
(6.78e-2)

2.6781e-3
(3.60e-5)

Note: Bold values indicate the best result.
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(a) (b)

(c) (d)

Figure 1: Best Pareto optimal front obtained by MOGWO algorithm; (a) ZDT1, (b) ZDT3, (c)
ZDT4 and (d) ZDT6

Figure 2: Convergence curve for various populations of mono-objective BLDC wheel motor design
problem
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Table 3: Performance analysis for various population of mono-objective BLDC wheel motor
design problem

Population 30 50 80 100∗ 120

Bd (T) 1.7936 1.7986 1.8 1.8 1.8
Be (T) 0.6466 0.6476 0.6478 0.6488 0.6477
Bcs (T) 1.13982 1.0004 1.0179 0.9398 1.0063
Ds (mm) 204.779 202.309 202.632 201.937 202.520
ζ (A/mm2) 2.00015 2.01197 2.00799 2.03787 2.01203
Efficiency (%) 95.2983 95.3123 95.3121 95.3156 95.3125

Note: ∗Bold values indicate the best results.

After selecting the optimal search agents and the maximum number of iterations, the mono-
objective problem is evaluated by various state-of-the-algorithms, such as PSO, GA, Sequential
Quadratic Programming (SQP), hybrid SQP-GA, Ant Colony Optimization (ACO), Bat Algorithm
(BA), and GWO. The control parameters of all algorithms are selected as similar to the GWO
algorithm. Tab. 4 represents the numerical results for mono-objective BLDC wheel motor prob-
lems, and a comparison is made among all selected algorithms. The results produced by the GWO
are very much close to the best results after 30 independent runs. The results in terms of mean
and standard deviation (STD) of mono-objective BLDC motor with 30 independent runs of GWO
are presented in Tab. 5. The statistical values of mean and STD for motor efficiency are observed
to be very small from Tab. 5.

Table 4: Competitive statistical results of mono-objective BLDC optimization for maximum
efficiency

Method SQP GA SQP-GA ACO PSO BA GWO

Ds (mm) 201.2 201.5 201.2 201.2 202.1 202.2 214.56529
Be (T) 0.6481 0.6480 0.6481 0.6481 0.6476 0.6535 0.648925
ζ (A/mm2) 2.0437 2.0602 2.0615 2.0437 2.0417 2.0514 2.049046
Bd (T) 1.8 1.799 1.8 1.8 1.8 1.8 1.8
Bcs (T) 0.8959 0.8817 0.8700 0.8959 0.9298 0.9792 0.9039
Efficiency (%) 95.32 95.31 95.31 95.32 95.32 95.31 95.336
Evaluations 90 3380 1644 1200 1600 1590 750
Mtot (kg) 15 15 15 15 15 14.95 14.9266
Imax (A) 125 125 125 125 125 130.5 127.5982
Dint (mm) 76 76 76 76 76 81.5 76.0003
Dext (mm) 238.9 239.2 238.9 238.9 239.8 240.3 239.8989
Ta (◦C) 95.35 95.21 95.31 95.35 94.98 94.95 95.3278
discr 0.0235 0.0251 0.0246 0.0235 0.0253 0.0254 0.0239

Note: Bold values indicate the best result.
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Table 5: Statistical results of mono-objective BLDC optimization (best fitness)

Efficiency (%) Mtot (kg) Imax (A) Dint (mm) Dext (mm) Ta (◦C) discr

Mean

95.33693 14.92159 126.9539 83.08 240.9633 94.7033 0.025473

STD

0.004366 0.022374 1.284022 0.003341 0.001074 0.36979 0.001573

4.3 Multi-Objective BLDC Wheel Motor Design Problem
As similar to the mono-objective problem, the multi-objective optimization problem also runs

30 times with an archive size of 100, the maximum number of iterations of 6000, and the
population size of 100. The best-compromised results are listed in Tab. 6, in which the best
feasible solutions are presented.

Table 6: Best feasible solution of multi-objective BLDC optimization problem

Efficiency (%) Mtot (kg) Bd (T) Be (T) Bcs (T) Ds (mm) ζ (A/mm2)

95.12 13.7520 1.79845 0.653875 1.182798 194.54 2.222483

(a) (b)

Figure 3: Best Pareto optimal front; (a) Various selected algorithms, (b) MOGWO algorithm with
the best compromise solution

The best Pareto front of various selected algorithms and the best compromise solution
obtained by the MOGWO algorithm is illustrated in Fig. 3. Other state-of-the-art algorithms, such
as MOBA, NSGA-II, and MOKH, are also applied to solve the same problem. The statistical
results and performance analysis of the multi-objective BLDC problem are shown in Tab. 7. In
view of correlating the previous discussions, it is exciting to compare MOGWO with the MOKH,
MOBA, and NSGA-II. For this reason, one of the results is analyzed, i.e., the top possible
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harmonic solution given by the one nearest to the harmonic mean of all Pareto front solutions.
The harmonic mean can be determined for mass or efficiency.

Table 7: Competitive statistical results of multi-objective BLDC optimization problem

Method MOBA [13] NSGA-II [13] MOKH [14] MOGWO

Minor
mass

Major
efficiency

Minor
mass

Major
efficiency

Minor
mass

Major
efficiency

Minor
mass

Major
efficiency

Ds (mm) 187.0768 201.4504 186.0083 194.8235 191.9 200 188.4299 204.1143
Be (T) 0.6636 0.6716 0.6992 0.6862 0.6580 0.6599 0.653986 0.650143
ζ (A/mm2) 2.5054 2.1735 3.2406 2.3231 3.9728 2.0128 3.742774 2.038801
Bd (T) 1.7466 1.7682 1.7731 1.8000 1.7710 1.7995 1.8 1.8
Bcs (T) 1.6000 0.8350 1.53342 1.1555 1.5943 1.1688 1.6 1.110997
Efficiency (%) 94.7759 95.2780 94.2212 95.0944 94.49 95.28 93.8074 95.28544
Mtot (kg) 12.082 14.9680 11.6094 13.9127 10.5858 14.8804 10.5844 14.87422

After 30 individual runs, Tab. 7 shows the feasible harmonic solution for all selected multi-
objective algorithms. The performance is analyzed with respect to the maximization of efficiency
and the minimization of mass. With respect to the mass of the motor, the methods, such as
MOGWO and NSGA-II, perform better than the other two methods. With respect to both
motor mass and motor efficiency, the MOGWO algorithm is very much better with less mass
and high efficiency than all the methods, as listed in Tab. 7. The performance metrics, such as
GD, S-Matrix, HV-Matrix, IGD, and Coverage for the algorithms, such as NSGA-II, MOBA,
and MOGWO, are listed in Tab. 8. From Tab. 8, it is noted and concluded that the suggested
MOGWO displays better performance than the other selected algorithms.

Table 8: Performance analysis of multi-objective BLDC optimization problem

Algorithm GD S-Matrix HV-Matrix IGD Coverage

Avg. STD Avg. STD Avg. STD Avg. STD

NSGA-II 8.51e-2 1.7e-2 3.51e-1 1.20e-1 4.816e-2 4.312e-2 1.42e-2 1.516e-2 0.4641
MOBA 8.78e-2 4.22e-2 3.46e-1 1.12e-1 5.198e-2 4.615e-2 1.695e-2 1.492e-2 0.75
MOKH 5.416e-2 1.016e-2 1.42e-1 1.575e-2 3.167e-2 1.195e-2 1.818e-2 1.616e-2 0.6571
MOGWO 0.01298 0.00027 0.85855 0.0346 0.051417 0.010449 0.0024 0.00071 0.558

4.4 Statistical Validation
Wilcoxon signed-rank test [39] is employed on ZDT unconstrained benchmarks to compare

the performance of all selected algorithms at a significant level of 0.05, and the results are shown
in Tab. 9. This test is a nonparametric test, and it can be used to find the statistical difference
between the two different techniques.

The mean values of the metrics over 30 runs on all test functions are utilized as the sample
values. Thus, according to the analysis mentioned above, it is concluded that MOGWO can show
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Table 9: Statistical validation of MOGWO using Wilcoxon signed-rank test

MOGWO vs. R+ R− p-value

PAES 152 104 0.442
NSGA-II 183 67 0.059
MOFA 132 118 0.909
MOBA 154 94 0.407
MOFPA 135 114 0.827
MOSFLA 184 65 0.050
MOPSO 148 103 0.564
MOALO 160 93 0.362
MOGOA 187 65 0.052
MOSSA 212 43 0.007

a competitive and robust performance when compared with PAES, NSGA-II, MOFA, MOBA,
MOFPA, MOSFLA, MOPSO, MOALO, MOGOA, and MOSSA.

5 Conclusion

The MOGWO is a new optimization technique that appears to be a robust tool for engi-
neering optimization problems. Furthermore, with respect to the BLDC wheel motor design
optimization problem, MOGWO can demonstrate to be competitive compared to other state-
of-the-art optimization methods. The numerical results obtained by the MOGWO algorithm for
BLDC wheel motor design are compared with the other swarm and evolutionary-based compu-
tational techniques. The performance measurement in multi-objective optimization in terms of
convergence, coverage, and success matrices for BLDC motor design with MOGWO has been
acquired, and statistical results demonstrated the effectiveness of MOGWO in the field of elec-
tromagnetic optimization application. The outcomes display a good trend for the MOGWO in
both mono-objective and multi-objective optimization problems. The motor efficiency is nearer to
95.285% while solving the BLDC wheel motor design problem using the MOGWO algorithm. The
results obtained using MOGWO is depending on the control parameters tuning. The MOGWO
can also be applied to other optimization problems, such as optimal power flow, economic load
dispatch, transformer design, etc. In future research, the same concept can be extended for other
specification sheets, such as ten parameter and eleven parameter problems.
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