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Abstract:The Internet of Things (IoT) role is instrumental in the technological
advancement of the healthcare industry. Both the hardware and the core level
of software platforms are the progress resulted from the accompaniment of
Medicine 4.0. Healthcare IoT systems are the emergence of this foresight. The
communication systems between the sensing nodes and the processors; and
the processing algorithms to produce output obtained from the data collected
by the sensors are the major empowering technologies. At present, many new
technologies supplement these empowering technologies. So, in this research
work, a practical feature extraction and classification technique is suggested
for handling data acquisition besides data fusion to enhance treatment-related
data. In the initial stage, IoT devices are gathered and pre-processed for fusion
processing. Dynamic Bayesian Network is considered an improved balance
for tractability, a tool for CDF operations. Improved Principal Component
Analysis is deployed for feature extraction along with dimension reduction.
Lastly, this data learning is attained throughHybridLearningClassifierModel
for data fusion performance examination. In this research, Deep Belief Neural
Network and Support Vector Machine are hybridized for healthcare data pre-
diction. Thus, the suggested system is probably a beneficial decision support
tool for multiple data sources prediction and predictive ability enhancement.

Keywords: IoT; data fusion; improved principal component analysis; hybrid
learning model

1 Introduction

Many kinds of research have recently been grabbed by many healthcare applications like
Healthcare facilities management, disaster relief management, sports health managing, and home-
based care [1]. A wide range of edge computing technologies aims at offering facilities to the
public using embedded intelligent systems in these systems. An extensive range of computing
technologies aims to offer facilities to the public by applying embedded intelligent systems to
these situations [2]. Pervasive Healthcare Monitoring System (PHMS) aids in enabling real-
time besides uninterrupted monitoring of healthcare by pervasive computing technologies. Also,
automatic identification and treatment facilitate independent living, common wellness, and dis-
tant disease management deprived of spatial-temporal limitations [3]. Consequently, Pervasive
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Healthcare Monitoring System (PHMS) offers benefits like self-adaptable automation services,
intelligent emergency management and health monitoring services.

Discrete incorporation into remote objects is done through technological progress in sensors
and communications both in-home and person [4]. Information gathering is significantly achieved
via monitoring physiological, behavioural, and social life aspects to impact life, health, and well-
being positively. Recently, the Internet of Things (IoT), an effective and evolving technology, has
been used in the interconnection of computing devices and objects for data transfer from one
place to another place [5].

Further, IoT sensor assists in communication enhancement, deprived of necessitating human-
computer interaction or human-human interaction. Wearable sensors have become popular, and
they might also be knitted into apparels and accessories to monitor the wearer’s vitals [6]. For
complex multidimensional information, interpretation is delivered using these sensors. Data fusion
techniques are engaged for offering a significant sensor outputs representation.

Enhancement of data to obtain precise and appropriate outputs using wearable sensors leads
to many challenges. The purpose of data mining, whether used in healthcare or business, is to
identify valuable and understandable patterns by analyzing large data sets. These data patterns
help to predict industry or information trends and then to determine its application. Health care
monitoring is achieved by completely exploiting this data and employing data fusion techniques
to create and enhance output accuracy [7]. The meticulous composition of multiple types of
information sources or personal data in the investigation process using exclusive methods is called
Multi-Source Data Fusion (MSDF). MSDF has done to disclose the highlights of the research
objective and get wide-ranging and quantitative results. The three parts of MSDF are data
integration, blending of data relations, and ensemble clustering. Cross-integration of multi-mode
data and matrix fusion of multi-relational data is divided by fusing data relations. The standard
dataset characteristics are integrated into multiple sources for attaining improved outcomes.

Occasionally, data from one source may not be enough to decide the real-time environ-
ment [8]. In the decision-making process, data representation is greatly supported by data fusion
to aid decision-makers. It is defined as a process of data transformation for taking the apt decision
on time. Various data fusion definitions are outlined in the literature; nonetheless, the most
extensively used definition is from Joint Directors of Laboratories. Based on the JDL workshop,
Data fusion is well-defined as “A multi-level process dealing with correlation, association, data
combination and information from single as well as multiple sources to achieve refined position,
recognize estimates, complete along with timely situations, threats assessments as well as their
significance [9].” The MSDF aims at understanding the environment and function accordingly.
Sensor fusion is utilized whenever more than one sensor is deployed to gather precise and
supplementary data [10,11]. These challenges greatly urge Context-aware data fusion, and a novel
methodology is greatly necessitated for mitigating these issues. A practical feature selection and
classification technique are suggested for managing data acquisition and data fusion for medical
treatment improvement.

The paper’s structure is given below. Related works are given in Section 2. Context-aware
data fusion methods for context-aware healthcare management systems and definition of data
management steps are illustrated in Section 3. Investigation’s outcomes are specified in Section 4,
trailed by the conclusion in Section 5.
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2 Literature Review

A review of traditional Multi-Sourcer Data Fusion (MSDF) solutions is outlined in this part.
MSDF methods are extensively employed for melding data acquired by sensors positioned in the
background, for driving knowledge abstraction process from raw data besides creating high-level
conceptions.

Baloch et al. [12] suggested data fusion methods for significant information extraction from
heterogeneous IoT data, merging distinct sensor data for collectively obtaining outcomes and being
more consistent, precise, and comprehensive. Context structure is accomplished using additional
context sensors rather than wearable sensor devices. Context-aware data fusion was greatly utilized
due to its massive benefits. The application behaviour customization can be done based on par-
ticular condition using context information. An effective context-aware data fusion incorporated
with data management technique is suggested for context-aware systems, and that can be used in
healthcare applications, including situation building, context acquisition, reasoning and inference.

Gite et al. [13] offered a MSDF in which IoT assist smart things connectivity, focussing
on interoperations and interactions amid human and things. IoT middleware-based context-
aware mechanism is greatly employed in this research for obtaining automated inferences in the
neighbouring environment through the computing world in association with data fusion.

Rashid et al. [14] suggested an optimal multi-sensor data fusion method to estimate the
dynamic state model, which is highly non-linear. From spatially distributed sensors, data fusion
expression is given as Semi Definite Program aiming at reducing state estimate Mean-Squared
Error under total transmit power restrictions. Under a multi-sensor context, SDP implementation
is greatly achieved by the Bayesian filtering method, depending on Linear Fractional Transforma-
tions and unscented transformations. Experimental simulations validate the proposed multi-sensor
system over a single sensor provided with a similar power budget as in a complete sensor network.
De Paola et al. [15] suggested an adaptive Bayesian System for inferring environment aspects
such as activities achieved by the user, manipulating an extensive characterized sensory device
set through restricted-energy resources. An adaptive sensory infrastructure configuration is sug-
gested for concurrent maximization of network lifetime for inference accuracy by multi-objective
optimization.

Shivashankarappa et al. [16] utilized the basis of Kalman filters for establishing a measure-
ment level fusion, state vector fusion and covariance union fusion to present systems having
delayed states. Data fusion algorithms based on Kalman filter for time-delayed systems mod-
ification are done to manage missing measurements, which are regarded as a general concern
in Wireless Sensor Networks. Also, a comparative analysis is done for data fusion algorithms’
simulation outcomes by MATLAB. The specific application similarity would influence fusion
algorithm choice in fusion filter performances.

Gao et al. [17] exploited adaptive fading unscented Kalman filter in multi-sensor stochastic
systems, which is non-linear for offering novel optimal data fusion approach. A two-level fusion
arrangement exists: at the bottom level, on Mahala Nobis distance, adaptive fading unscented
based Kalman filter is established and functions as local filters for local state estimations adapt-
ability and robustness improvement against process-modelling error. At the top level, multi-sensor
optimal data fusion based on unscented transformation for ‘N’ local filters is recognized based
on linear minimum variance principle for global optimal state assessment using local estima-
tions fusion. For multi-sensor non-linear stochastic systems, the suggested approach efficiently
ceases from process-modelling error influence on fusion solution, owing to enhanced data fusion
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adaptability and robustness. Globally, optimal fusion outcomes are obtained according to the
linear minimum variance principle. The suggested approach’s efficacy for CNS/GNSS/INS (Celes-
tial Navigation System/Global Navigation Satellite System/Inertial Navigation System) integrated
navigation is demonstrated through simulation and experimental outcomes.

Durrant-Whyte et al. [18] suggested a complete decentralized architecture to be used in data
fusion issues, which consider sensor nodes network including its processing capability, any central
communication or central processor competence is not necessitated. The computation is locally
achieved, and communication occurs between two nodes: via appropriate properties like sensors’
robustness against failure and flexibility for addition or loss of sensors. It is suitable to extend
geometric data fusion difficulties based on Extended Kalman Filter (EKF), which is regarded
as an algorithm permitting comprehensive multi-sensor EKF equations’ decentralization amid
numerous sensing nodes. The multicamera problem can be greatly handled by this application,
along with objects’ real-time tracking and individuals moving over a room.

Zebin et al. [19] exploited Machine Learning algorithms like Artificial Neural Networks and
SVM for a quicker recognition process through numerous feature selection approaches using
experimentation on features extraction obtained from gyroscope time series and accelerometer
data gathered from enormous volunteers. Furthermore, diverse design parameters are explored, for
instance, features count and data fusion from various sensor locations, which impacts complete
recognition performance.

Liu et al. [20] suggested semantic perception-based multi-source heterogeneous data fusion for
obtaining uniform format. Lastly, an enhanced Dempster–Shafer theory (DST) is implemented for
attaining data and final fusion outcome. The suggested algorithm benefits from higher stability,
quicker convergence rate, and its judgment for fusion outcomes and further appropriate to actual
circumstances, validated through experimental simulation.

Raheja et al. [21] presented an architecture for Condition-Based Maintenance (CBM) for
data mining/data fusion. In defence applications, data fusion is used, an automated merging data
process from numerous sources for decision-making concerning object state. Data mining finds
unknown patterns and relationships in huge data sets; the CBM approach greatly supports data
fusion and model generation at numerous levels. A maintenance strategy known as Condition-
Based Maintenance (CBM) is used to monitor the real situation of an asset to determine the kind
of maintenance to be carried out. Only if there is an indication that flashes signs of deteriorating
performance or forthcoming failure should be carried out.

Kusakabe et al. [22] established a data fusion approach for trips behavioural attributes estima-
tion through smart card data for long-term changes and continuous observation in trips’ attributes.
The travellers’ behavioural understanding is greatly enhanced during smart card data monitoring.
In smart card data, to supplement absent behavioural attributes, smart card data’s data fusion
approach is adopted with person trip survey data including naïve Bayes probabilistic model. For
the trip purpose, derivation of estimation modelling is done from person trip survey data in which
trip purposes estimations are done as trips observation’s additional behavioural attributes is done
in smart card data. Also, it is substantiated that trip purposes in 86.2% validation data are greatly
estimated by validation analysis. In smart card data, empirical data mining investigation revealed
that the suggested approach could be applied for finding and interpreting perceived behavioural
features, which is a tremendous challenge for obtaining from every free dataset.

The prevailing literature reviews address data imperfection concern by suggesting diverse
methodologies based on numerous theoretical foundations. The detecting sensory measurements
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that concern misalliance with observed data expected pattern have been deeply considered in the
above literature by eliminating outlier’s intention from the fusion process. The intelligent data
fusion techniques primarily focus on contextual information in an innovative way to enhance
reasoning accuracy and system adaptiveness.

3 Proposed Methodology

The heterogeneous IoT data is managed by suggesting a feature selection and classification
technique for data acquisition and data fusion management to enhance when some statistical
method is applied to a data set to convert it from a cluster of insignificant numbers into significant
output known as the statistical of data treatment. Data treatment improvement is revealed in
Fig. 1, which comprises data pre-processing, context-aware data fusion, feature extraction, and
classification (data storage and processing).
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Figure 1: The overall process of the proposed methodology

Data is collected. Then, essential cleaning and filtering are utilized for eliminating outliers
(irregularities or unexpected values) at the pre-processing data layer. Context-aware data fusion
is done in the next step. This layer displays two data blocks. One is vital signals like body
temperature, Electro Cardio Gram (ECG), blood pressure, pulse rate, etc., and the other is context
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data. It encompasses supplementary data like environment temperature or object location. DBN
is considered an improved balance for tractability, a tool for Cumulative Distribution Function
(CDF) operations, and context source diverges based on circumstances.

• The process of generating more constant, precise, and valuable information than that
provided by any independent data source by incorporating multiple data sources is called
data fusion. These processes are frequently divided as low, intermediate, or high based on
the processing stage where the fusion occurs. Improved Principal Component Analysis is
deployed to extract feature as well as dimension reduction.

• Lastly, a suitable data fusion algorithm is used based on the application for data combining.
Data learning is attained through Hybrid Learning Classifier Model for data fusion perfor-
mance examination, which supports tracking historical data for current data validation and
future situation prediction. In this research, DBN and SVM are hybridized for healthcare
data prediction.

Consequently, suggested intelligent data fusion methods merge heterogeneous data for context
information extraction enabling health care applications for reacting accordingly (Fig. 1).

3.1 Preprocessing
Data collection from physical devices is the primary part of context acquisition, followed by

pre-processing for noise elimination through filtering and estimation techniques of other mea-
surement outliers. The erroneously labelled data items correction is now done by classification
models where models operate on clean data/data sets and are single classifiers or ensemble models.
The cleaned data sets refer to data items that persist after cleaning or filtering data/data sets.
Preliminary filtering is performed before removing noises in data instances through filtering.
A dual filtering technique is presented for data processing. Kalman Filter (KF) is a statistical state
estimation technique, whereas the particle filter is a stochastic technique for moments estimation.
In this dual filtering approach, the pre-processing stage is elementary for removing the noise with
high efficiency compared to the single filtering approach.

3.2 Kalman Filter
The Kalman filtering algorithm estimates certain anonymous variables that give the mea-

surements noted over a while. The usefulness of Kalman filters has been validated in lots of
applications. Instead, a simple structure and requirement of less computational power are featured
by Kalman filters. But for people who have no insight into estimation theory, the implementation
of the Kalman filter is very complicated.

3.3 Particle Filtering (PF)
When analytic computation cannot be done, particle filtering is the stochastic process for

moments’ target probability density estimation. Random numbers generation called particles is the
main principle, from an “importance” distribution that is effortlessly sampled. At that time, each
particle is accompanying weight that corrects variation amid target and significant probabilities.
Particle filters are frequently used for posterior density mean estimation, which offers profit
of estimating full target distribution deprived of any assumption in Bayesian context, which is
predominantly beneficial for non-linear/non-Gaussian systems. The PF might be employed to
estimate biomechanical state depending on gyroscope as well as accelerometer data.

These dual filtering steps support in achieving noiseless, properly labelled clean data for
additional processing. Supposing every data instance xj is a multi-label set lj = {ljk}Rk=1. For binary
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classifications, let C(+) represent set positive labels li and C(-) denotes the number of negative
labels in li. If pb(+) and pb(-) are positive and negative label probabilities in set li then, Eqs. (1)
and (2)

pr(+)= C(+)+ 1
C(+)+C(−)+ 2

(1)

pr(−)= C(−)+ 1
C(+)+C(−)+ 2

(2)

for a Laplace correction that is applied.

If C(+) is very proximate to C(-), then margin amid classes |pr(+) - pr(-)| is small. This occurs
in two circumstances explicitly when items labelling is done deprived of appropriate knowledge.
The second circumstance is while labelling complex instances. Hence, for an instance xi, if |pr(+)
- pr(-)| is small, inference algorithms could not incorporate instance and desire to be filtered. The
suggested work utilizes Algorithm 1, which is listed below. Lines 1 to 7 implement preliminary
filtering through |pr(+) - pr(-)|. The second filtering level is in line 8, while lines 9 to 13 correct
noisy labels and 14 to 16 noiseless return data.

3.4 Algorithm for Pre-Processing Noisy Dataset for Noise Reductions

Input: D̂= {(xi, ŷi)}Ni=1—a training data set with integrated labels; {li}Ni=1 —the multiple label

sets of D̂; δ—a threshold

Output: D̂—the corrected data set

1: A—an empty set

2: For i = 1 to N Do

3: Account numbers of the positive label and negative label in li, i.e., N(+) and N(-),
respectively

4: Calculate p(+) and p(-)

5: If |p(+) - p(-)|≤ δ

6: The instance ‘” is added to the set A

7: End for

8: A filter is applied to the set D̂\A and all instances are filtered out by the filter that
comprises a set B

9: D̂c = D̂ \(A+B)

10: Build a classification model f on the set D̂c

11: For i = 1 to the size of (A + B) Do

12: Use the classifier f to relabel the instance i the set A + B

13: End For

14: Update the set A+B to Ā+ B̄ with corrected labels

15: D̂= D̂c+ Ā+ B̄

16: Return D̂ as the corrected data set
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3.5 Deep Belief Network (DBN)
DBN serves as an optimal trade-off for tractability throughout this study and becomes a

better model for DF operations. Besides, the impacts of context variables are efficiently identified
by DBNs, regardless of limitations through probability distributions. The data are divided by
DBNs into time slices, through which the states of an instance are represented. During that, its
noticeable symptoms are identified through HMMs. The states of a given feature of interest is
significantly inferred using DBN, then epitomized by the hidden variable Vt. Following the sensory
readings and corresponding contexts, the updates are carried out. Based on the application’s
environment, the set of sensor’s readings active in time slice t is denoted by St = (S1t , . . . , Snt ); and

Cnt = (Cn1t , . . . , Cnnt ) denotes the set of contexts. Nevertheless, the number of context variables is
controlled for limiting the size of CPT (Conditional Probability Table) and learning in the training
phase.

Defining sensors and state transitions are highly necessitated for DBN. Besides, the impact
made by the system’s current state/the sensor model over sensor information is represented by the
probability distribution Pb(St | Vt). In contrast, its state transition model is signified by Pb(Vt |
Vt–1, Cnt), which reveals the probability that the state variable possesses a particular value, and
specified in its earlier value as well as the current context. In a time, slice t, the utilized DBN is
the Markov model of first-order and a specific system state. In other words, vt can be formulated
as following Eq. (3)

Bl (vt)= Pb (vt|S1,t, Cn1,t) (3)

For a practical formulation of belief, Bayes Filter analogous strategy is followed, and the
Bayes rule is applied to express Eq. (4), possibly

Bl (vt)= Pb(vt|S1:t,Cn1:t)= Pb(vt|S1:t−1, St,Cn1:t)= η.Pb(St|vt, S1:t−1,Cn1:t).Pb(vt|S1:t−1,Cn1:t)

(4)

Here, Normalizing Constant is signified by η. According to Markov hypothesis, the sensor
nodes in St are not dependent on context variables Cnt, in a state variable St, and assuming that
sensor measurements are mutually independent, parent node value St can be formulated as Eq. (5)

Pb(St|vt, S1:t−1,Cn1:t)= Pb(St|vt,Cn1:t)= Pb(St|vt)=
∏

sit

Pb(sit|vt) (5)

In which, in a time slice t, the specific value of the sensor I is signified by sit. Besides, Eq. (6)

Pb(vt|S1:t−1,Cn1:t)=
∑
vt−1

Pb(vt, vt−1|S1:t−1,Cn1:t)

= α.
∑
vt−1

Pb(vt|vt−1, S1:t−1,Cn1:t).Pb(vt−1|S1:t−1,Cn1:t)
(6)

Here, the normalizing constant is represented by α. Cnt can be omitted from the last term
since Vt–1 does not rely on the following context Cnt if the next state Vt is not reflected. As a
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consequence, Eq. (7) is expressed by applying the Markov assumptions:

Pb(vt|S1:t−1,Cn1:t)= α.
∑

vt−1

Pb(vt|vt−1,Cnt).Pb(vt−1|S1:t−1,Cn1:t−1)= α.
∑

vt−1

Pb(vt|vt−1,Cnt).Bl(vt−1)

(7)

Then, belief can be defined with a recursive Eq. (8) by replacing Eqs. (5) and (7) in Eq. (4)

Bl (vt)= η.
∏

sit

Pb(sit|vt).
∑

vt−1

Pb(vt|vt−1, Cnt).Bl(vt−1) (8)

Here, α signifies an integrated normalization constant η. The inference is executed using the
expression Eq. (6), where only two DBN slices are stored, in which time, as well as space updating
network’s belief is sequence’s length independent. Computational complexity involved in Eq. (8)
is O(n + m), in which n—no of sensors and m–no of probable values of Vt and complete
complexity of Bl(vt) for all Vt is O(m2+ m · n).
3.6 Feature Extraction

The process of reducing dimensionality by compressing a primary set of raw data into more
adaptable groups is called feature extraction. The requirement of many computing resources for
processing by the massive number of variables is the significant feature of these large data sets.

The parameters of every measurement are extracted from information associated with catego-
rization concern in the second stage. The feature extraction process using the suggested algorithm
is presented in Fig. 2.

Figure 2: Process of the feature extraction

3.6.1 Improved Principal Component Analysis (IPCA)
. Principal Component Analysis (PCA) works as a tool to build predictive systems in inves-

tigative data analysis. Most often, the genetic distance and relatedness within the populations
are visualized through PCA. PCA can be carried out through decomposition or eigenvalue data
decomposition of correlation/covariance matrix, generally in post-normalization of initial data.
Usually, there is a mean center in each attribute when normalizing it, which subtracts the value
of each data from the measured mean of its variable; hence the corresponding empirical mean
(i.e., average) becomes ‘zero’.

Consequently, it normalizes the variance of each variable as much as possible for assuming
it ‘1’; see Z-scores. The component scores, also termed factor scores (the converted variable
values associated with a specific data point), loadings (weight required to manipulate each original
standardized variable for deriving the component score), and the PCA outcomes are considered
conferred. If the standardization of component scores matches with unit variance, it indicates
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the existence of data variance in loadings and signifies that it is the magnitude of eigenvalues;
whereas, the non-standardized component scores indicate that the data variance is accompanied by
component scores only, and the loadings need to be unit-scaled (“normalized”). These weights are
termed Eigenvectors, which are orthogonal rotation cosines of variables into principal components
or back.

Generally, an internal data structure can be depicted by the functionality of this model,
thereby the variance in the data in an optimal manner. In the context where the multivariate
dataset is visualized as coordinates set in high-dimensional data space, PCA can offer lower-
dimensional images to the user, during which the object is projected at its most informative
perspective. This is possible only through a few standard components; thus, the dimensionality
reduction is carried out in the transformed data. Nevertheless, if the outliers exist in the data set,
PCA’s analysis result will be highly hampered. In such a scenario of huge data volume, it becomes
a challenging task to separate the outliers. To overcome this issue, the Adaptive Gaussian kernel
matrix is built.

3.6.2 Constructing the Adaptive Gaussian Kernel Matrix
In a distributed setting, assume s nodes set be V = {vi, 1 ≤ i ≤ s}, where everyone is capable

of communicating central coordinator ‘v0’.

A local data matrix Pi ∈ Rni × d on each node ‘vi’ possesses ‘ni’ data points in ‘d’ dimension
(ni > d). Subsequently, global data P ∈ Rn×d become local data matrix concatenation PT =
[PT1 , P

T
2 , . . . ,P

T
s ] and n =

s∑
i=1

ni . The P’s ith row is denoted by pi. Consider centred data points

with zero mean, i.e.,
s∑
i=1

pi = 0 Uncentered data necessitates a rank-one modification in algorithms,

whose computation and those in other steps dominate communication cost. Take on non-linear
transformation φ(x) to M-dimensional new feature space from standard D-dimensional feature
space; however, it demands extreme expense and inadequacy. Therefore, apply kernel methods for
simplifying the computation.

Assume projected new features having zero mean, Eq. (9)

1
N

N∑

i=1

φ(xi)= 0 (9)

The projected features covariance matrix is M × M, which can be projected as, Eq. (10)

C = 1
N

N∑

i=1

φ(xi)φ(xi)T (10)

Its eigenvectors and eigenvalues are as follows, Eq. (11)

Cvk = λkvk. (11)
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Here, k = 1, 2,. . ., M. From expression Eqs. (10) and (11), have, Eq. (12)

1
N

N∑

i=1

φ(xi){φ(xi)Tvk} = λkvk, (12)

The above expression can be rewritten as follows, Eq. (13)

vk = akiφ(xi) (13)

Here, by substituting vk in Eq. (12) with Eq. (13), have, Eq. (14)

1
N

N∑

i=1

φ(xi)φ(xi)T
N∑

j=1

akjφ(xj)= λk

N∑

i=1

akiφ(xi). (14)

The following equation expresses the kernel function, Eq. (15)

k(xi,xj)= φ(xi)Tφ(xj), (15)

Then, multiply both sides of Eq. (16) by (xl) T , and get

1
N

N∑

i=1

k(Xl,Xi)
N∑

j=1

akjk(Xi,Xj)= λk

N∑

i=1

akik(Xl ,Xi) (16)

Here, the matrix notation is used as, Eq. (17)

K2ak = λkNKak (17)

In which, Eq. (18)

Ki,j = k(Xi,Xj) (18)

and ak denotes aki’s N-dimensional column vector, Eq. (19)

ak = [ak1ak2 . . .akN ]
T (19)

ak might be estimated through Eq. (20)

Kak = λkNak, (20)

Then, the ensuing kernel principal components might be estimated as follows, Eq. (21)

yk(X)= φ(X)Tvk =
N∑

i=1

akik(X ,Xi). (21)

The kernel approaches’ power is that it does not calculate φ(xi) explicitly. From training data
set {xi}, kernel matrix is constructed directly, Eqs. (22) and (23)

k(x,y)= (xTy)d (22)

or k(x,y)= (xTy+ c)d , (23)
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In which c > 0 is a constant, and Gaussian kernel, Eq. (24)

k(x,y)= exp(−x− y2/2σ 2) (24)

σ denotes an Adaptive Gaussian kernel parameter.

When k = 1, PCA becomes a special case, and the center is an r-dimensional subspace.
This optimum r-dimensional subspace is spanned through top r right P singular vectors (principal
components) that can be identified through Singular Value Decomposition (SVD).

3.7 Hybrid Learning Classifier Model (Hlcm)
The inputs of the IoT sensor network reached each neuron layer, during which the pro-

cesses such as aggregation, pre-processing and feature extraction are carried out. To proceed
further, healthcare data are predicted using Hybrid Learning Classifier Model (HLCM). Besides
hybridising Deep Belief Neural Network (DBNN), SVM is carried out to predict healthcare data.

3.7.1 Deep Belief Neural Network (DBNN)
Being a feed-forward method, DBNN helps for connecting layers with every node in a

multilayer perceptron. Since there are various parameters in the neural network, the output is
generated with noisy information and error if the input signal is provided to the corresponding
input network. Hence, for reducing the error rate, the partial derivatives of each variable are
employed in this study. In feed-forward context, input to hidden layer from information layer is
multiplied with specific weights. Consequently, every data source obtained by each shrouded node
is summed up. Here, through the activation function, value is passed. Besides, quantities from the
hidden layer for the yielding layer multiplied by different weights, and input obtained by yield
is summed up. Again, the sum is passed through the activation function, and then the yield is
generated. In a neural network, the target output is differentiated by the yield from the output
layer.

By using the learning algorithm procedure, DBNN computation searches error function base
in weight space. The combination of loads is considered an optimal solution for resolving the
learning issue since it restricts the blunder capability. According to this procedure, the error
function’s coherence and differentiability need to be ensured since the inclination of the learning
algorithm needs to be estimated at each cycle.

In other words, such kind of enablement work needs to be utilized instead of progression
capacity utilized in perceptions. Besides, the error function as to the output network layer needs
to be computed. The network’s efficient learning process enhances the recognition process, and
activation of function exists.

Meanwhile, the estimated output values are compared to the output of the pre-trained net-
work. The comparison ensures accurate output, i.e., if both outputs are equal or indicate error
propagation. In this process, the recognition rate can be improved by updating the values of
weights and bias. In this study, the list of values, the selection of optimized weights is carried out
with the help of SVM that is recognized as a global classification algorithm.

Besides, optimized extremum (minimum/maximum) values of weights can be predicted
through this algorithm, and even the error value exists in the network. Subsequently, the current
value is switched by the extremum selected points, and it is selected iteratively, concerning the
Enhancement of recognition rate.
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3.7.2 Support Vector Machine (SVM)
SVM is also called Maximum Margin Classifiers since it can perform the empirical classifi-

cation error minimization and maximization of geometric margin concurrently. Moreover, SVM
implicitly maps its inputs as high-dimensional feature spaces by employing kernel trick; hence it
is recognized as an effective model for non-linear classification. The construction of the classifier
is enabled by the kernel trick, regardless of clear indication about feature space. In SVM, the
examples are represented as a point in space that is mapped. To differentiate the examples that
belong to different classes, they are separated with possibly a considerable gap. Assume that a set
of points is provided, which is from either of two classes, then a hyperplane accompanied by the
most considerable possible points fraction belonging to the same class on the same plane will be
identified by SVM. This separating hyperplane is termed as Optimal Separating Hyperplane that
could increase distance in the middle of two parallel hyperplanes and the diminishing test dataset’s
misclassifying examples risk. Labelled training data as data points with the form is specified in
Eq. (25)

M = {(x1, y1), (x2, y2), . . . , (xn, yn)} (25)

Here yn = 1/− 1 is a constant, which represents the class to which that point xn belongs, in
which the data sample’s count is signified by n.

A ‘real vector with p-dimension’ is denoted by each xn. At first, input vectors are mapped
into a decision value by the SVM classifier, classified through a suitable threshold value. The
hyperplane is divided as follows for viewing training data, Eq. (26)

Mapping : wT .x+ b= 0 (26)

The ‘weight vector with p-dimension’ is signified by w, and ‘a scalar’ is denoted by b. The vector
‘w’ points are perpendicular for separating the hyperplane. Maximization of margin is enabled
through the offset parameter b. These hyperplanes can be selected if t training data are linearly
separable. Consequently, the distance between hyperplane will be tried to get maximized, as there
are no points between them. At this point, the distance between the hyperplane as 2/|w| will be
estimated. Minimization of |W|, needs to be ensured, Eq. (27)

w.xi− b≥ 1 or w.xi− b≤−1 (27)

3.7.3 Radial Basis Kernel Function
In higher-dimensional data, the RBF kernel function is efficient; hence, the SVM’s Radial

Basis Function (RBF) kernel is deployed as Classifier. The kernel output relies on the Euclidean
distance, of which one is the testing data point, and another one is the support-vector. At the
centre of RBF, the support vector determines its area of impact across the data space. The
following equation expresses RBF Kernel function, Eq. (28)

k(xi,xj)= exp(−γ ‖xi−xj‖2)γ > 0 (28)

In the above equation, a kernel parameter is denoted by k, defined as a training vector. Since
RBF enables a support vector to influence more across a larger area, it is proven that a large
area can efficiently support a more traditional decision boundary and a smoother decision surface.
Besides, the application of optimal parameter on the training dataset eases the procurement of
the classifier. Thus, efficient healthcare data classification can be performed through the developed
hybrid learning classifier model where ‘k’ is a training vector and kernel parameter. And smooth



1870 CMC, 2022, vol.70, no.1

decision surface is provided by a large value of highly regular decision boundary and smooth
decision surface. Support vector can have a strong influence over a larger area by a RBF of large
value. The training dataset is applied with the best parameter to obtain the classifier. Health care
data are classified effectively using a designed hybrid learning classifier model.

4 Results and Discussion

In this segment, the proposed context-aware data fusion approaches are conferred, specifically
for healthcare applications. In this work, the (Mobile HEALTH(MHEALTH) dataset is used for
the suggested approach performance assessment.

4.1 Dataset Description
In the dataset of MHEALTH, the information such as body motion and vital signs recordings

for ten volunteers are significantly involved, accompanied by different profile and numerous phys-
ical activities. For measuring the motion of different body parts (e.g., magnetic field orientation,
acceleration, and rate of turn), the sensors are placed over the chest, left ankle, and right wrist
of the subject. Besides, 2-lead ECG measurements are obtained by a sensor placed over the
chest, through which primary heart monitor, various arrhythmias checking or monitoring exercise
impacts on ECG are performed.

In order to evaluate different performance parameters, False Positive (FP), False Negative
(FN), True Positive (TP) and True Negative (TN) values are estimated initially. The parameters,
namely Accuracy, F-measure, Recall and Precision, are predominantly considered for measuring
the performance.

Precision refers to the ratio between the number of appropriately identified positive instances
and totally expected positive instances count, Eq. (29)

Precision=TP/TP+FP (29)

Recall or Sensitivity is defined as the ratio between the number of appropriately identified
positive instances and total instances count, Eq. (30)

Recall=TP/TP+FN (30)

F-measure refers to the Recall and Precision’s weighted average. Such that, F-measure takes
false positives and negatives, Eq. (31)

F1Score= 2∗ (Precision ∗ Recall)/(Precision + Recall) (31)

Based on the positives and negatives, the Accuracy is measured as expressed below, Eq. (32)

Accuracy= (FP+TP)/(TP+FP+TN+FN) (32)

Tab. 1 illustrates the performance comparison results of the proposed methodology. The table
values show that the proposed hybrid model has high performance than the existing model.

In Fig. 3, the performance of the proposed and prevailing Context-aware data fusion methods
is compared in terms of Precision rates for the healthcare data classification. From the figure,
the graphs represent the efficiency of the proposed CDFT-HLCM method to provide optimal
Precision rates, which is higher than the existing classification methods.

Fig. 4 compares the Recall rates obtained by the proposed and prevailing Context-aware data
fusion methods regarding healthcare data classification. The graphs represent that the proposed
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CDFT-HLCM method is proficient in procuring optimal Recall rates, which is superior to the
existing classification.

Table 1: Performance comparison results

Metrics DFA CDFT CDFT-HLCM

Accuracy 86.059 90.950 94.400
Precision 83.290 88.920 93.018
Recall 88.190 90.860 94.672
F-measure 85.670 89.880 93.838
Error rate 13.940 9.042 5.600
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Figure 3: Analysis of precision context-aware data for classifying the healthcare data
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Figure 4: Analysis of recall context-aware data for classifying the healthcare data
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Fig. 5 compares suggested and prevailing Context-aware data fusion methods’ F-measure
values regarding healthcare data classification. It is substantiated that the suggested CDFT-HLCM
method can obtain optimal F-measure values, which is higher than the existing classification
methods.
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Figure 5: Analysis of F-measure context-aware data for classifying the healthcare data

In Fig. 6, the proposed and prevailing Context-aware data fusion methods are compared in
terms of Accuracy rates for healthcare data classification. The graphs represent the efficiency of
the proposed CDFT-HLCM method to provide better Accuracy rates, which is higher than the
existing classification methods.
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Figure 6: Analysis of accuracy context-aware data for classifying the healthcare data

5 Conclusion

This study proposes and assesses a Hybrid Learning Classifier Model (HLCM) based Context-
aware Data Fusion technique for healthcare applications. Besides, for healthcare systems, data
management phases, like pre-processing, feature extraction, data processing and storage and
context-aware data fusion have been described in this research study. In addition, the data fusion
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process is carried out accurately with the help of a dual filtering technique that tends to label
the unlabelled attributes in the accumulated data. Subsequently, feature extraction and dimension
reduction take place through Improved Principal Component Analysis (IPCA). Then, the HLCM
helps to learn this data, through which the efficiency of data fusion can be validated. At this
point, hybridization of DBNN, SVM is accomplished with regards to healthcare data prediction.
The proposed HLCM has 94.40% of accuracy than the other models. Empirical findings prove the
efficiency of the proposed context-aware data fusion technique to outperform the static systems
since the static systems utilize each available sensor statically. In the future, this research work
can be further extended by focusing on the scrutiny of the proposed technique’s generalization
capability, for which the training and test data from various scenarios can be taken. Besides, the
security enhancement of the predicted healthcare data can be considered.
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