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Abstract: One of the most rapidly growing areas in the last few years is the
Internet of Things (IoT), which has been used in widespread fields such as
healthcare, smart homes, and industries. Android is one of the most popular
operating systems (OS) used by IoT devices for communication and data
exchange. Android OS captured more than 70 percent of the market share
in 2021. Because of the popularity of the Android OS, it has been targeted
by cybercriminals who have introduced a number of issues, such as stealing
private information. As reported by one of the recent studies Android malware
are developed almost every 10 s. Therefore, due to this huge exploitation an
accurate and secure detection system is needed to secure the communication
and data exchange in Android IoT devices. This paper introduces Droid-1oT,
a collaborative framework to detect Android IoT malicious applications by
using the blockchain technology. Droid-IoT consists of four main engines: (i)
collaborative reporting engine, (ii) static analysis engine, (ii1) detection engine,
and (iv) blockchain engine. Each engine contributes to the detection and
minimization of the risk of malicious applications and the reporting of any
malicious activities. All features are extracted automatically from the inspected
applications to be classified by the machine learning model and store the
results into the blockchain. The performance of Droid-IoT was evaluated by
analyzing more than 6000 Android applications and comparing the detection
rate of Droid-IoT with the state-of-the-art tools. Droid-IoT achieved a detec-
tion rate of 97.74% with a low false positive rate by using an extreme gradient
boosting (XGBoost) classifier.
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1 Introduction

The Internet of Things (IoT) has been used in a variety of applications, such as smart
vehicles, smart homes, healthcare, smart shopping, and smart agriculture. This technology helps
these applications to be on a connected network and digitizes them. Fig. 1 shows various Android
IoT applications based on Android OS. These applications are used to collect data from different
sensors in order to provide an intelligent solution for different tasks. All the collected data can be
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exchanged between a device and a device, a human and a device, and a device and other realistic
environments [1].
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Figure 1: Different Android IoT applications
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Android is the most popular platform for IoT devices, which has led to an increase in the
number of applications available in the market, particularly Android applications. The number
of mobile applications in the Apple App store as of the first quarter of 2020 was 1.96 million
applications with an average of 9.000 applications submitted each month [2], while Google Play
has more than 2.50 million applications available for Android users [2]. Concomitant with these
statistics, the amount of malware targeting smart devices has increased dramatically because of
the valuable information on these devices. As reported by the Secure-D platform [3], the number
of malware applications discovered in the first quarter of 2020 on the Google Play store was
29,000 applications. Therefore, the popularity of the Android OS has made it an attractive target
for cybercriminals to penetrate the variety of Android application marketplaces with malware
applications.

Adversaries construct different types of malicious applications. For example, exploiting open
ports where the attacker controls the user’s device by opening one of the ports on the device. This
technique allows the attacker to remotely access all of the device’s resources without requesting
permission from the owner [4]. Therefore, adversaries use android applications as a way to break
the security mechanism of the device, which allows them to access sensitive information such as
the device’s location, contact information, and photos.

Blockchain was introduced for the first time by Satoshi Nakamoto in 2008 [5], and according
to the Top 10 Strategic Technology Trends for 2019 by Gartner [6], blockchain is ranked among
the top ten strategic technologies. It has been used in many cybersecurity services, such as authen-
tication, confidentiality, access control list, data sharing, and malware detection to elevate the
existing solutions and to prevent malicious actors. Blockchain can be divided into three different
types as follows: public blockchain, consortium blockchain, and private blockchain. The first type
allows all the nodes to check and verify transactions. The second type restricts the participation
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of the nodes in the consensus to a group of nodes. The third type does not allow all of the nodes
to participate in the consensus and validation process, but it does allow a pre-defined node in
these processes.

Various researchers have proposed different techniques to detect malicious applications in the
Android OS by using collaborative approaches and blockchain technology. These techniques range
from tools running on Android devices to web services that allow users to submit any application
for analysis. Some examples include [7-10]. These tools extract one or more features such as
permissions, APIs, system events, and permission rates from an inspected application. Then, they
apply machine learning techniques to classify the inspected application as malware or benign.
However, most of the existing tools depend on a few sets of features that do not represent the
behavior of the inspected applications. The others only consider a few samples to evaluate their
proposed systems.

This paper presents Droid-IoT, a detection framework for Android IoT devices. This frame-
work is based on the blockchain technology, which is a well-known technology in terms of
security, reliability, and transparency. The proposed framework allows users to verify any new
Android application installed on their devices on the basis of an analysis that is requested by
other users. Therefore, the analysis of a new application is achieved by utilizing a machine learning
algorithm that classifies the inspected application as either a benign or a malicious application.
The proposed system consists of four main engines: (i) the collaborative reporting engine that
searches for the generated hash of the newly installed application on all the participating devices
that have Droid-IoT installed; (ii) the static analysis engine, which is responsible for disassembling
the inspected application to the source code to extract all of the required features, such as the
utilized APIs and the application’s meta-data, permissions, activities, services, and receivers; (iii)
the detection engine, which contains the intelligent model that applies the extracted features to the
machine learning model in order to classify the inspected application as either benign or malicious;
and (iv) the blockchain engine that is responsible for timestamping and adding each new analyzed
application to the blockchain of Droid-IoT. Therefore, the signatures of the analyzed applications
will be stored securely in a private blockchain architecture to provide secure storage for all the
analysis results. Moreover, each engine contributes to the detection and minimization of the
risk of malicious applications and the reporting of any malicious activities to the user. The
proposed system was tested and evaluated on more than 6000 recent Android applications that
were developed between 2018 and 2020.

In summary, the main contributions of this research are as follows:

e Present Droid-IoT, a collaborative system that detects Android IoT malicious applications
by using machine learning and the blockchain technology.

e Evaluate the proposed system on a dataset that contains more than 6000 real Android
applications obtained from the AndroZoo dataset [11].

e Deploy and execute Droid-IoT and effectively detect most of the malicious applications
with low type II error rate.

e Achieve a better detection rate than the existing tools by using the same benchmark dataset.

The remainder of this paper is organized as follows. Section 2 discusses the background of the
Android OS, including the application structure and the Android malware. This section also gives
an overview of the Android detection techniques. Section 3 discusses the related work. Section 4
presents Droid-IoT’s methodology and approach. Section 5 presents a discussion of the proposed
framework’s analysis results. Finally, Section 6 presents the conclusion of this paper.



742 CMC, 2022, vol.70, no.1

2 Background

This section presents an overview of the Android OS and its application structure, followed
by the different types of Android malware.

2.1 Android

Android is a platform created by Google and the Open Handset Alliance (OHA), which is
an association of different mobile technology companies. The official marketplace from which
to download Android applications is the Google Play store, which has different categories such
as books, games, and movies. Besides the official market, Android allows its users to download
applications from third-party stores without any restrictions.

The architecture of Android consists of four main layers. The base of these layers is the
Linux kernel, which is one of the most well-known operating systems. It has many features such
as portability, security, and open source. The Native libraries and Android runtime are above
the Linux kernel. On top of this is the application framework (Java API framework). All the
applications installed by the users or pre-installed on the device run on the applications layer,
which is located on top of all of the previous layers. The Linux kernel provides Android with
several security features such as permissions and process isolation. This isolates the users’ resources
from each other. There are two main security features in Android. (1) Application Sandboxing.
This feature isolates the system resources from the applications and the applications from each
other by taking advantage of the Linux kernel. Each application on Android is assigned a User
ID (UID), sometimes called app ID, which runs the application as an isolated process.

Furthermore, each application is given a specific data directory, which is the only directory
that the application has permission to read from and write data to unless there is another app
configured to have the same UID. (2) Android permission model. This model is introduced to
control the use of the services that are provided for use by the installed applications. This model
controls the use of the services that might have sensitive information about the user.

For example, the developers might use the TelephonyManager API, which will provide them
with sensitive information such as the user’s phone number. Android uses this model to request
permissions from the user at the time of installation to allow an application to use one of the
sensitive APIs or resources. These permissions are grouped into four main categories:

e Normal permissions: This type of permission is granted by the system automatically with-
out asking for the user’s approval. Usually, these permissions are of low risk to other
applications, systems, and the user. An example of such a permission is changing the
device’s background wallpaper.

e Dangerous permissions: This is a high-risk type of permission that shows that the request-
ing application will have access to sensitive information. This type of permission is not
granted automatically by the system. However, the user is asked to approve this type of
permission at the time of installation before proceeding.

e Signature permissions: This type of permission is granted by the system automatically
only if the requesting application is signed with the same certificate as the application
that created the permission. Otherwise, the user has to grant the requesting permission.
Commonly, this category is used to share data between applications created by the same
developer.

e Signature or System permissions: This type of permission is granted only to system
applications, referring to applications in the Android system image.



CMC, 2022, vol.70, no.1 743

2.2 Android Application Structure

As shown in Fig. 2, Android applications are zipped into a package called Android Package
Kit (APK). The package kit is a zip file, but it is in a different format and has a different file
extension. The APK file contains several files and folders, described as follows:

e Assets: This is an optional directory that has all the assets of the application.

e lib: Another optional directory that has all the compiled native libraries such as sheared
object libraries.

e META-INF: This directory contains all the files related to the security information and cer-
tificates of the application. Listed below are the most significant files in this directory:

o Manifest. MF: It contains the digest SHA-1 of all the resources used by the application.

o CERT.RSA: It contains the public key cryptography standards (PKCS), the names of
different cryptographical algorithms, and the cryptographic message syntax.

o CERT.SF: The digest file in the form of SHA1 for Manifest. MF is saved in this file. The
name of the file can be changed depending on the signer of the signature. However, the
file should be named as (signer_name) SF.

e AndroidManifest.xml: This file contains important information about the application such
as the package name, the permissions needed, and all the components defined in the
application.

e Classes.dex: This is an executable file that has the Dalvik bytecode, converted from the Java
source code.

e Res: This directory has all of the resources used by the application (e.g., images, icons,
and strings) that are not compiled into resources.arse, which has all of the precompiled
resources.

To examine an APK file, it must be unpacked to a readable format. There are many tools that can
do this, such as [12] and [13]. APKtool [13], is the most popular tool used by many researchers.
This tool is an open-source tool designed to reverse-engineer Android applications by decoding
the APK file. It takes a few minutes to decode an APK file. The APK file is converted into a
directory containing the above file structure, which can be examined by a developer or automated

= B
NN

Drawable Layout XML CERTRSA CERTSF

Manifest MF

Classes.dex Resources AndroidManifestxml

Figure 2: Android application structure
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2.3 Blockchain Technology

Blockchain is a distributed system that allows for the storing, exchanging, and verifying of
transactions among untrusted parties in the network without relying on a centralized control unit.
The communication is between all the parties in the form of a peer-to-peer network, but the deci-
sion is made by the majority instead of a single node. This encourages cybersecurity researchers
to use this powerful and sustainable technology in their solutions. According to Paul et al. [14],
blockchain has been used in many cybersecurity services such as authentication, confidentiality,
access control list, data sharing, and malware detection to elevate the existing solutions and to
prevent malicious actors. Blockchain was introduced for the first time by Satoshi Nakamoto in
2008 [5], and in the Top 10 Strategic Technology Trends for 2019 by Gartner [6], blockchain
is ranked among the top ten strategic technologies. The first application based on blockchain
technology was Bitcoin. This is a cryptocurrency that allows users to trade things on the Internet
as in the real world. As of January 2021, the Bitcoin market capitalization reached 600 billion
U.S. dollars [15].

As shown in Fig. 3, blockchain consists of two main components, namely a blockchain
database and blockchain nodes [16]. The database in the blockchain technology is shared and
distributed among all of the nodes to append new records without the ability to alter or delete
records. This allows the users to record data in a distributed form and store them as blocks. This
makes the data available to all the users of the blockchain. The entire blockchain consists of
many blocks that are continuously added to the chain of all the valid transactions. Therefore, all
the blocks are connected to form a chain where each block has two components block header
and transaction list that have already been verified by the nodes in the blockchain. As shown in
Fig. 4, Block Header has the block’s metadata, including the following [17]:
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Figure 3: Blockchain architecture
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Nonce: This is the value obtained by solving a mathematical challenge by the miners.

Timestamps: The current timestamp of the system.

e Merkle root tree: This is the transaction verification that contains the hash value calculated
for all the transactions.

e Previous block: It contains the hash value of the previous block.

The second component in any blockchain technology is the blockchain nodes. These multiple
nodes are connected in a peer-to-peer form.

The blockchain works as follows: First, as shown in Fig. 3, the sending node broadcasts
the new records (message) to all of the other nodes in the network to check and verify the
information. Second, if the record is successfully checked and verified, then the record will be
added to a block. Otherwise, the record will be rejected. Third, all the nodes execute one of the
consensus protocols to the new block. Fourth, the new block will be appended to the network
if all of the participating nodes in the network admit the block. Each block consists of the
following: records, the hash value of the previous block, the hash value of the current block, the
timestamp of the generated block, the signature of the block, the nonce value, and additional
information that can be defined by the user.

2.4 Types of Blockchain

A blockchain can be divided into three different types as follows: public blockchain, consor-
tium blockchain, and private blockchain. These types are discussed in this subsection.

2.4.1 Public Blockchain

This is the first type of blockchain that allows all the nodes to check and verify transactions.
Moreover, the public blockchain is called the permission-less blockchain because it allows all
the nodes to join the blockchain and conduct mining. All the nodes in this type of blockchain
can conduct tasks such as writing to the blockchain and reading or reviewing the blockchain
contents. A public blockchain can be targeted by a sybil attack, where the attacker makes the
consensus impossible by creating fake nodes. This is because all the nodes are not unknown to
each other before the mining is completed [17]. Some examples of this type of blockchain are
Bitcoin, Ethereum, and Blockstream.
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2.4.2 Private Blockchain

This is the second type of blockchain, which restricts the participation of the nodes in the
consensus. It is called a permissioned blockchain. It only allows authorized nodes to share private
data. The mining process is controlled by an authorized group; hence, new or unknown users
cannot participate in the mining unless they are invited by the control authority [17]. According
to Vincent [18], a private blockchain is vulnerable against 51% of the attacks, where most of the
hash rate is controlled by a group of miners. Some examples of the private blockchain are Ripple
and Hyperledger.

2.4.3 Consortium Blockchain

The third type of blockchain is consortium blockchain, which does not allow all of the nodes
to participate in the consensus and validation process, but it does allow a few nodes to participate
in these processes. The multi-signature method is considered for mining a block in this type of
blockchain, and it will not be considered a valid block before it is approved by the controlling
node [17]. This type is vulnerable to a tamper attack, which can be achieved by the malicious
collaboration of the controlling nodes [17]. Multichain and Blockstack are some examples of this

type.
Tab. 1 presents a comparison of the blockchain types, as discussed in [17] and [19], in terms

of their determination of consensus, permissions, efficiency, network centralization, scalability, and
vulnerability.

Table 1: Comparison of different blockchain types

Property Public blockchain  Private blockchain Consortium blockchain
Determination of consensus By all miners Selected group Selected group
Permissions Permission-less Permissioned Permissioned
Efficiency Low High High

Centralization No Partially centralized Yes

Scalability High High Low

Vulnerability Sybil attack 51% attack Tamper attack

2.5 Consensus Protocols

The consensus protocols in the blockchain are the protocols that assist different nodes in a
distributed network to reach an agreement whenever needed [20]. There are different consensus
protocols in a blockchain, as discussed in the following subsections.

2.5.1 Proof of Work (PoW)

A participant in the network needs to solve a puzzle to get a chance of receiving the
mining reward. This protocol has high resource and power consumption. Moreover, it has a low
processing speed with low energy efficiency [17]. One of its limitations is that it is less secure than
the other consensus protocols.
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2.5.2 Proof of Stake (PoS)

This consensus is similar to the PoW but with a critical difference. The opportunity of
receiving block validation in the network depends on its wealth in the system [21]. This protocol
utilizes low resources with fast processing speed. Some of its limitations are that it requires high
energy efficiency and that the node with the highest wealth in the system has the consensus
control [17].

2.5.3 Delegated Proof of Stake (DPoS)

This protocol is based on the PoS protocol. However, it depends on the voting mechanism to
choose a delegated node to create and validate blocks [21]. This mechanism makes the processing
faster with low resource consumption. However, it has high energy efficiency and makes the
blockchain more centralized [17].

2.5.4 Proof of Burn (PoB)

In this protocol, the miners will get the chance to validate new blocks on the basis of the
number of coins they send to an irreversible address [21]. This protocol has higher resource
consumption than DPoS with less processing speed. The energy efficiency of this protocol is low,
but some of the resources are wasted [17].

2.5.5 Proof of Elapsed Time (PoET)

To overcome some of the PoW drawbacks, which is high energy consumption, Intel proposed
a new protocol to select the miner. This protocol is based on a random number selected by the
miner and considers the miner whose timer finishes first the winner. The calculation of the time
is completed by a trusted party such as Software Guard Extension (SGE) by Intel [21]. Moreover,
this protocol utilizes lower power consumption than PoW, but it consumes high resources with a
relatively slow speeding process [17]. One limitation of this protocol is that it depends on third-
party software, such as Intel’s, which prevents it from being completely decentralized.

2.5.6 Proof of Capacity (PoC)

This protocol depends on the space availability on the miners’ hard drive. Therefore, miners
have to be able to store large amounts of data in order to get the opportunity to mine a new
block [21]. This protocol is known for its high resource utilization and energy efficiency with slow
processing speed. One of its limitations is the selection of the next mining node, which depends
on the disk space.

2.5.7 Practical Byzantine Fault Tolerance (PBFT)

The consensus of this protocol relies on the voting process to make the decision. Therefore,
this consensus method requires two-thirds of the participating nodes to approve the block in order
for it to be added [21]. This method consumes considerable resources and requires high processing
speed. The energy efficiency of this consensus method is high, and the communication overhead
is in turn high [17].

2.5.8 Proof of Authority (PoA)

This consensus protocol is one of the protocols designed for the permissioned blockchain. It
was introduced to solve some limitations of the PoW consensus method, such as the consumption
of high energy [17]. In this consensus method, the creation of a new block and agreement is
achieved by majority votes. This consensus protocol requires high consumption with low energy
efficiency. Scalability is one of its limitations.
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2.5.9 Raft

The Raft consensus protocol is based on the voting scheme. It has two main operations as fol-
lows: leader selection and log replication. The leader is selected by using randomized timeout [17].
The second operation, log replication, is responsible for accepting logs from clients and generating
its own transaction. This method has high energy efficiency with less resource consumption than
PoW. The processing speed is fast, but the method has limited throughput with low security [17].

2.6 Android Malware

Malware is malicious software designed to engage in and execute harmful activities such as
disabling the affected devices and stealing sensitive information. There are two ways for mal-
ware to be distributed. The first option is that the attacker creates an app that has malicious
activity programmed into it before its market release. The second option is that the attacker
inserts malicious code into a legitimate application and then re-introduces the application into the
market. As reported by GData CyberDefence [22], the number of Android malware applications
discovered in 2019 was more than 11,000. The same report showed that more than four million
malicious applications were found in 2019. One example of recent malware is EventBot. This
targets financial applications to access the users’ sensitive information [23]. Once the malware is
installed on a user’s device, it requests dangerous permissions such as reading and writing to the
external storage and sending and receiving SMS messages. The EventBot malware has targeted
more than 150 different financial Android applications, such as mobile banking, crypto-currency,
and money transfer [24]. Different malware types have been reported by the Android antivirus
software, such as spyware, trojans, adware, and ransomware.

2.7 Detection Techniques

Several Android analysis and detection techniques have been developed to protect the Android
OS and its users against malicious applications. The detection technique may or may not be
running on the same device as the one it is trying to protect. If it is running on the same
device, it monitors all the installed applications and performs a pre-configured detection technique.
However, if it is not running on the same device, it monitors the system through an agent
application installed on the device and sends all the activities and logs to a server. This will
perform the detection technique and send the results back to the agent application.

A detection technique may apply one of the following analysis approaches:

e Static: This approach examines the inspected application’s syntax and structural properties
without running the actual code. A static analysis can be performed using one of the
three following techniques: 1) data-flow analysis, 2) symbolic execution, and 3) dependence
analysis.

e Dynamic: This approach collects information about an application’s execution during its
actual runtime. The inspected application will execute in a complete Android environment,
which will allow the detection technique to monitor its actions and activities at runtime.

e Hybrid: For a comprehensive analysis and to increase the strength of the assessment tools,
dynamic and static analyses are combined in this approach. For example, the detection tool
can analyze the inspected application statically, and then, it can run the same application
on an Android device or emulator to extract the required dynamic features. Hybrid analyses
have been applied by many of the existing tools to detect malicious applications. One
of the tools used to conduct a hybrid analysis for an Android application is Android
Application Sandbox (AASandbox) [25]. This tool allows the analysts to perform both a
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static analysis and a dynamic analysis of the inspected application. First, it analyzes the
inspected application statically to find any suspicious code. Then, it runs the inspected
application in an Android emulator to log all the system calls requested by the analyzed
application.

3 Related Work

A variety of tools have been proposed to detect Android malicious applications by using
different analysis techniques. For example, Zhu et al. [26] introduced a new detection technique
called DroidDet. This approach can detect malicious applications by extracting some of the
features statically from the inspected application. These features are as follows: permissions, APlIs,
system events, and permission rate. It then takes these features as the input for an ensemble
algorithm. The proposed system achieves an accuracy of 88.26%.

Another approach was proposed by Wang et al. [27]; it extracts all the permissions from the
inspected application and then constructs the permission patterns to classify malicious applications
from benign applications. All the permissions are extracted using the static analysis technique to
extract only the permissions that a requested application uses during the runtime. An analysis of
1227 benign applications and 1227 malicious applications revealed that 33 unique permissions were
requested only by benign applications, whereas 20 unique permissions were requested by malicious
applications. As a result, by using a permission pattern to detect malicious applications, this tool
achieved an accuracy rate of 94%. However, when the J48 classification algorithm was used,
the detection rate accuracy dropped to 85%. As a limitation of this work, the researchers only
considered permissions to classify malicious applications, which could increase the false-positive
rate.

Moreover, Jiang et al. [28] proposed another approach to defend against Android malware
by introducing a detection tool called fine-grained dangerous permission (FDP). This tool uses
the static analysis technique to extract the fine-grained features of dangerous permissions from
the inspected application. It has been evaluated on a dataset of 1700 benign applications and
1600 malicious applications. FDP applies different machine learning algorithms such as J48, KNN,
SVM, and NB to detect malicious applications. It achieved an accuracy of 93.7% when the KNN
algorithm was applied. This approach focuses only on one type of permissions, which is dangerous
permission that can be evaded easily by malicious applications.

Arora et al. [29] proposed another technique to detect malicious applications in the Android
OS on the basis of the permissions stated in the manifest file. The proposed system builds a graph
of all the permission pairs extracted from both malicious and benign applications. All of the
extracted permissions are extracted from the manifest file of the inspected application and then
processed in three different phases as follows: i) graph construction phase, ii) graph merge phase,
and iii) detection phase. The system was evaluated using 7533 sample applications: 2944 were used
during the training phase, while 3264 sample applications were used during the testing phase. The
proposed method achieved an accuracy of 95.44%. Moreover, this proposed technique considered
only one type of feature to detect malicious applications. If the inspected application is updated
by the developer, the proposed system cannot detect whether there is a malicious activity involved
in the updated version or not.

Furthermore, a deep learning algorithm has been used by many researchers to detect mali-
cious Android applications. For example, Li et al. [30] proposed a fine grained system to detect
malicious applications in Android OS. The proposed system extracts features from the inspected
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application by using a static analysis from classes.dex and the AndroidManifest file. The extracted
features are as follows: permissions, APIs, and metadata information. The proposed system was
evaluated on 123,453 benign applications and 5560 malicious applications. The detection rate of
the proposed system was 97%. The huge difference in the dataset utilized in the proposed system
was one of the major limitations.

Another tool was proposed by Booz et al. [31]; it utilizes deep learning to detect malicious
Android applications. The proposed system extracts features by using a static analysis from the
manifest file of the inspected applications. The proposed method was evaluated on a dataset of
48,643 Android applications and achieved an accuracy of 95%.

Furthermore, Naway et al. [32] proposed another tool that utilizes a deep neural network
to detect malicious Android applications. The proposed system extracts the following features
from the inspected applications: APIs, permissions, intents, certificates, and extensions of the
executable file in the inspected application. The proposed tool achieved an accuracy of 95.31%
when evaluated on 600 benign applications and 600 malicious applications. As a limitation of this
tool, the researchers only considered a few samples to evaluate the proposed system.

Limitations of Existing Works: As Android IoT malicious applications are becoming a severe
problem for Android users, a comprehensive solution is needed to protect both user’s data and
the resources of user’s devices. Unfortunately, the existing solutions suffer from many limitations.
For example, the proposed tool by Zhu et al. [26] was evaluated on a few samples: 600 benign
applications and 600 malicious applications. The algorithm used for training and detecting mali-
cious applications was also computation intensive. Moreover, other works such as Wang et al. [27],
Jiang et al. [28], and Arora et al. [29] only considered one type of features to detect malicious
applications, which can be evaded easily by malicious applications.

Therefore, Droid-IoT overcomes the limitations of the existing tools by introducing a new
technique to detect Android IoT malicious applications by analyzing the following features: per-
missions, APIs, services, receivers, activities, and meta info. Furthermore, it applies several machine
learning algorithms to achieve the best results in terms of time and space complexities and then
uses a private blockchain to store the signatures of the analyzed applications.

Tab. 2 presents a comparison of the existing works in terms of their determination of analysis,
extracted features, number of applications used, and accuracy of the detection system.

Table 2: Comparison of existing works

Tool Analysis  Features Dataset Accuracy (%)
Benign  Malicious

DroidDet [26] Static Permissions, system events, 600 600 88.26
APIs and permission rate

Wang et al. [27]  Static Permissions 1227 1227 94

FDP [28] Static Dangerous permissions 1700 1600 93.7

Arora et al. [29]  Static Permissions - - 95.44

Li et al. [30] Static Permissions, APIs, and 123,453 5560 97
meta-data information.

Booz et al. [31] Static Permissions - - 95

Naway et al. [32] Static API, permissions, intents, 600 600 95.31

certificates, and extensions
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Figure 5: Droid-IoT workflow

4 Methodology

The goal of this research was to design and implement a collaborative system, called Droid-
IoT, that detects malicious Android IoT applications. As shown in Fig. 5, the analysis starts once
a new application is installed or an installed application is updated. Droid-IoT consists of two
sides: (1) user side, which is an Android application running on the user’s device that monitors
whether a new application is installed or an installed application is updated, and (2) server side,
which is the back-end server that processes all the requests received by the user side. Therefore,
once a new application is installed or updated, Droid-IoT works as follows: (1) Each inspected
application will be analyzed by Droid-IoT to extract the metadata of the inspected application.
This includes the application name, package 1D, the version of the application, all the requested
permissions and components, developer ID, and the app store that was used to download the
inspected application. (2) All the extracted information will be hashed to be searched on all
the participating devices that have Droid-IoT installed. (3) If the hash is found on one of the
participating devices, the hash will be verified by Droid-IoT’s blockchain. (4) If the hash cannot
be found on one of the devices, then the inspected application will be sent to the server side
for a complete analysis. (5) On the server side, the inspected application will be disassembled
into the source code by utilizing the apktool [13]. (6) In this step, Droid-IoT extracts all of
the required features including APIs, application’s metadata, permissions, activities, services, and
receivers. (7) The extracted features will be used to apply the machine learning model to classify
the inspected application as either benign or malware. (8) Once the inspected application is
analyzed and classified by the machine learning model, the results and the hash values of the
extracted features will be timestamped and added to the blockchain of Droid-lIoT. Therefore, if a
request to analyze an application is received by the Droid-IoT node in the future, then the results
of the corresponding application will be retrieved from the blockchain provided the extracted
features’ hash values match. Otherwise, the application will be analyzed and classified as a new
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application. The proposed tool will prevent also attacks that target the database storage that is
used in traditional solutions. As shown in Fig. 6, the attackers target the database storage of all
the analysis results in order to modify the signatures and redistribute attacks that were detected
before. Therefore, the proposed method will prevent the attackers from manipulating the signatures
in the cloud storage. Algorithm 1 shows the detection procedures for the Droid-IoT system.

/ —— _____x\\

. verify signature by
Detect new attack Create signature o
Proposed security mechanism

Distrubute signature
between nodes
o

- -

Figure 6: Secure the analyzed results

Algorithm 1: Droid-IoT Detection Procedures
Input EF: Features from the APK file (Permissions, APIs, Services, Receivers, Activities, Meta
info)
Output Result: 0-Normal App; 1-Malicious App
1: D = LoadMLModel()

2: for EachlnsttaledApplication do
3: Check AppInBlock Chain,
4: if NotExist then
S D.predict( EF)
6: if Result = 0 then
7: installApp,
8: else
9: BlockApp;
10: AddAppToTheBlockchain,
11: else
12: ReturnResult;

4.1 Data Preprocessing

Data normalization was implemented as the first step of the preprocessing stage. As shown
in Eq. (1), all the data were normalized to be in the same scale [33]. Here, Xyorm denotes the
normalization results, X is the value of the selected feature before the normalization, and Xpax
and X,in represent the largest and the smallest values in the corresponding column, respectively.

X — Xmin

X = 1
nomm Xmax - Xmin ( )
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4.2 Feature Selection

Applying one of the feature selection algorithms in the preprocessing stage is an essential step
in data modeling. The goals of applying the feature selection technique are to find the best set
of features to classify benign applications from malicious applications and to eliminate features
that provide little or no predictive information. The F-test feature selection algorithm is utilized
by Droid-IoT to reduce the number of extracted features. It is one of the filter methods that
compute the score of each feature by considering the relationship between the feature and the
target variable [34]. The F-test is a statistical test used to compare between the models and to
check whether there are any important differences. The score for each feature Xi is calculated
using Eq. (2) [35].

[it — mil

2 2
%ii 4 %2
ny ny

where ;1 and wp refer to the mean of the i-th feature for class C;, where j is equal to 1 or 2,
which donates the class index; n; and ny refer to the sizes of the group for the first class and
second class samples, respectively. Moreover, o;; and o refer to the standard deviation of the
i-th feature for class C;. The top 50 selected features after the application of the F-test feature
selection are shown in Fig. 7. Not only F-test feature selection is considered, but the chi-square
algorithm is also utilized to find the best set of features. The latter calculates the independence
between the label and each feature, as shown in Eq. (3).

1(X;) = 2)

. N x (4D — CB)?
)= O < (B1D) <A+ B) x (C1 D) N

where N represents the number of samples, A represents the number of times t and ¢ co-occur,
B represents the number of times t occurs without ¢,C represents the number of times ¢ occurs
without t, and D represents the number of times neither t nor ¢ occurs.
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5 Evaluation and Results

This section introduces the experimental setup of the Droid-IoT machine learning model,
which includes the training and testing datasets and all the evaluation metrics. This section also
shows a comparison of all the analyzed features.

5.1 Experimental Setup

Droid-IoT analyzed more than 6000 Android applications. These applications were obtained
from the AndroZoo [11] dataset. The ground-truths of these applications are as follows: 3100
benign applications and 3100 malicious applications. The malicious applications analyzed by
Droid-IoT were selected on the basis of the discovery date. Therefore, in this study, only the
malicious applications discovered between 2018 and 2020 were considered. Moreover, Droid-IoT
extracted different sets of features from each application by using static analysis, which mean
inspect application’s syntax and structural properties without running the actual code. Therefore,
Droid-IoT extracted the following features:

e Application Permissions: These include all of the permissions requested by the inspected
application. All the permissions are extracted from the manifest file of the analyzed
application.

e Application Programming Interfaces (APIs): APIs are programs that have already been
coded to be used by the developers to allow them to add certain functionalities into
their applications. All the extracted APIs are documented and explained on the Android
developer website [36].

e Application’s Receivers: These receivers use the Publish/Subscribe approach, where the
application will be triggered when the subscribed event is activated [37]. For example, the
developer can define a broadcast receiver to show a text message on the running applica-
tion’s screen when a new text message is received. It can be used within the same application
or in a different application on the device without using any visual representation.

e Application’s Intent: This intent involves the messages that are sent between the applications
to perform or run an operation by another application, even if the requested application
does not have the capability to perform the intended request. Intent comes in one of two
types: explicit and implicit [37]. In an explicit intent, the developer specifies which compo-
nent receives the intent. This type only works with components in the same application.
In contrast, the implicit intent specifies the type of component required and lets the user
decide on how to proceed. For example, if a user has two Internet browsers installed on
the device and there is an intent that wants to open a link, it gives the user the ability to
choose from these two browsers.

5.2 Evaluation Metrics
To evaluate the performance of the detection model, the following metrics were considered:

e Accuracy: Ratio of the total number of applications that are correctly classified to the total

number of applications. Accuracy is calculated using Eq. (4):
TP+ TN
Accuracy = + “4)
TP+TN+FP+FN

where TP stands for true positive. This means that the model correctly classifies the mali-
cious samples as malicious. TN refers to true negative, which means that the model correctly
classifies benign samples as benign. FP refers to false positive, which means that the model
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could not classify the benign samples as benign. FN refers to a false negative, which means
that the model could not classify the malicious samples as malicious.

e Type I Error or FP Rate: Ratio of the total number of benign applications that are not
classified correctly to the total number of benign applications. This can be calculated using
Eq. (5):

FP
Type 1 E = 5
ype rror TN TP (%)

e Type II Error or FN Rate: Ratio of the total number of malicious applications that are
not classified correctly to the total number of malicious applications. This can be calculated
using Eq. (6):

FN
Type 11 E = 6
ype rror N+ TP (6)
e FI1-Score: This refers to how discriminative the model is, which is calculated by using
Eq. (7):
Fl-Score — 2 s precision * recall 7

precision + recall

where precision represents the ratio of the malicious samples that are classified correctly to
the total number of all samples that are classified as malicious; and, recall represents the
ratio of the malicious samples that are correctly classified to the total number of malicious
samples. Additionally, sensitivity and specificity metrics were considered to evaluate the
performance of the detection model. Therefore, sensitivity represents the percentage of
malicious samples that were correctly classified as malicious; and specificity represents the
percentage of benign samples that were classified correctly as benign.

5.3 Results and Discussion

5.3.1 Features Analysis

Different types of features were analyzed using Droid-IoT to distinguish between benign
applications and malicious applications accurately. Fig. 8§ shows the top 50 features requested by
both benign and malicious applications.

Moreover, one of the feature sets analyzed by Droid-IoT was the requested permissions.
As shown in Fig. 9a, benign and malicious applications requested different types of permis-
sions. Some of the requested permissions were normal permissions, which would be granted
to the requested applications automatically by the system because they would not expose any
sensitive information. For example, the INTERNET is the most normal permission requested
by both benign and malicious applications. This permission is requested by an application to
allow the requested application to have an internet connection. Malicious applications requested
the INTERNET permission more than benign applications did, as shown in 9(a). Nevertheless,
the ACCESS_WIFI_STATE permission can be used to list all of the WiFi networks that the
device has used in the past. From this information, an attacker can discover all of the target’s
visited places [38]. Moreover, the RECEIVE_BOOT_COMPLETED permission was requested
1730 times by malicious applications, while it was requested only 180 times by the benign applica-
tions. Applications that granted this permission were permitted to receive a notification once the
device finished booting, which allowed them to run without the user’s knowledge. Furthermore,
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dangerous permissions were requested more by the malicious applications than by the benign
applications, as shown in Fig. 9a. This was because this type of permission provides more sensitive
information. For instance, the READ_PHONE_STATE permission is requested when the develop-
ers use the TelephonyManager API. This API provides the requested application with several items
of sensitive information, such as the user’s phone number, the International Mobile Equipment
Identity (IMEI), and the International Mobile Subscriber Identity (IMSI) in order to track its
users. This permission was requested 2835 times by the malicious applications as compared to
915 times by the benign applications. The SEND_SMS and RECEIVE_SMS permissions were
requested by 52% and 45% of the malicious applications, respectively, which can be used to benefit
financially through premium SMS messages [39]. The same permissions were only requested by
2.9% and 2.2% of the benign applications respectively.
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Figure 8: Top 50 requested features by benign and malicious applications

In addition, the malicious applications requested more system permissions than the benign
applications did. This type of permission should be granted only to system applications (appli-
cations in the Android system image) because it could leak users’ sensitive information. For
example, as shown in Fig. 9a, the most requested system permission is WRITE_SETTINGS. This
allows an application to edit the settings or to read sensitive information such as usernames and
passwords [36]. Moreover, one of the most system permissions used by malicious applications
is MOUNT_UNMOUNT_FILESYSTEMS. This allows the requested application to mount and
unmount file systems for removable storage. As documented in the official Android website, this
permission should not be used by third-party applications [36]. Nevertheless, the SYSTEM_-
ALERT_WINDOW permission is used by more than 1300 malicious applications, while it is used
by only 4 benign applications. This permission can be used to deceive users and steal their private
information, while the application is displaying a new window.
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Figure 9: (a) Top requested permissions, (b) Top requested APIs, and (c) Top requested intents
and receivers

As discussed in Section 5.1, all the APIs of both benign and malicious applications were
analyzed. These APIs were programs that were already coded for specific functionality. As
shown in Fig. 9b, the most commonly used APIs by the benign and the malicious applica-
tions were as follows: os. Bundle Activity, content.Context, and content.Intent. However, tele-
phony.TelephonyManager was called by approximately 91% of the malicious applications, while
it was called by 30% of the benign applications. This API provides a considerable amount of
sensitive information, such as subscriber ID, notifications when the telephony state changes and
changes to the voicemail sitting. Moreover, 61% of the malicious applications that called the
android.app.Service API, which allows the requesting application to perform a very long operation
in the background without the user’s knowledge. ConnectivityManager is one of the APIs that can
leak the users’ sensitive information; it was used by 61% of the malicious applications and 46% of
the benign applications. This API is used to monitor the network connection, can send broadcast
intents, and allows the requested applications to query the coarse-grained or fine-grained state of
the available networks.

Next, the intents and receivers used by the benign and malicious applications were analyzed.
As shown in Fig. 9c, BOOT_COMPLETED was the most requested intent by the malicious
applications. This intent was requested by almost 62% of the malicious applications, while it was
requested by only 6% by the benign applications. Moreover, SMS_RECEIVED was requested
more by malicious applications than by benign applications. This intent allows an application
to receive an SMS message and listen to all the incoming SMS messages. A comparison of the
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most requested intents and receivers by malicious and benign applications is shown in Fig. 9c.
As shown in Fig. 9¢, malicious applications request more intents in general. This allows them to
start malicious activities on the basis of certain select events.

5.3.2 Machine Learning Results

Machine learning (ML) is a technique that takes large sets of data and attempts to predict
a value for a new sample after discovering the patterns in the previous data. Droid-IoT utilizes
the following ML algorithms: K-Nearest Neighbors (K-NN), Logistic Regression (LR), Random
Forest, Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) to classify
malicious applications from benign applications. All the ML algorithms were trained on the
top 100, 150, 200, 250, and 300 features selected by the F-test and chi-square feature selection
algorithms from the extracted features. Therefore, after training and testing all of algorithms, the
algorithm that provides the best results is saved in a pickled format to be used to classify new
samples. All machine learning models were implemented and tested by using Scikit-learn library
in python 3.5 [40] with 64 bits. Tab. 3 shows the best parameters for each classifier to obtain the
best evaluation results.

Table 3: Parameters tuning using Scikit-learn library

Classifier Best parameters

K-NN Metric params = None, number of jobs = 8, number of neighbors = 5,
p = 2, weights = uniform.

LR Intercept scaling = 1, max iter = 100

Random forest Number of estimator = 8, max depth = None, max depth = None, max
features = auto, max leaf nodes = None

SVM Kernel = rbf, Regularization parameter = 1.0, Tolerance = 0.001, max of iter
=-—1
XGBoost Colsample bytree = 1, learning rate = 0.1, max depth = 3, number of

estimators = 100, number of jobs = 1

As shown in Tab. 4, the best accuracy was 97.74% achieved by the XGBoost algorithm when
it was trained on the top features selected by the chi-square algorithm. Moreover, the type I error
rate for XGBoost was 2.5% and the type II error rate was 2.01%. Fig. 10a shows a comparison
of the XGBoost algorithm results based on the different sets of features selected by the chi-square
and F-test algorithms. The time and space complexity for XGBoost are O(pnsee) and (Phsee),
respectively where p is the number of features and ngee 1S the number of trees. The lowest
accuracy rate for Droid-IoT was achieved by the SVM algorithm using the top features selected
by chi-square algorithm, as shown in Fig. 10b. It yielded an accuracy of 96.35% with 1.94% and
5.18% for the type I error rate and the type II error rate, respectively. The time complexity for
SVM is O(nsyp) and the space complexity is O(ng,), Where ng,.is the number of support vectors.
The other ML algorithms produced average results. For example, Random Forest (RF) produced
an accuracy of 96.67% and a type I error rate of 3.75% with a type II error rate of 3.75%
and it has time and space complexity of O(pnyee) and (pnse.). Moreover, logistic regression (LR)
achieved an accuracy of 96.72%, while it achieved 2.67% and 3.84% for the type I and type II
error rates, respectively. The time and space complexity for LR is O(p). K-Nearest Neighbors
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(KNN) yielded an accuracy of 97.21% with a type I error rate and a type II error rate of 1.58%
and 3.90%, respectively. The time and space complexity for KNN are O(knp) and (np), respectively
where n is the number of data point and k is the number of nearest neighbors Figs. 10c—10e
show the top selected features by the chi-square and F-test algorithms for RF, LR, and KNN.
Fig. 11a shows a comparison of all the algorithm results, including accuracy, F1-score, and area
under a curve (AUC). Furthermore, the receiver operating characteristic (ROC) for all the machine
learning algorithms applied by Droid-IoT is shown in Fig. 11b.

Table 4: Comparison of all machine learning results

Metrics Algorithms

K-NN Random forest LR SVM XGBoost
True positives 936 924 926 933 927
True negatives 873 875 874 860 892
False positives 14 26 24 17 23
False negatives 38 36 37 51 19
Sensitivity (%) 96.10 96.25 96.16 94.82 97.99
Specificity (%) 98.42 97.11 97.33 98.08 97.49
Precision (%) 98.53 97.26 97.47 98.21 97.58
Type I error (%) 1.58 2.89 2.67 1.94 2.51
Type II error (%) 3.90 3.75 3.84 5.18 2.01
Accuracy (%) 97.21 96.67 96.72 96.35 97.74
Fl-score (%) 97.30 96.75 96.81 96.48 97.78
AUC (%) 97.17 96.65 96.70 96.30 97.74

5.3.3 Runtime Analysis

The runtime analysis of Droid-IoT was sub-linear, which was O(ﬁ), where n is the size
of the application. Therefore, the analysis time increased with an increase in the number of files
in the application. Fig. 12 shows the runtime analysis results of the 50 applications analyzed by
Droid-I10T, where each column in the figure shows the number of files in the analyzed application.

5.3.4 Comparison with the Existing Works

Droid-IoT was compared against two state-of-the-art Android malware detection tools called
DREBIN [41] and CSBD [42]. Both of these tools were re-implemented, as the detection accuracy
of these tools depends on the features that they use. The following is a brief introduction of the
two tools.

DREBIN [41] is a detection tool that collects different features such as requested permissions,
application components, filtered intents, restricted APIs, and network addresses by utilizing the
static analysis technique. These features are extracted from a set of benign and malicious appli-
cations. It then applies the SVM algorithm to distinguish malicious applications. As a result, this
tool achieved a detection rate of 94%.
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CSBD [42] is another detection tool based on a control flow graph. In this tool, the Android
application is analyzed statically in order to extract a control flow graph of the program’s repre-
sentation. Four classification algorithms were tested to evaluate the performance of this method.
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The algorithms were as follows: C4.5, SVM, Random Forest, and Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) algorithms.

Droid-IoT was compared to DREBIN [41] and CSBD [42] by using the same datasets, which
contained 12 applications, including six benign applications and six malicious applications. As
shown in Tab. 5, Droid-IoT produced the best accuracy rate, while Drebin and CSBD yielded the
same results, as both used the Random Forest algorithm with a different set of features.

Table 5: Comparison between Droid-IoT and the existing tools

Metrics Tool

Droid-IoT DREBIN CSBD
Sensitivity (%) 100 92.00 92.00
Precision (%) 80.00 93.00 93.00
Accuracy (%) 92.31 91.66 91.66
F1-Score (%) 94.12 91.00 92.00

5.3.5 Performance Metrics

The performance overhead for Droid-IoT was measured using the App Tune-up kit [43].
This is an Android application used for measuring the performance overhead of a particular
application. The performance of Droid-IoT was measured multiple times, while the proposed tool,
Droid-IoT, analyzed the different new installed applications. All the experiments were conducted
on a Nexus device 7 running the latest Android version. As shown in Tab. 6, the average power
consumed by Droid-IoT was 3.039 mW, and the average CPU load was 0.6%. Moreover, the
network traffic consumed by Droid-IoT depended on the application size, which, on average, was
3.1 MB. Droid-IoT is a lightweight application that consumes only 18 MB of the device’s storage.

Table 6: Benchmark results for Droid-IoT

Metrics Results
Average power consumed (mW) 100
Average CPU load (%) 80.00
Average network traffic (MB) 92.31

6 Conclusion

Android is the most popular smartphone platform, which makes it a primary target of many
cybercriminals. This has led many researchers to investigate this area and to detect and miti-
gate the existing threats. This paper presented Droid-IoT, a collaborative framework that detects
Android malicious applications by using blockchain technology. The proposed system consists of
four main engines: (i) a collaborative reporting engine, (ii) a static analysis engine, (iii) a detection
engine, and (iv) a blockchain engine. Each engine contributes to the detection and minimization
of the risk of malicious applications, reporting any malicious activities to the user. The results
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of the Droid-IoT evaluation showed that it could efficiently detect malicious applications with a
detection accuracy of 97.74% with an AUC of 97.74%.

Despite the excellent results achieved by Droid-IoT, it still has some limitations that can be
improved upon in the future. First, all of the analyses were performed on the server side, which
meant that there had to be an internet connection between the Droid-lIoT server and the Droid-
IoT client. Second, the static analysis can be improved to detect malicious applications that utilize
obfuscation techniques to hide malicious activities.
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