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Abstract: A mix between numerical and nominal data types commonly
presents many modern-age data collections. Examples of these include
banking data, sales history and healthcare records, where both continuous
attributes like age and nominal ones like blood type are exploited to character-
ize account details, business transactions or individuals. However, only a few
standard clustering techniques and consensus clustering methods are provided
to examine such a data thus far. Given this insight, the paper introduces
novel extensions of link-based cluster ensemble, LCEwct and LCEwt(q that
are accurate for analyzing mixed-type data. They promote diversity within
an ensemble through different initializations of the k-prototypes algorithm
as base clusterings and then refine the summarized data using a link-based
approach. Based on the evaluation metric of NMI (Normalized Mutual Infor-
mation) that is averaged across different combinations of benchmark datasets
and experimental settings, these new models reach the improved level of 0.34,
while the best model found in the literature obtains only around the mark
of 0.24. Besides, parameter analysis included herein helps to enhance their
performance even further, given relations of clustering quality and algorithmic
variables specific to the underlying link-based models. Moreover, another sig-
nificant factor of ensemble size is examined in such a way to justify a tradeoff
between complexity and accuracy.

Keywords: Cluster analysis; mixed-type data; consensus clustering; link
analysis

1 Introduction

Cluster analysis has been widely used to explore the structure of a given dataset. This
analytical tool is usually employed in the initial stage of data interpretation, especially for a
new problem where prior knowledge is limited. The goal of acquiring knowledge from data
sources has been a major driving force, which makes cluster analysis one of the highly active
research subjects. Over several decades, different clustering techniques are devised and applied to
a variety of problem domains, such as biological study [!], customer relationship management [2],
information retrieval [3], image processing and machine vision [4], medicine and health care [5],
pattern recognition [6], psychology [7] and recommender system [8]. In addition to these, the
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recent development of clustering approaches for cancer gene expression data has attracted a lot
of interests amongst computer scientists, biological and clinical researchers [9,10].

Principally, the objective of cluster analysis is to divide data objects (or instances) into groups
(or clusters) such that objects in the same cluster are more similar to each other than to those
belonging to different clusters [11]. Objects under examination are normally described in terms
of object-specific (e.g., attribute values) or relative measurements (e.g., pairwise dissimilarity).
Unlike supervised learning, clustering is ‘unsupervised’ and does not require class information,
which is typically achieved through a manual tagging of category labels on data objects, by
domain expert(s). While many supervised models inherently fail to handle the absence of data
labels, data clustering has proven effective for this burden. Given its potential, a large number of
research studies focus on several aspects of cluster analysis: for instance, dissimilarity (or distance)
metric [12], optimal cluster numbers [13], relevance of data attributes per cluster [14], evaluation
of clustering results [15], cluster ensemble or consensus clustering [9], clustering algorithms and
extensions for particular type of data [16]. Specific to the lattermost to which this research
belongs, only a few studies have concentrated on clustering of mixed-type (numerical and nominal)
data, as compared to the cases of numeric and nominal only counterparts.

At present, the data mining community has encountered a challenge from large collections of
mixed-type data like those collected from banking and health sectors: web/service access records
and biological-clinical data. As for the domain of health care, microarray expressions and clinical
details are available for cancer diagnosis [17]. In response, a few clustering techniques have been
introduced in the literature for this problem. Some simply transform the underlying mixed-type
data to either numeric or nominal only format, with which conventional clustering algorithms
can be reused. In particular to this view, k-means [18] is a typical alter- native for the numerical
domain, while dSqueezer [19] that is an extension of Squeezer [20] has been investigated for the
other. Other attempts focus on defining a distance metric that is effective for the evaluation of
dissimilarity amongst data objects in a mixed- type dimensional space. These include different
extensions of k-means, k-prototypes [21] and k-centers [22], respectively.

Similar to most clustering methods, the aforementioned models are parameterized, thus
achieving optimal performance may not be possible across diverse data collections. At large, there
are two major challenges inherent to mixed-type clustering algorithms. First, different techniques
discover different structures (e.g., cluster size and shape) from the same set of data [23-25]. For
example, those extensions of k-means are suitable for spherical-shape clusters. This is due to the
fact that each individual algorithm is designed to optimize a specific criterion. Second, a single
clustering algorithm with different parameter settings can also reveal various structures on the
same dataset. A specific setting may be good for a few, but less accurate on other datasets.

A solution to this dilemma is to combine different clusterings into a single consensus cluster-
ing. This process, known as consensus clustering or cluster ensemble, has been reported to provide
more robust and stable solutions across different problem domains and datasets [9,24]. Among
state-of-the-art approaches, link-based cluster ensemble or LCE [26,27] usually deliver accurate
clustering results, with respect to both numerical and nominal domains. Given this insight, the
paper introduces the extension of LCE to mixed-type data clustering, with contributions being
summarized as follows. Firstly, a new extension of LCE that makes use of k-prototypes as base
clusterings is proposed. In particular, the resulting models have been assessed on benchmark
datasets, and compared to both groups of basic and ensemble clustering techniques. Experimental
results point out that the proposed extension usually outperforms those included in this empirical
study. Secondly, parameter analysis with respect to algorithmic variables of LCE is conducted and



CMC, 2022, vol.70, no.1 1995

emphasized as a guideline for further studies and applications. The rest of this paper is organized
as follows. To set the scene for this work, Section 2 presents existing methods to mixed-type
data clustering. Following that, Section 3 introduces the proposed extension of LCE, including
ensemble generation and estimation of link-based similarity. To perceive its performance, the
empirical evaluation in Section 4 is conducted on benchmark data sets, with a rich collection of
compared techniques. The paper is concluded in Section 5 with the direction of future research.

2 Mixed-Type Data Clustering Methods

Following the success in numerical and nominal domains, a line of research has emerged with
the focus on clustering mixed-type data. One of initial attempts is the model of k-prototypes,
which extends the classical k-means to clustering mixed numeric and categorical data [21]. It
makes use of a heterogeneous proximity function to assess the dissimilarity between data objects
and cluster prototypes (i.e., cluster centroids). While the Euclidean distance is exploited for
numerical case, the nominal dissimilarity can be directly derived from the number of mismatches
between nominal values. This distance function for mixed-type data requires different weights for
the contribution of numerical vs. nominal attributes to avoid favoring either type of attribute. Let
X ={x1,...,xn} be a set of N data objects and each x; € X is described by D attributes, where
D =D, + D, ie., the total number of numerical (D,) and nominal (D.) attributes. The distance
between an object x; € X and a cluster prototype ¢, is estimated by the following equation.

Dy, D,
d(xi,T) =Y (=2 +y Y 8(Xig, o), (1
j=1 g=1

where 8(y,z) =0 if y =z and 1, otherwise. In addition, y is a weight for nominal attributes. A
large y suggests that the clustering process favors the nominal attributes, while a small value of
y indicates that numerical attributes are emphasized.

Besides the aforementioned, k-centers [22] is an extension of the k-prototypes algorithm. It
focuses on the effect of attribute values with different frequencies on clustering accuracy. Unlike
k-prototypes that selects nominal attribute values that appear most frequently as centroids, k-
centers also takes into account other attribute values with low frequency on centroids. Based on
this idea, a new dissimilarity measure is defined. Specifically, the Euclidean distance is used for
numerical attributes, while the nominal dissimilarity is derived from the similarity between corre-
sponding nominal attributes. Let x; € X be a data object described by D, numerical attributes and
D. nominal attributes. The domain of nominal attribute A4, is denoted by {a,(1), ag(2), - <> lg(ng) >
where n, is the number of attribute values of A4g. The definition of the distance between data
object x; and centroid ¢, is defined as follows.

Dy, D,
d(xi,ep) =B Y _ (=) +v Y _[1 =/ (xig, 5T, 2)
J=1 g=1

where f(Xig, Cpg) = {Cpg(r)|Xig = apg(r)}. The weight parameters f and y are for numerical and nom-
inal attributes, respectively. According to [22], B is set to be 1 while a greater weight is given for
y if nominal valued attributes are emphasised more or a smaller value for y otherwise. The new
definition of centroids is also introduced. For numerical attributes, a centroid is represented by



1996 CMC, 2022, vol.70, no.1

the mean of attribute values. For nominal attribute A4, g € D, centroid ¢,g is an n, dimensional

vector denoted as (Cpg(1), Cpg(2)» - - - » Cpg(n))» Where ¢pg(r) can be defined by the next equation.
1 11
Tpg(r) T zeZA; <”1Jg<t) ”pg(r)>
g
Cpg(r) = Z 1 ) (3)
tedg Tpg(t)

where 7,y denotes the number of data objects in the pth cluster with attribute value ag(.
Note that if attribute value a4y does not exist in the pth cluster, ¢yo() = 0. The problem of
selecting an appropriate clustering algorithm or parameter setting of any potential alternative
has proven difficult, especially with a new set of data. In such a case where prior knowledge is
generally minimal, the performance of any particular method is inherently uncertain. To obtain
a more robust and accurate outcome, consensus clustering has been put forward and extensively
investigated in the past decade. However, while a large number of cluster ensemble techniques
for numerical data have been developed [24,20,28-35], there are very few studies that extend
such a methodology to mixed-type data clustering. Specific to this subject, the cluster ensemble
framework of [36] uses the pairwise similarity concept [24], which is originally designed for
continuous data. Though this research area has received a little attention thus far, it is crucial
to explore the true potential of cluster ensembles for such a problem. This motivates the present
research, with the link-based framework being developed and evaluated herein.

3 Link-Based Consensus Clustering for Mixed-Type Data

This section presents the proposed framework of LCE for mixed-type data. It includes details
of conceptual model, ensemble generation strategies, link-based similarity measures, and consensus
function that is used to create the final clustering result, respectively.

3.1 Problem Definition

LCE approach has been initially introduced for gene expression data analysis [9]. Unlike other
methods, it explicitly models base clustering results as a link network from which the relations
between and within these partitions can be obtained. In the current research, this consensus-
clustering model is uniquely extended for the problem of clustering mixed-type data, which can be
formulated as follows. Let [[ = {m1,...,7x} be a cluster ensemble with M base clusterings, each

kg
of which returns a set of clusters 7w, ={C{,C5,..., C,‘fg}, such that U Cf, where k, is the number
=1

of clusters in the gth clustering. For each x; € X, C8(x;) denotes the cluster label in the gth base
clustering to which data object x; belongs, i.e., C8(x;) = 't if x; € Cf . The problem is to find a
new partition 7* = {CY,..., C¢}, where K denotes the number of clusters in the final clustering
result, of a data set X that summarizes the information from the cluster ensemble [].

3.2 LCE Framework for Mixed-Type Data Clustering

The extended LCE framework for the clustering of mixed-type data involves three steps: (i)
creating a cluster ensemble [], (ii) aggregating base clustering results, 7y € [[, g=1... M, into
a meta-level data matrix RA; (with / being the link-based similarity measure used to deliver
the matrix), and (iii) generating the final data partition 7 * using the spectral graph partitioning
(SPEC) algorithm. See Fig. | for the illustration of this framework.
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Figure 1: Framework of LCE extension to mixed-type data clustering

3.2.1 Generating Cluster Ensemble

The proposed framework is generalized such that it can be coupled with several different
ensemble generation methods. As for the present study, the following four types of ensembles
are investigated. Unlike the original work in which the classical k-means is used to form base
clusterings, the extended LCE obtains an ensemble by applying k-prototypes to mixed-type data
(see Fig. 1 for details). Each base clustering is initialized with a random set of cluster prototypes.
Also, the variable y of k-prototypes is arbitrarily selected from the set of {0.1, 0.2, 0.3,...,5}.

Full-space + Fixed-k: Each 7, €[], is formed using data set X RN*D with all D attributes.

The number of clusters in each base clustering is fixed to k = [+/N]. Intuitively, to obtain a
meaningful partition, k becomes 50 if [+/N] > 50.
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Full-space + Random-k: Each 7, is obtained using the data set with all attributes, and the
number of clusters is randomly selected from the set {2, o [VNT } Note that both ‘Fixed-k’ and
‘Random-k’ generation strategies are initially introduced in the primary work of [30].

Subspace + Fixed-k: Each 7, is created using the data set with a subset of original attributes,
and the number of clusters is fixed to k = [+/N]. Following the study of [37] and [38], a data

subspace X’ € RV*P'is selected from the original data X € RY*P, where D is the number of
original attributes and D’ < D. In particular, D" is randomly chosen by the following.

D' = Dyin + Lot(Dmax — Dimin) (4)

where o €[0,1] is a uniform random variable. Besides, D,,;; and D,,,, are user-specified parame-
ters, which have the default values of 0.75 and 0.85 D, respectively.

Subspace + Random-k: Each 7, is generated using the dataset with a subset of attributes, and

the number of clusters is randomly selected from the set {2, ..., [v/N] }

3.2.2 Summarizing Multiple Clustering Results

Having obtained the ensemble [], the corresponding base clustering results are summarized
into an information matrix R4; € [0,1]V*F, from which the final data partition 7* can be
created. Note that P denotes the total number clusters in the ensemble under examination. For
each clustering m, € [[ and their corresponding clusters (C8, ..., C,fg}, a matrix entry RA;(x;,cl)

represents the association degree that data object x; € X has with each cluster ¢/ € {C?,..., C,gcg},

which can calculated by the next equation.

1 if el = C§(x;)
sim(cl, C8(x;)) otherwise

Ri( ) = | , 5)
where C5(x;) is a cluster label to which sample x; has been assigned. In addition, sim(Cy, Cy) e
[0,1] denotes the similarity between any two clusters Cy, C, € mg, which can be discovered using

the link-based algorithm / presented next.

Weighted Connected-Triple (WCT) Algorithm: has been developed to evaluate the similarity
between any pair of clusters C,,C, € [[. At the outset, the ensemble [] is represented as a
weighted graph G = (V, W), where V is the set of vertices each representing a cluster in [[ and W
is a set of weighted edges between clusters. The weight |wy,| € [0, 1] assigned to the edge wy, € W
between Cy, Cy € V, is estimated by the next equation.

ILyNL,|

Wyy| = ——————,
Wl |LyUL,|

(6)
where L. C X denotes the set of data objects belonging to cluster C. € []. Note that G is an
undirected graph such that |wy,| is equivalent to |wyy|, VCy,C, € V. The WCT algorithm is
summarized in Fig. 2. Following that, the similarity between clusters Cy and C, can be estimated
by the next equation.

WCTy,

———— x DC, 7
WCTmax ( )

sim(Cy, C)) =
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where WCT4x is the maximum WCTy, value of any two clusters Cy,Cy € V and DC €0, 1]
is a constant decay factor (i.e., confidence level of accepting two non-identical clusters as being
similar). With this link-based similarity metric, sim(Cy, C)) € [0, 1] with sim(Cy, Cx) =1,YCy e V.
It 1s also reflexive such that sim(Cy, C)) =sim(C), Cy).

ALGORITHM: WCT(C, C,. C,)

G = (V,W), a weighted graph, where C,C, € V;

N € V, a set of adjacent neighbours of Cy € V; C. € N when |wy.| > 0;
WCTgy, the WCT measure of Cy and Cy;

(1) WCTay 0

(2) For eachc € N:

(3) Ifce Ny

(4) WCOTzy +— WCTey + min(|wec|, |wyc|)

(5) Return WCT,,

Figure 2: The summarization of WCT algorithm

Weighted Triple-Quality (WTQ) Algorithm: WTQ is inspired by the initial measure of [39], as
it discriminates the quality of shared triples between a pair of vertices in question. Specifically,
the quality of each vertex is determined by the rarity of links connecting itself to other vertices
in a network. With a weighted graph G = (V, W), the WTQ measure of vertices vy, v, € V' with
respect to each centre of a triple v, € V, is estimated by

. 1
WI1Q., = W, ()
provided that
Wo= " |wal, ©)
Vv,e N-

here N. C V' denotes the set of vertices that is directly linked to the vertex v., such that Vv, €
N., w;; € W. A pseudocode for the WTQ measure is described in Fig. 3. Following that, the
similarity between clusters Cy and C, can be estimated by

WTQx,
WTQWIQX

where WT Qpqy is the maximum WTQy, value of any two clusters and DC €[0,1] is a decay
factor.

sim(Cy, Cy) = x DC, (10)

3.2.3 Creating Final Data Partition

Having acquired RA;, the spectral graph-partitioning (SPEC) algorithm [40] is used to create
the final data partition. This technique is first introduced by [28] as part of the Hybrid Bipartite
Graph Formation (HBGF) framework. In particular, SPEC is exploited to divide a bipartite graph,
which is transformed from the matrix BA e {0, 1}V* (a crisp variation of RA;), into K clusters.
Given this insight, HBGF can be considered as the baseline model of LCE. The process of
generating the final data partition 7* from this RA; matrix is summarized as follows. At first, a
weighted bipartite graph G’ = (V’/, W’) is constructed from the matrix RA;, where V' = VXU ¢
is a set of vertices representing both data objects VX and clusters V¢, and W’ denotes a set of
weighted edges. The weight Iw;-j| of edge w;-j connecting vertices v;,v; € V7, can be defined by



2000 CMC, 2022, vol.70, no.1

ALGORITHM: WTQ(G, C:,Cy)
G = (V, W), a weighted graph, where Cz,Cy € V;
N C V, a set of adjacent neighbors of Cy, € V;
W= Y wus;
YO ENL
WTQzy, the WI'Q measure of C; and Cy;
(1) WTQay, <0
(2) For eachce N,
(3) TIfce N,
(4) WTQuy + WTQzy + 5
(5) Return WTQ., '

Figure 3: The summarization of WTQ algorithm
° |w;-j| =0Z when v;,v; € VX or Vi, Vj € Ve,
e Otherwise, |w;.1.| = RA;(v;,v;) when v; € VX and Vi € V€. Note that G’ is bi-directional such

that |wj;| = |w};|. In other words, W’ €0, 1NV+PXIN+P) can also be specified as

, o RA,;
W_[RA,T 0 ] (1)

After that, the K largest eigenvectors uj,up,...,ux of W’ are used to produce the matrix U =
[t ur ... ug], in which the eigenvectors are stacked in columns. Then, another matrix U* €
[0, 1]V+P)xK is formed by normalizing each row of U to have a unit length. By considering each
row of U* as K-dimensional embedding of a graph vertex or a sample in [0,1]X, k-means is
finally used to generate the final partition 7* ={Cj,..., Cg} of K clusters.

4 Performance Evaluation

To obtain a rigorous assessment of LCE for mixed-type data clustering, this section presents
the framework that is systematically designed and employed for the performance evaluation.

4.1 Investigated Datasets

Five benchmark datasets obtained from the UCI repository [41] are included in this investi-
gation, with Tab. | giving their details. Abalone consists of 4,177 instances, where eight physical
measurements are used to divide these data into 28 age groups of abalone. There is only one
categorical attribute, while the rest are continuous. Acute Inflammations was originally created
by a medical expert to assess the decision support system, which performs the presumptive
diagnosis of two diseases of urinary system: acute inflammations of urinary bladder and acute
nephritises [42]. There are 120 instances, each representing a potential patient with six symptom
attributes (1 numerical and 5 categorical). Heart Disease contains 303 records of patients collected
from Cleveland Clinic Foundation. Each data record is described by 13 attributes (5 numerical
and 8 nominal) regarding heart disease diagnosis. This dataset is divided into two classes referring
to the presence and absence of heart disease in the examined patients. Horse Colic has 368
data records of injured horses, each of which is described by 27 attributes (7 numerical and 19
nominal). These collected instances are categorized into two classes: ‘Yes’ indicating that lesion is
surgical and ‘No’ otherwise. About 30% of the original are missing values. For simplicity, missing
nominal values in this dataset are equally treated as a new nominal value. In the case of missing
numerical values, mean of the corresponding attribute is used. Mammographic Masses contains
mammogram data of 961 patient records collected at the Institute of Radiology of the University
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Erlangen-Nuremberg between 2003 and 2006. Five attributes used to describe each record are
BI-RADS assessment, age and three BI-RADS attributes. This dataset possesses two class labels
referring to the severity of a mammographic mass lesion: benign (516 instances) and malignant
(445 instances).

Table 1: Description of datasets: number of data points (/V), attributes (D) and number of classes
(K)

Dataset Data points (V) Attributes (D) Classes (K)
Abalone 4,177 8 28

Acute inflammations 120 6 2

Heart disecase 303 13 2

Horse colic 368 27 2
Mammographic masses 961 5 2

4.2 Experimental Design

This experiment aims to examine the quality of the LCEwct and LCEwtq extensions of LCE
for clustering mixed numeric and nominal data. For these extended models where k-prototypes
is used for creating a cluster ensemble, the parameter y of this base clustering algorithm is
randomly selected from {0.1, 0.2, ..., 5}. The results with LCE models are compared against a
large number of standard clustering techniques and advanced cluster ensemble approaches. At
first, this includes three standard clustering algorithms: k-prototypes, k-centers, k-means (KM)
and dSqueezer. Particularly, the weight parameter y is randomly selected from {0.1, 0.2, ..., 5}
for each run of k-prototypes and k-centers. In order to exploit k-means, a mixed-type dataset
needs to be pre-processed such that each nominal attribute is transformed to § new binary-value
features, where B is the corresponding number of nominal values. For the case of dSqueezer,
each numerical data attribute has to be mapped to the corresponding categorical domain using
the discretisation method explained by [19]. The set of compared methods also contains twelve
different cluster ensemble techniques that have been reported in the literature for their effectiveness
in combining clustering results: four graph-based methods of HBGF [28], CSPA [32], HGPA [32]
and MCLA [32]; two pairwise-similarity based methods [24] of EAC-SL and EAC-AL; and
six feature-based methods of IVC [43], MM [33], QMI [33], AGGF [29], AGGysF [29] and
AGGtsr [29]. The experiment setting employed in this evaluation is exhibited below. Note that the
performance of standard clustering algorithms is always assessed over the original data, without
using any information of cluster ensembles.

e Cluster ensemble methods are investigated using four different ensemble types: Full-space
+ Fixed-k, Full-space + Random-k, Subspace + Fixed-k, and Sub-space + Random-k.

e Ensemble size (M) of 10 base clusterings is experimented.

e As in [24,28,29], each method divides data points into a partition of K (the number of true
classes for each dataset) clusters, which is then evaluated against the corresponding true
partition. Note that, true classes are known for all datasets but are not explicitly used by the
cluster ensemble process. They are only used to evaluate the quality of the clustering results.

e The quality of each cluster ensemble method with respect to a specific ensemble set-
ting is generalized as the average of 50 runs. Based on the central limit theorem
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(CLT), the observed statistics in a controlled experiment can be justified to the normal
distribution [43].
e The constant decay factor (DC) of 0.9 is exploited with WCT and WTQ algorithms.

4.3 Performance Measurements and Comparison

Provided that the external class labels are available for all experimented datasets, the results
of final clustering are evaluated using the validity index of Normalized Mutual Information
(NMI) introduced by [32]. Other quality measures such as Classification Accuracy (CA4; [44]) and
Adjusted Rand Index (AR; [45]) can be similarly used. However, unlike other criteria, NMI is not
biased by a large number of clusters, thus providing a reliable conclusion. This also simplifies the
magnitude of evaluation results and their comprehension. This quality index measures the average
mutual information (i.e., the degree of agreement) between two data partitions. One is obtained
from a clustering algorithm (7*) while the other is taken from a priori information, i.e., known
class labels (J]'). With NMI € [0, 1], the maximum value indicates that the clustering result and
the original classes completely match. Given the two data partitions of K clusters and K’ classes,
NMI is computed by the following equation.

K K njjN
2 Z ni;jlog ( "im./)

NMI(JT ) ==

\/Z nilog (%) ijlog<m’>

; (12)

where n;; is the number of data objects agreed by cluster i and class j, n; is the number of
data objects in cluster i, m; is the number of data objects in class j and N is the total number
of data objects. To compare the performance of different cluster ensemble methods, the overall
quality measure for a specific experiment setting (i.e., dataset and ensemble type) is obtained as
the average of NMI values across 50 trials. These method-specific means may be used for the
comparison purpose only to a certain extent. To achieve a more reliable assessment, the number
of times (or frequencies) that one technique is ‘significantly better’ and ‘significantly worse’ (of
95% confidence level) than the others are considered here. This comparison method has been
successfully exploited by [9] and [46] to discover trustworthy conclusions from the results generated
by different cluster ensemble approaches. Based on these, it is useful to compare the frequencies
of better (B) and worse (W) performance between methods. The overall measure (B— W) is also
used as a summarization.

4.4 Experimental Results

Fig. 4 shows the overall performance of different clustering methods, as the average NMI
measure across all investigated datasets and ensemble types. Based on this, LCEwcT and
LCEwrtq are similarly more effective than their baseline model (i.e., HBGF), whilst signifi-
cantly improve the quality of data partitions acquired by base clusterings, i.e., k-prototypes.
Their performance levels are also better than other cluster ensemble methods and standard
clustering algorithms included in this evaluation. Note that CSPA and k-means are the most
accurate amongst the aforementioned two groups of compared methods. In addition, feature-
based approaches such as QMI and IVC are unfortunately incapable of enhancing the accuracy
of base clustering results. Dataset-specific results are given in Tabs. A to E of Supplementary
(https://drive.google.com/file/d/1162XSLTDQ_u6feFx57tW9oqwDLtfudeH/view?usp=sharing).
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Figure 4: performance of different clustering methods, averaged across five datasets and four
ensemble types. Note that each error bar represents the standard deviation of the corresponding
average

To further evaluate the quality of identified techniques, the number of times (or frequency)
that one method is significantly better and worse (of 95% confidence level) than the others
are assessed across all experimented datasets and ensemble types. Tabs. 2 and 3 present for
each method the frequencies of significant better (B) and significant worse (W) performance,
respectively. According to the frequencies shown in Tab. 2, LCEwct and LCEwTtq perform equally
well on most of the examined datasets. EAC-AL is exceptionally effective on ‘Abalone’ data,
while the three graph-based approaches of CSPA, HGPA and MCLA are of good quality with
‘Heart Disease’ and ‘Horse Colic’. Note that k-means and k-prototypes are the best amongst
basic clustering techniques. It is also interesting to see that the better-performance statistics of
feature-based approaches are usually lower than those of standard clusterings considered here.
These findings can be similarly observed in Tab. 3, which illustrates the frequencies of worse
performance (W). In this specific evaluation context, k-means is notably effective for most datasets
and outperforms many graph-based and pairwise-similarity based cluster ensemble methods.

Besides, the relations between performance of experimented cluster ensemble methods with
respect to different ensemble types are also examined for this experiment: Full-space + Fixed-k,
Full-space + Random-k, Subspace + Fixed-k, and Subspace + Random-k. Specifically, Fig. 5
shows the average NMI measures of different approaches across datasets. According to this
statistical illustration, LCEwct and LCEwtq are more effective than other techniques across
different ensemble types, with their best performance being obtained with ‘Subspace + Fixed-k’.
HBGF and three graph-based approaches (CSPA, HGPA and MCLA) are also more effective on
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Subspace ensemble types, as compared to the Full-space alternatives. While both ‘Fixed-k’ and
‘Random-k’ strategies equally lead to good performance of link-based techniques, feature-based

and pair-wise

similarity based methods perform better using the latter.

Table 2: Number of times that one method performs significantly better than others, summarized
across five datasets and four types of ensemble. The best two per dataset are highlighted in

boldface

Method Abalone Acute inflammations Heart disease Horse colic Mammographic Total
LCEwcT 52 47 58 61 57 275
LCEwtq 45 51 56 53 49 254
HBGF 37 21 49 1 40 148
CSPA 20 17 32 29 28 126
HGPA 10 8 38 41 16 113
MCLA 19 14 29 37 27 126
EAC-SL 12 31 2 4 0 49
EAC-AL 46 28 23 6 32 135
QMI 13 6 17 14 9 59
AGGrF 35 6 2 0 22 65
AGGysF 23 3 9 13 22 70
AGGLsr 1 3 9 15 4 32
IvC 13 13 11 16 12 65
MM 9 4 13 17 4 47
k-prototypes 42 5 24 19 45 135
k-centers 39 9 7 22 21 98
KM 46 7 35 28 35 151
dSqueezer 24 0 35 12 10 81

Table 3: Number of times that one method performs significantly worse than others, summarized
across five datasets and four types of ensemble. The best two per dataset are highlighted in

Method  Abalone Acute inflammations Heart disease Horse colic Mammographic Total

boldface
LCEwcr 1
LCEwrq 4
HBGF 15
CSPA 34
HGPA 50
MCLA 39
EAC-SL 49
EAC-AL 4

0 0 0 0 1

0 0 0 0 4

4 6 54 6 85
4 12 7 18 75
12 6 6 32 106
10 16 5 11 81
2 66 58 66 241
3 22 28 14 71

(Continued)
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Table 3: Continued

2005

Method Abalone Acute inflammations Heart disecase Horse colic Mammographic Total
QMI 41 17 23 12 34 127
AGGrF 13 20 61 60 26 180
AGG1sF 31 21 39 32 21 144
AGG1sr 64 39 45 24 44 216
IvC 41 15 32 15 34 137
MM 55 17 26 11 38 147
k-prototypes 3 24 26 17 6 76
k-centers 3 12 52 11 35 113
KM 3 8 0 4 0 15
dSqueezer 36 65 17 44 48 210
0.5
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Figure 5: Performance of clustering methods, categorized by four ensemble types
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The quality of LCEwct and LCEwtq with respect to the perturbation of DC and M
parameters is also studied for the clustering of mixed-type data. Fig. 6 presents the relation
between different values of DC € {0.1, ..., 0.9} and the quality of data partitions generated by
both LCE methods — the average NMI measure across all ensemble types, where M is fixed to
10 for comparison simplicity. In general, the performance of LCEwct and LCEwtq gradually
improve as the value of DC increases. Another parameter to be assessed is the ensemble size (M).



2006

Fig. 7 shows the association between the performance of various techniques and different values
of M € {10, 20, ..., 100}. Both LCE methods perform consistently better than their baseline
model competitors across different ensemble sizes, where the decay factor (DC) is fixed to 0.9 for

CMC, 2022, vol.70, no.1

simplicity. Their performance levels also incline with the increasing ensemble size.
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Figure 6: Relations between DC € {0.1,0.2,...,0.9} and performance of LCE methods (averages
of NMI over four ensemble types for each dataset). Measure of HBGF is also included for a

comparison
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5 Conclusion

This paper has presented the novel extension of link-based consensus clustering to mixed-type
data analysis. The resulting models have been rigorously evaluated on benchmark datasets, using
several ensemble types. The comparison results against different standard clustering algorithms
and a large set of well-known cluster ensemble methods show that the link-based techniques
usually provide solutions of higher quality than those obtained by competitors. Furthermore,
the investigation of their behavior with respect to the perturbation of algorithmic parameters
also suggests the robust performance. Such a characteristic makes link-based cluster ensembles
highly useful for the exploration and analysis of a new set of mixed-type data, where prior
knowledge is minimal. Because of its scope, there are many possibilities for extending the current
research. Firstly, other link-based similarity measures may be explored. As more information
within a link network is exploited, link-based cluster ensembles are likely to be more accurate
(see the relevant findings in the initial work [30,31], where the use of SimRank and its variants
is examined). However, it is important to note that such modification is more resource intensive
and less accurate in a noisy environment than the present setting. Secondly, performance of link-
based cluster ensembles may be further improved using an adaptive decay factor (DC), which is
determined from the dataset under examination.

The diversity of cluster ensembles has a positive effect on the performance of the link-based
approach. It is interesting to observe the behavior of the proposed models to new ensemble
generation strategies, e.g., the random forest method for clustering [47], which may impose a
higher diversity amongst base clusterings. Another non-trivial topic is related to the determination
of ensemble components’ significance. This discrimination or selection process usually leads to a
better outcome. The coupling of such a mechanism with the link-based cluster ensembles is to
be further studied. Despite its performance, the consensus function of spectral graph partitioning
(SPEC) can be inefficient with a large RA matrix. This can be overcome through the approxima-
tion of eigenvectors required by SPEC. As a result, the time complexity becomes linear to the
matrix size, but with possible information loss. A better alternative has been introduced by [48]
via the notion of Power Iteration Clustering (PIC). It does not actually find eigenvectors but
discovers interesting instances of their combinations. As a result, it is very fast and has proven
more effective than the conventional SPEC. The application of PIC as a consensus function of
link-based cluster ensembles is a crucial step towards making the proposed approach truly effective
in terms of run-time and quality. Other possible future works include the use of proposed method
to support accurate clusterings for fuzzy reasoning [49], handling of data with missing values [50]
and data discretization [51].
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