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Abstract: In machine learning and data mining, feature selection (FS) is a tra-
ditional and complicated optimization problem. Since the run time increases
exponentially, FS is treated as an NP-hard problem. The researcher’s effort to
build a new FS solution was inspired by the ongoing need for an efficient FS
framework and the success rates of swarming outcomes in different optimiza-
tion scenarios. This paper presents two binary variants of a Hunger Games
Search Optimization (HGSO) algorithm based on V- and S-shaped transfer
functions within a wrapper FS model for choosing the best features from a
large dataset. The proposed technique transforms the continuous HGSO into
a binary variant using V- and S-shaped transfer functions (BHGSO-V and
BHGSO-S). To validate the accuracy, 16 famous UCI datasets are considered
and compared with different state-of-the-art metaheuristic binary algorithms.
The findings demonstrate that BHGSO-V achieves better performance in
terms of the selected number of features, classification accuracy, run time, and
fitness values than other state-of-the-art algorithms. The results demonstrate
that the BHGSO-V algorithm can reduce dimensionality and choose the most
helpful features for classification problems. The proposed BHGSO-V achieves
95% average classification accuracy for most of the datasets, and run time is
less than 5 sec. for low and medium dimensional datasets and less than 10 sec
for high dimensional datasets.
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1 Introduction

Due to the significant advancement of technology, including the Internet in various areas,
many databases were recently developed, and the complexity and diversity have also grown.
Nevertheless, high-dimensional databases have some drawbacks, including lengthy model building
periods, incomplete features, and deteriorated efficiency, making data analysis challenging [1,2].
Feature selection (FS) is a robust data pre-processing phase that can limit the features count and
dataset dimensions, improve model generalization, and reduce overfitting. The process of deciding
the attributes to be used in a classification problem is known as FS [3]. FS aims to select a set
of attributes to improve accuracy rate or reduce the size of the framework while substantially
reducing the classifier’s accuracy rate using only the FS process. For machine learning experts
who must handle complicated data, FS is essential. It is frequently used in machine learning, data
mining, and pattern recognition [3–5]. FS methods have previously been seen in video classifica-
tion, image retrieval, gender classification, vehicle identification, and other applications [6,7]. By
removing unwanted or noisy features, FS may reduce the dimensions of the given dataset. This
decreases the complexity and data processing burden and lowers the computation complexity of
the classification model, and saves resources while improving the algorithm’s efficiency. The FS
approach helps to reduce the dimensionality of real-world problems. Investigators have produced a
series of FS methods up to date. FS approaches may be classified as filter or wrapper approaches
depending on whether an assessment tool is accessible [8,9]. Filter-based approaches pick the
dataset’s attributes first, then train the learner. The fundamental premise is to assign a weight
to each element, with the weight representing the dimension feature’s value, and then ranking
the attributes based on the weight. Wrapper-based approaches use the classification model (for
example, classification) as the function subset’s performance measure explicitly. The key concept is
to approach subset choice as a search optimization problem, generating multiple types, evaluating
them, and comparing them to other configurations. The wrapper outperforms the filter in terms
of learning classification accuracy but at a high computational complexity.

Conventional optimization approaches are incapable of solving complex optimization tasks,
and obtaining acceptable results is challenging. As a result, a more efficient approach, known as
the metaheuristic algorithm, was already suggested and used by many researchers. Optimization
algorithms have several benefits, including their ease of use, independence from the problem,
versatility, and gradient-free design [10]. Evolutionary algorithms, human-based and physics-
based, and swarm intelligence (SI) approaches are the four types of metaheuristic algorithms.
A genetic algorithm (GA) is an example of an evolutionary algorithm, in which three steps,
such as crossover, selection, and mutation, are utilized to update an individual and attain a
global solution. Differential evolution (DE) algorithm is also included in this category. The social
behavior of animals influenced swarm intelligence, which shares all personal knowledge during
the optimization procedure. Ant colony optimization, Dragonfly Algorithm, Grey wolf optimizer
(GWO), Salp Swarm Algorithm (SSA), particle swarm optimization, artificial bee colony, flower
pollination algorithm, Marine Predator Algorithm (MPA), and satin bowerbird optimizer are few
examples of SI algorithms. The sailfish optimizer, emperor penguin optimizer, whale optimization
algorithm (WOA), harris hawk’s optimization (HHO), and Artificial Butterfly Optimization Algo-
rithm [ABOA] are few recent algorithms in the SI category. Various researchers have utilized the SI
algorithms due to their versatility and simplicity. Laws of physics inspire physics-based algorithms.
For instance, gravitational search algorithm, simulated annealing, Sine-Cosine Algorithm (SCA),
Atom Search Optimization (ASO) algorithm, Equilibrium Optimizer (EO), multi-verse optimizer,
and Henry gas solubility algorithm (HGSA) belongs to this category. Human behavior and
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interaction in society inspire Human-based techniques. For instance, teaching-learning-based opti-
mization, cultural evolution algorithm, and the volleyball premier league [11–16]. The advantage
of using such techniques to solve real-world problems is that they deliver the best outcomes in a
short period, even for huge problem sets [17–19]. To address the FS problem, all the above-said
algorithms and their binary variants have been used.

The authors of [19] suggested a binary GWO (BGWO) algorithm hybridized with a two-
stage mutation scheme for the FS problem by utilizing the sigmoid function to map the basic
version to the binary version. The authors of [20] presented a binary SSA accompanied by
crossover for the feature selection problem using various transfer functions to alter the SSA into
its binary version. To overcome the FS challenge, the authors of [21] proposed a binary variant
of ABOA by using two transfer functions: V-shaped and S-shaped. The authors of [22] presented
binary DA (BDA) for FS based on eight transfer functions. The benefit is that the likelihood
of changing the location of an individual during the initial stages is strong, making it easier to
discover different solutions from the initial population. The authors of [23] presented an improved
BDA version by combining a hyper learning scheme called HLBDA. The sigmoid function is
utilized to convert the algorithm into binary search space. The authors of [24] proposed a binary
symbiotic organism search algorithm based on the wrapper technique that uses a time-varying
mechanism as the FS process. To address the FS problem, the authors of [25] utilized HGSA,
in which k-nearest neighbor (kNN) and Support Vector Machine (SVM) were used to validate
the selected features. The authors of [26] presented a binary SCA (BSCA) for the FS problem
using eight transfer functions to alter into its binary version. The authors of [27] presented a
binary ASO (BASO) for the wrapper FS problem using eight transfer functions to alter into
its binary version. The authors of [21] suggested binary EO (BEO) and its improved versions
for the wrapper-based FS problems using the Sigmoid function. The authors of [28] suggested
binary MPA (BMPA) and its improved versions for wrapper-based FS problems. The continuous
version of MPA is converted into binary variants using Sigmoid and eight transfer functions.
Often seen as research approaches for wrappers-FS problems are metaheuristic techniques such
as the simulated annealing, GA, DE, ant lion optimization algorithm, harmony search algorithm,
and particle swarm optimization algorithm. Please see the literature [29] for more information
on metaheuristics for the FS problem. The authors of [30,31] introduced quadratic HHO and
enhanced WOA for high dimensional feature election problems. Can conventional systems be
helpful to address the FS problem? As discussed earlier, metaheuristics have many advantages. The
free lunch theorem (NFL) is the solution to this situation, stating that no algorithm can address
all classification problems [32]. For FS problems, one algorithm’s final output for a database would
be excellent, while another algorithm’s success may be impaired.

Therefore, in this paper, a binary variant of a recently proposed Hunger Games Search
Optimization (HGSO) algorithm [33] is proposed to handle the feature selection problem. The
suggested HGSO is based on animals’ hunger-driven and social behaviors. This dynamic, strength
and conditioning search approach uses the basic principle of “Hunger” as one of the essential
homeostatic incentives and explanations for behavior, actions, and decisions to allow the optimiza-
tion technique to be more intuitive and straightforward for the researcher’s existence of all species.
The following are the reasons for using the HGSO techniques to optimize the FS problem in
this study. Initially, the two segments demonstrate that the metaheuristic procedure outperforms
other state-of-the-art techniques in solving these problems. As a result, we’d like to put the latest
HGSO algorithm on the examination. Second, the HGSO method is a brand-new metaheuristic
algorithm that has yet to be implemented to FS problems effectively. Finally, an evaluation of
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the proposed algorithm with sophisticated, recent, and high-efficient algorithms indicates that the
proposed HGSO algorithm possesses the optimal or suboptimal solution with typically higher
classification efficiency for problems studied (i.e., fewer iterations or less runtime). This paper
suggests two new discrete HGSO versions, called BHGSO-V and BHGSO-S, to make the FS
problem easier to handle. The HGSO algorithm uses V- and S-shaped transfer functions to convert
a continuous HGSO algorithm to a binary form. To validate the number of selected features, the
kNN algorithm is used in this paper. The following are the highlights of the paper.

• A new binary variant of the HGSO algorithm is formulated using different transfer
functions.

• BHGSO-V and BHGSO-S algorithms are applied to low, medium, and high dimensional
FS problems.

• The performance of the BHGSO algorithm is compared with other state-of-the-art
algorithms.

• Statistical tests, such as Friedman’s test and Wilcoxon Signed Rank test, have been
conducted.

The structure of the paper is organized as follows. Section 2 explains the basic concepts of
the HGSO algorithm. Section 3 explains how the continuous HGSO algorithm is altered to a
binary version using V- and S-shaped transfer functions. Section 4 discusses the results and further
discussion while validating the performance of the proposed algorithm using 16 UCI datasets.
Section 5 concluded the paper.

2 Hunger Games Search Optimization (HGSO) Algorithm

The Hunger Games Search Optimization (HGSO) algorithm was introduced by Yang
et al. [33] in 2021 for continuous optimization problems. The HGSO algorithm is inspired by the
everyday actions of animals, such as nervousness of being slain by predators and hunger. This
section of the paper explains the mathematical modeling of the HGSO algorithm. The modeling
is based on social choice and hunger-driven actions.

2.1 Approach Food
The approaching behavior of hunger is mathematically modeled in this subsection. The game

instructions are presented in Eq. (1), which describes the foraging hunger and individual support-
ive communication actions. The mathematical expression given in Eq. (1) imitates the contraction
mode.

−−−−−→
X(t+ 1)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−−→
X(t) · (1+ randn(1)), r1 < l

−→
W1 · −→Xb+ �R · −→W2 · |−→Xb−−−→

X(t)|, r1 > l, r2 >E

−→
W1 · −→Xb− �R · −→W2 · |−→Xb−−−→

X(t)|, r1 > l, r2 <E

(1)

where
−−→
X(t) denotes the position of all individual’s,

−→
Xb denotes the position of best individual,

−→
W1 and

−→
W2 are hunger weights of hunger, the value of �R is between [−a, a], r1 and r2 are

random numbers between [0, 1], randn(1) denotes a normal distributed random number, t is
current iterations. The parameter l is the control variable of the HGSO algorithm, which controls
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the sensitivity of the algorithm. E denotes variation control for all positions, which is stated in
Eq. (2).

E = sech(|F(i)−BF |) (2)

where F(i) denotes the cost function value of each population, i ∈ 1, 2, . . . ,n, BF denotes the best
cost function value obtained during the current iteration, and Sech denotes hyperbolic function

and is equal to
(
sech(x)= 2

ex+ e−x

)
. The expression for �R is given in Eq. (3).

�R= 2× a× rand− a (3)

a= 2×
(
1− t

Maxiter

)
(4)

where Max_iter denotes the maximum number of iterations and rand denotes a random number
between [0, 1].

2.2 Hunger Role
The hunger behavior of all individuals during the search is mathematically modeled in this

subsection. The expression for
−→
W1 is presented in Eq. (5).

−−−→
W1(i)=

⎧⎪⎨
⎪⎩
hungry(i) · N

SHungry
× r4, r3 < l

1 r3 > l

(5)

The expression for
−→
W2 is presented in Eq. (6).

−−−→
W2(i)= (1− exp(−|hungry(i)−SHungry|))× r5× 2 (6)

where N denotes the population size, hungry denotes the starvation of each population, SHungry
denotes the sum of starving feelings of all populations, i.e., sum(hungry), and r3, r4 and r5 denote
random numbers between [0, 1]. The starvation of each population is mathematically modeled in
Eq. (7).

hungry(i)=
{
0, AllFitness(i)==BF

hungry(i)+H, AllFitness(i)!=BF
(7)

where AllFitness(i) denotes the cost function value of each population in the current iteration.
A new starvation H is supplementary based on the actual starvation. The expression for H is
denoted in Eq. (8).

H =
{
LH × (1+ r), TH <LH

TH, TH ≥LH
(8)

TH = F(i)−BF
WF −BF

× r6× 2× (UB−LB) (9)
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where H is restricted to a lower bound, LH, r denotes a random number between [0, 1], WF and
BF denote the worst fitness and best fitness attained during the current iteration, respectively, F(i)
denotes the fitness of each population, r6 represents a random number in the range of [0, 1], and
LB and UB denote the lower and upper limits of the dimensions, respectively. The pseudocode
and flowchart of the HGSO algorithm are displayed in Algorithm 1 and Fig. 1, respectively.

Algorithm 1: Pseudocode of HGSO Algorithm
Initialize the variables, such as N, Max_iter, l, D, and SHungry
Initialize the individuals’ positions Xi (i = 1, 2,. . ., N)
While (t ≤ Max_iter)

Find the cost function value of all populations
Update BF, WF, Xb, and BI
Find the Hungry, W1, and W2 using Eqs. (7), (5) and (6), respectively
For each population

Find E by Eq. (2)
Update R and positions by Eqs. (3) and (1)

End For
t= t + 1

End While
Return BF and Xb.

Figure 1: Flowchart of the HGSO algorithm
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3 Proposed Binary Hunger Games Search Optimization (BHGSO) Algorithm

The HGSO algorithm is a recently developed population-based algorithm that imitates hunger
hunting behavior for food. In terms of avoidance of local optima, exploitation, exploration, and
convergence, the HGSO algorithm outperforms the other population-based algorithms. It is proved
by the inventors of the HGSO algorithm that the HGSO performs better on benchmark functions.
Due to a better balance between the exploration and exploitation phases of the HGSO algorithm,
the convergence and solution diversity is better in the HGSO algorithm. Therefore, the benefits
mentioned above motivated the researchers to use the HGSO algorithm in real-world applications,
including wrapper-based FS problems, due to its appealing properties.

In the wrapper-based FS process, the classification model is used for training and validation
at each phase, and then a sophisticated optimization technique is used to reduce the number
of iterations. Besides, the search space is likely to be highly nonlinear, with numerous local
optima. Generally, continuous optimization techniques predict feature combinations that optimize
classification efficiency, and populations are used in the search space with d-dimension at positions
[0, 1]. In contrast, binary versions are supposed to perform well if used similarly since the search
space is restricted to two values for every dimension (0, 1). Furthermore, binary operators are
easier to understand than continuous operators [34]. The primary reason for creating a binary
representation of the HGSO algorithm is that the solutions to FS problems are restricted to
binary values of 1 and 0. For the FS problem, a new binary HGSO (BHGSO) algorithm is
suggested in this study. It can be shown that each individual can change its location using either
the local or global search stages. To do so, a transfer function (TF) must be used to assign
the hungry values to the probabilities of starvations so that the position can be updated. In
other terms, a TF describes the likelihood of changing the hunger location vector between 0
to 1 or 1 to 0. Essentially, the binary search space is a hypercube, with the populations of the
HGSO algorithm only being able to shift to the hypercube’s far edges by swapping different bit
numbers. The proposed binary versions of the HGSO algorithm work based on updating the
hunger location with the likelihood of its food. To accomplish this, a TF must be used to map
the values to probability to update the hunger positions. To put it another way, a TF determines
the probability of changing the vector position from 0 to 1 and 1 to 0. Two TFs, S- and V-shaped
TFs, are used to create two binary variants, BHGSO-S and BHGSO-V, respectively.

3.1 S-Shaped Binary Hunger Games Search Optimization (BHGSO-S) Algorithm
As discussed, the new positions of the hunger found through local or global search can

have continuous output, but these continuous positions should be converted into binary. This
transformation is accomplished by changing continuous positions of each dimension utilizing a
Sigmoidal (S-shaped) TF, which directs the hunger to travel in a binary location [35]. As shown
in Eq. (10) and Fig. 2a, the S-shaped is a typical TF.

S(Fki (t))= 1

1+ e−Fki (t)
(10)

where Fki denotes the continuous value of ith hunger in the kth dimension at the current itera-
tion t. The S-shaped TF’s value still seems to be continuous, so it must be used as the threshold
for reaching the binary values. The S-shape TF transforms an infinite input to a finite output in a
stable way. It is worth noting that as the TF’s trajectory increases, the likelihood of calculating the
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position vectors increases. In a sigmoidal equation, the widely used stochastic threshold is used
to achieve the binary value, as shown in Eq. (1l).

−−−−−→
X(t+ 1)=

{
0, if rand < S(Fki (t))

1, if rand ≥ S(Fki (t))
(11)

where
−−−−−→
X(t+ 1) and Fki (t) denote the location of decision variables and the fitness of the ith

population at iteration t in the kth dimension.

(a) (b)

Figure 2: Characteristic curves; (a) S-shaped TF, (b) V-shaped TF

3.2 V-Shaped Binary Hunger Games Search Optimization (BHGSO-V) Algorithm
Rather than an S-shaped TF, a V-shaped TF approach is defined in this paper, and Eqs. (12)

and (13) are used to accomplish this process [36,37]. Fig. 2b shows the steps involved in using the
proposed TF to force hunger to direct in a binary position.

V(Fki (t))=
∣∣∣∣erf

(√
π

2
×Fki (t)

)∣∣∣∣ (12)

Eq. (12) can be rewritten as follows.

V(Fki (t))=
∣∣∣∣∣∣
√

π

2
×

∫ √
π
2 ×Fki (t)

0
e−t

2

∣∣∣∣∣∣ (13)

The threshold directions can be mathematically denoted in Eq. (14).

−−−−−→
X(t+ 1)=

⎧⎪⎨
⎪⎩
−−→
X(t)

−1
, if rand < V(Fki (t))

−−→
X(t)

−1
, if rand ≥ V(Fki (t))

(14)

Eq. (12) is used as the TF in this binary method to convert the position of hunger to the
probabilities of adjusting the components of the location vectors. As a result, the location vectors
of hunger are modified using the rules of Eq. (14). The V-Shaped TF has the advantage of not
forcing hunger to take a value of 0 or 1. To put it another way, it allows hunger to turn to the
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compliments only after the fitness values are high; then, the hunger would remain in the current
location due to their low fitness value.

3.3 Binary Hunger Games Search Optimization Algorithm for FS Problem
FS is a binary optimization process in which the populations can only choose between

[1 or 0]. A one-dimensional vector represents any solution; the length is determined by the number
of attributes (nf ) in the database. Any cell may have one of two values, either 0 or 1, in which 1
specifies that the respective feature is chosen and 0 specifies that the feature is not chosen.

In general, the FS problem is a multi-objective optimization problem in which two conflicting
objectives, such as choosing the smallest nf while maintaining the highest classification accuracy.
The proposed binary optimization approaches are used to solve this multi-objective FS problem.
In an FS problem, the less nf and the highest classification accuracy are considered the best. The
fitness function evaluates each solution using the KNN classifier to measure the accuracy rate and
the nf chosen. The fitness function in Eq. (15) is used to test the strategies, the foreordained goal
of finding a balance between the nf and classification accuracy.

Fitness= αγr(D)+β
|R|
|N| (15)

where α ∈ [0, 1], β = (1−α), γr(D) denotes the rate of a classification error of the KNN, |R|
denotes the cardinality of the nf , and |N| denotes the total number of attributes in the database.
The α and β denote two variables concerning the classification superiority and subset length. The
overall flowchart of the BHGSO algorithm for FS problems is shown in Fig. 3.

Figure 3: Overall flowchart of BHGSO algorithm for the FS problems

4 Results and Discussion

4.1 Dataset Explanation
Sixteen benchmark datasets from the UCI data source were selected for experimentation

to verify the output of the proposed binary approaches. Tab. 1 shows the identified datasets,
including the number of instances and features in each dataset. The motive behind choosing such
datasets is that they include a range of instances and features that reflect various issues that
the proposed binary strategies would be evaluated on. A collection of high-dimensional datasets



566 CMC, 2022, vol.70, no.1

is also chosen to evaluate the efficiency of the suggested technique in high search spaces. Each
dataset is split into cross-validation groups for assessment purposes. In K-fold cross-validation, the
dataset is split into several folds, with K − 1 folds used for training and the remaining set used for
testing. This operation is repeated for M times. As a result, for each dataset, each algorithm is
evaluated K×M times. The training portion is used to train the classifier during the optimization,
while the testing portion is used to test the classifier’s output while it is being optimized. The
validation portion is used to evaluate the attribute set chosen by the trained classifier.

Table 1: Datasets selected for this study

Data set Set No. Number of features Number of instances Dimension Source

Arrhythmia DS1 279 452 Medium UCI
Coimbra DS2 10 216 Low
Breast cancer DS3 10 699 Low
COIL20 DS4 1024 1440 High
Colon DS5 2000 62 High
Glass DS6 10 214 Low
Heart failure DS7 13 299 Low
Horse DS8 28 368 Low
Ionosphere DS9 34 351 Medium
Leukemia DS10 7070 72 High
Lung DS11 3312 203 High
Lymphography DS12 18 48 Low
ORL DS13 1024 400 High
TOX-171 DS14 5748 171 High
Yale DS15 1024 165 High
Zoo DS16 16 101 Low

Based on the KNN classifier, a wrapper-based method for FS has been used in this paper,
with the best option (k = 5) being used on all datasets. Each population represents a single
set of features during the training phase. The training fold is used to measure the efficiency of
the KNN classifier on the validation fold during the optimization phase to direct the optimal
feature subclass selection criteria. In contrast, the test fold is kept private from the process and is
only used for ending assessment purposes. The suggested FS approaches are compared to some
state-of-the-art approaches, including BEO, BMPA, BASO, BGWO, HLBDA, and BSCA. Tab. 2
details the parameter settings of all algorithms. The proposed and other selected algorithms are
implemented in MATLAB, which runs on Intel Core™ i5-4210U CPU @2.40 GHz with Windows
8 operating system. All algorithms run 30 times for fair comparison on each dataset.

4.2 Evaluation Criteria
In each run of all algorithms, the following procedures are applied to the datasets.
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Table 2: Parameter settings of all algorithms

Algorithms Parameters Values

Common to all algorithms K for cross-validation 5
Number of iterations 100
Population size 10
Number of runs 30
Dimensions Number of features
Domain {0, 1}-Binary

BHGSO pCR, βmin and βmin 0.8, 0.2 and 0.8
BEO [22] a1, a2, and RP 2, 1, and 0.5, respectively
BMPA [29] FADs, p 0.5, 0.5
BSCA [27] a 2
BGWO [20] a [0, 2]
HLBDA [24] pl, gl 0.4, 0.7
BASO [28] α and β 50 and 0.2

Classification Accuracy: It is a metric that defines how accurate a classification model is for
a given set of features, i.e., the number of features accurately categorized, and it is measured as
follows:

Average Accuarcy= 1
M

M∑
j=1

1
N

N∑
i=1

match(Ci,Li) (16)

where N signifies the number of test setpoints, M signifies the number of runs, Ci denotes the
output label for datapoint i, match denotes the comparator that returns 0 when two labels are not
identical, and 1 when they are same, and Li denotes the reference label for i.

Average Selected Features: It represents the average of the nf over M times and is defined as
follows.

Average Selected Features= 1
M

M∑
i=1

size(g∗) (17)

where size(g∗) denotes the number of attributes chosen in the testing dataset.

Statistical Mean: It shows the average solutions obtained by running each method M times
and can be expressed as a collection of follows.

Mean= 1
M

M∑
i=1

size(g∗i) (18)

where g∗i denotes the optimal fitness in the ith run.
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Statistical Standard Deviation (STD): It describes the variety of the optimal fitness produced
by running algorithm M times and can be expressed in the following way.

STD=
√√√√ 1
M− 1

M∑
i=1

(size(g∗i)−Mean)2 (19)

Statistical Best: It describes the best fitness attained by running an algorithm over M times.

StatisticalWorst: It describes the worst fitness attained by running an algorithm over M times.

Average Run Time (RT): It describes each algorithm’s real RT in seconds over diverse runs,
and it is expressed as follows.

Average RT = 1
M

M∑
i=1

RTo,i (20)

Wilcoxon Rank-SumTest (WSRT) and Friedman’s Rank Test (FRT): WSRT and FRT statistical
tests are utilized to see whether the solutions of the suggested algorithm were statistically dissimi-
lar from other techniques. In WSRT, all of the values are assumed to rank as a single group, and
then the ranks of each group are introduced. The null premise states that the two data points
come from a similar individual and that any variances in the rank sums are due to sampling error.
This statistical test generates a p-value parameter used to compare the implication stages of two
techniques. Similarly, FRT also helps in assigning the rank based on the best solutions obtained
over the M runs of all algorithms.

4.3 Simulation Results
The convergence curves of proposed BHGSO-V and BHGSO-S algorithms and other selected

algorithms on sixteen datasets are shown in Fig. 4. It is discovered that the proposed BHGSO-
V and BHGSO-S algorithms can typically deliver excellent convergence behavior, outperforming
other approaches in the analysis of optimal feature subsets. Out of two proposed algorithms, the
BHGSO-V algorithm can converge faster to discover the best optimum in all high-dimensional
datasets (Colon, Leukemia, TOX_171, COIL20, Lung, and ORL). The outcome strongly suggests
the proposed BHGSO-V’s dominance in high-dimensional FS problems. The characteristic that
the hunger maintains strengthened and finds the best solutions is one reason why BHGSO shows
high convergence speed.

The best fitness, mean fitness, worst fitness, and standard deviation (STD) of fitness obtained
by all algorithms are presented in Tabs. 3–6, respectively. On all 16 datasets, BHGSO-V perceived
the optimum best fitness values, as shown in Tab. 3. However, BHGSO-S obtained the best fitness
only for five datasets out of 16 datasets. Next to BHGSO-V, BMPA, BEO, HLBDA, BGWO,
BHGSO-S, BASO, and BSCA gives the best fitness values. Out of all algorithms, the proposed
BHGSO-V has consistently shown a high level of commitment when dealing with FS tasks.
According to Tab. 4, in most cases (11 datasets), the proposed BHGSO-V algorithm responded to
the optimum mean fitness value, followed by BEO (nine datasets), BMPA (six datasets), BHGSO-S
(five datasets), BGWO (five datasets). As a result, the BHGSO-V algorithm can frequently find the
optimal solution feature subset, resulting in acceptable outcomes. The V-shaped transfer function
is mainly responsible for BHGSO-V’s excellent search capability in addressing the FS problem.
The STD of the objective function value obtained by the BHGSO-V algorithm is less compared
to all selected algorithms, followed by BMPA, BGWO, BEO, BHGSO-S, BASO, and BSCA, as
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shown in Tab. 5. In comparison to all, the proposed BHGSO-V algorithms can provide highly
reliable performance. Boldface in all tables indicates the best result among all algorithms.

Figure 4: Convergence curves of all algorithms on all selected datasets

The average accuracy and STD of the classification accuracy values obtained by all algorithms
are listed in Tabs. 6 and 7, respectively. As seen in Tab. 6, the average accuracy obtained by
BHGSO-V is better (i.e., 15 datasets), followed by BMPA, BEO, BHGSO-S, BGWO, HLBDA,
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BASO, and BSCA. As seen in Tab. 7, the STD of the classification accuracy obtained by the
proposed BHGSO-V algorithm is better (i.e., 12 datasets), which means the reliability of the
algorithm is better related to other techniques. As shown, the BHGSO-V algorithm outperformed
other approaches in obtaining the best feature subset in most datasets. The boxplot analysis of
eight algorithms, on the other hand, is shown in Fig. 5. In the present research, the proposed
BHGSO algorithm gave the best median and mean values, as shown in Fig. 5. The outcomes
show that the BHGSO algorithm is effective in maintaining better classification accuracy.

Table 3: Best fitness values of all algorithms

Algorithm BHGSO-V BHGSO-S BEO BMPA HLBDA BGWO BSCA BASO

DS1 1.453E-01 1.554E-01 1.665E-01 1.557E-01 1.556E-01 1.920E-01 2.023E-01 1.909E-01
DS2 6.036E-01 6.036E-01 6.036E-01 6.036E-01 6.036E-01 6.036E-01 6.036E-01 6.036E-01
DS3 1.724E-02 1.724E-02 1.724E-02 1.724E-02 1.724E-02 1.724E-02 3.861E-02 1.724E-02
DS4 3.809E-04 4.883E-04 8.008E-04 4.854E-03 4.092E-03 1.479E-02 1.511E-02 1.145E-02
DS5 5.000E-06 8.000E-05 6.500E-05 5.000E-06 3.000E-05 1.695E-01 1.693E-01 8.709E-02
DS6 1.000E-03 1.000E-03 1.000E-03 1.000E-03 1.000E-03 1.000E-03 1.000E-03 1.000E-03
DS7 2.189E-01 2.189E-01 2.189E-01 2.189E-01 2.189E-01 2.189E-01 2.548E-01 2.189E-01
DS8 3.571E-04 7.143E-04 3.571E-04 3.571E-04 3.571E-04 7.143E-04 4.247E-02 1.786E-03
DS9 1.532E-02 2.976E-02 2.946E-02 2.917E-02 3.034E-02 4.478E-02 7.307E-02 5.863E-02
DS10 1.132E-05 1.683E-04 3.678E-05 2.546E-05 5.516E-05 1.461E-01 1.460E-01 1.460E-01
DS11 2.144E-04 2.492E-02 2.489E-02 2.484E-02 2.490E-02 2.946E-02 2.942E-02 2.949E-02
DS12 7.161E-02 1.046E-01 7.161E-02 7.216E-02 7.161E-02 1.046E-01 7.161E-02 1.057E-01
DS13 3.798E-02 6.338E-02 3.881E-02 5.076E-02 5.205E-02 7.885E-02 7.874E-02 6.646E-02
DS14 3.026E-02 3.077E-02 6.005E-02 3.113E-02 9.027E-02 9.226E-02 1.211E-01 6.302E-02
DS15 1.509E-01 2.105E-01 2.412E-01 1.810E-01 2.405E-01 2.746E-01 2.746E-01 2.744E-01
DS16 6.250E-04 6.250E-04 6.250E-04 6.250E-04 6.250E-04 6.250E-04 1.250E-03 6.250E-04

Table 4: Mean fitness values of all algorithms

Algorithm BHGSO-V BHGSO-S BEO BMPA HLBDA BGWO BSCA BASO

DS1 1.714E-01 1.859E-01 1.739E-01 1.834E-01 1.986E-01 2.224E-01 2.242E-01 2.005E-01
DS2 6.036E-01 6.036E-01 6.036E-01 6.036E-01 6.905E-01 6.036E-01 7.518E-01 6.469E-01
DS3 1.724E-02 2.049E-02 1.724E-02 1.724E-02 3.249E-02 1.724E-02 4.144E-02 2.374E-02
DS4 8.506E-03 3.262E-03 4.398E-03 4.984E-03 1.026E-02 1.571E-02 2.103E-02 1.496E-02
DS5 1.300E-05 6.000E-05 1.030E-04 1.140E-04 9.800E-05 1.696E-01 1.860E-01 1.531E-01
DS6 1.000E-03 1.000E-03 1.000E-03 1.000E-03 1.200E-03 1.000E-03 2.600E-03 1.000E-03
DS7 2.189E-01 2.189E-01 2.189E-01 2.189E-01 2.564E-01 2.189E-01 4.833E-01 2.329E-01
DS8 3.571E-04 1.263E-01 3.571E-04 3.571E-04 1.456E-02 1.571E-03 1.930E-01 4.026E-02
DS9 4.649E-02 4.466E-02 3.229E-02 3.494E-02 3.541E-02 5.992E-02 9.127E-02 5.963E-02
DS10 4.017E-05 4.260E-02 4.498E-05 4.328E-05 2.836E-02 1.462E-01 1.461E-01 1.460E-01
DS11 2.015E-02 3.488E-02 2.534E-02 2.498E-02 2.541E-02 3.943E-02 5.411E-02 4.427E-02
DS12 9.209E-02 1.192E-01 9.165E-02 9.187E-02 1.059E-01 1.057E-01 1.067E-01 1.064E-01
DS13 5.096E-02 4.787E-02 6.483E-02 5.614E-02 5.721E-02 8.640E-02 9.117E-02 7.652E-02
DS14 8.429E-02 6.505E-02 3.639E-02 6.044E-02 1.021E-01 1.156E-01 1.446E-01 1.271E-01
DS15 1.993E-01 2.346E-01 2.601E-01 2.109E-01 2.597E-01 2.747E-01 3.224E-01 2.746E-01
DS16 7.500E-04 6.250E-04 6.250E-04 6.250E-04 6.250E-04 6.250E-04 2.250E-03 7.500E-04
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Table 5: STD of fitness values of all algorithms

Algorithm BHGSO-V BHGSO-S BEO BMPA HLBDA BGWO BSCA BASO

DS1 6.171E-03 2.107E-02 3.408E-02 1.455E-02 3.436E-02 2.098E-02 1.334E-02 9.430E-03
DS2 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.190E-01 0.000E+00 1.393E-01 9.670E-02
DS3 7.265E-03 0.000E+00 0.000E+00 0.000E+00 8.981E-03 0.000E+00 3.753E-03 8.898E-03
DS4 1.581E-03 2.812E-03 2.567E-03 2.937E-03 5.839E-03 2.719E-03 4.351E-03 2.436E-03
DS5 2.329E-05 4.962E-05 3.818E-05 8.367E-06 7.538E-05 1.153E-04 3.686E-02 3.688E-02
DS6 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.472E-04 0.000E+00 1.517E-03 0.000E+00
DS7 0.000E+00 0.000E+00 0.000E+00 0.000E+00 8.392E-02 0.000E+00 2.924E-01 1.446E-02
DS8 0.000E+00 1.148E-01 0.000E+00 0.000E+00 3.176E-02 8.222E-04 1.153E-01 4.168E-02
DS9 1.166E-02 1.075E-02 6.001E-03 7.643E-03 1.290E-02 1.045E-02 1.883E-02 7.382E-04
DS10 6.116E-06 6.323E-02 2.801E-05 3.696E-05 3.870E-02 2.936E-05 3.334E-05 2.716E-05
DS11 4.689E-04 1.357E-02 1.115E-02 1.080E-04 5.736E-04 1.346E-02 1.746E-02 1.346E-02
DS12 1.821E-02 1.891E-02 1.830E-02 1.799E-02 2.435E-02 8.784E-04 2.457E-02 4.648E-04
DS13 1.327E-03 5.532E-03 8.610E-03 6.835E-03 6.365E-03 6.811E-03 1.240E-02 1.052E-02
DS14 1.308E-02 2.398E-02 2.472E-02 2.039E-02 1.570E-02 2.436E-02 2.437E-02 3.800E-02
DS15 1.667E-02 2.512E-02 4.037E-02 2.994E-02 1.748E-02 1.551E-04 2.673E-02 1.559E-04
DS16 0.000E+00 2.795E-04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 9.479E-04 2.795E-04

Table 6: Average classification accuracy of all algorithms

Algorithm BHGSO-V BHGSO-S BEO BMPA HLBDA BGWO BSCA BASO

DS1 0.829 0.813 0.827 0.818 0.802 0.780 0.778 0.802
DS2 0.391 0.391 0.357 0.391 0.304 0.391 0.243 0.348
DS3 0.986 0.983 0.977 0.986 0.971 0.986 0.963 0.980
DS4 0.997 0.993 0.997 0.996 0.992 0.989 0.983 0.990
DS5 1.000 1.000 1.000 1.000 1.000 0.833 0.817 0.850
DS6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DS7 0.780 0.780 0.776 0.780 0.742 0.780 0.515 0.766
DS8 1.000 0.874 1.000 1.000 0.986 1.000 0.808 0.962
DS9 0.966 0.957 0.960 0.954 0.966 0.943 0.911 0.943
DS10 1.000 0.957 1.000 1.000 0.971 0.857 0.857 0.857
DS11 0.980 0.965 0.975 0.975 0.975 0.965 0.950 0.960
DS12 0.910 0.883 0.897 0.910 0.897 0.897 0.897 0.897
DS13 0.938 0.953 0.948 0.945 0.945 0.918 0.913 0.928
DS14 0.965 0.935 0.918 0.941 0.900 0.888 0.859 0.876
DS15 0.800 0.764 0.739 0.788 0.739 0.727 0.679 0.727
DS16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The mean and STD of the selection of the features from the large datasets are shown in
Tabs. 8 and 9, respectively. In sixteen datasets, the proposed BHGSO-V had the smallest feature
size (12 datasets), followed by BMPA, according to the findings (nine datasets). Unlike BSCA,
BASO, BGWO, HLDBA, BEO, and BMPA, the BHGSO algorithm can typically find a small
subset of best features that better represent the target definition. The BHGSO algorithm can avoid
local optima and efficiently interpret the best FS solution. The lowest values of STD obtained by
BHGSO prove the reliability of the algorithm.
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Table 7: STD classification accuracy of all algorithms

Algorithm BHGSO-V BHGSO-S BEO BMPA HLBDA BGWO BSCA BASO

DS1 6.086E-03 2.137E-02 3.388E-02 1.491E-02 3.461E-02 2.137E-02 1.361E-02 9.296E-03
DS2 0.000E+00 0.000E+00 7.778E-02 0.000E+00 1.191E-01 0.000E+00 1.395E-01 9.722E-02
DS3 1.241E-16 6.435E-03 7.881E-03 1.241E-16 8.811E-03 1.241E-16 3.217E-03 7.881E-03
DS4 2.455E-03 2.905E-03 2.455E-03 2.905E-03 4.658E-03 1.553E-03 4.527E-03 2.455E-03
DS5 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.727E-02 3.727E-02
DS6 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
DS7 0.000E+00 0.000E+00 7.580E-03 0.000E+00 8.338E-02 0.000E+00 2.942E-01 1.418E-02
DS8 0.000E+00 1.152E-01 0.000E+00 0.000E+00 3.063E-02 0.000E+00 1.158E-01 4.155E-02
DS9 0.000E+00 1.010E-02 6.389E-03 7.825E-03 1.278E-02 1.010E-02 1.863E-02 1.195E-02
DS10 0.000E+00 6.389E-02 0.000E+00 0.000E+00 3.912E-02 0.000E+00 0.000E+00 0.000E+00
DS11 0.000E+00 1.369E-02 1.118E-02 0.000E+00 0.000E+00 1.369E-02 1.768E-02 1.369E-02
DS12 1.889E-02 1.889E-02 2.438E-02 1.889E-02 2.438E-02 1.241E-16 2.438E-02 1.241E-16
DS13 0.000E+00 5.590E-03 1.046E-02 6.847E-03 6.847E-03 6.847E-03 1.250E-02 1.046E-02
DS14 2.461E-02 2.461E-02 1.315E-02 2.080E-02 1.611E-02 2.461E-02 2.461E-02 3.835E-02
DS15 1.660E-02 2.535E-02 4.066E-02 3.030E-02 1.660E-02 0.000E+00 2.710E-02 0.000E+00
DS16 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

A few statistical techniques are used to assess the proposed BHGSO algorithm’s efficacy.
Several statistical non-parametric tests are discussed in the literature. The statistical analysis in
this study is separated into two parts. First, the Friedman rank test (FRT) is utilized to assess
all algorithms’ accuracy. The authors discovered that there is a substantial difference among all
algorithms in this paper. The FRT of all algorithms is shown in Tab. 10. Based on the score
obtained by all algorithms, the ranking is provided to all algorithms. The proposed BHGSO
algorithm stands first among all selected algorithms for all datasets. For pairwise comparisons,
the Wilcoxon signed-rank test (WSRT) is used in this paper. If the p-value is larger than 0.05,
the results of the two techniques are considered to be identical; otherwise, the two methods are
significantly different. The WSRT of the BHGSO algorithm against all other methods is shown in
Tab. 11. According to the findings, the suggested BHGSO’s classification results were significantly
higher than those of other competitors. Overall, the proposed HGSO algorithm provides the
highest classification accuracy while also reducing dimensionality. Another performance metric
called RT is illustrated in Fig. 6. From Fig. 6, it is observed that the RT of both versions of the
BHGSO algorithm is significantly less for more than 10 datasets.

4.4 Discussions
The proposed BHGSO algorithm was determined to be the best FS method based on the

findings. The BHGSO-V algorithm enhanced the global optimum detection over the complex
databases in terms of convergence and a minimum feature selection. The proposed BHGSO
algorithms can able to sustain a decent acceleration during the iterations. The results in Tabs. 3–5
demonstrated the superiority of the BHGSO algorithms in terms of best, mean, and STD of the
fitness values. The average accuracy and STD of the classification accuracy shown in Tabs. 6 and
7 prove the performance of the algorithm in classifying the datasets. The selected features shown
in Tabs. 8 and 9 show the superiority of the BHGSO algorithms in selecting the optimal features.
Furthermore, the BHGSO performed more consistently than the traditional binary algorithms,
as evidenced by lower STD values. According to the experimental analysis results, the suggested
BHGSO algorithm can often outperform the BEO, BMPA, BGWO, HLBDA, BASO, and BSCA
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classification. Clearly, the BHGSO features selected can typically provide high-quality data, which
helped to improve prediction ability. The BHGSO effectively selected appropriate attributes and
omitted most of the obsolete ones in a high-dimensional dataset like Colon, Leukemia, TOX_171,
COIL20, Lung, and ORL. Compared to all selected algorithms, the suggested BHGSO is more
capable of choosing significant features.

Figure 5: Boxplot analysis of all algorithms on all selected datasets
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Table 8: Mean selected feature subsets of all algorithms

Algorithm BHGSO-V BHGSO-S BEO BMPA HLBDA BGWO BSCA BASO

DS1 30.00 85.00 65.60 56.80 79.40 128.20 118.20 130.00
DS2 1.00 1.00 1.80 1.00 1.80 1.00 2.80 1.20
DS3 3.00 3.40 4.40 3.00 4.00 3.00 4.40 3.80
DS4 52.40 167.00 100.60 88.00 206.20 482.20 463.60 476.40
DS5 22.80 12.00 22.00 2.60 19.60 922.60 897.60 912.00
DS6 1.00 1.00 2.60 1.00 1.20 1.00 2.60 1.00
DS7 1.00 1.00 1.20 1.00 1.80 1.00 4.40 1.80
DS8 1.00 4.40 2.00 1.00 2.80 4.40 8.80 6.40
DS9 3.40 7.60 4.20 3.40 5.00 11.40 12.20 10.40
DS10 28.40 121.60 34.00 30.60 52.40 3344.40 3268.00 3234.40
DS11 195.40 75.60 116.80 75.40 219.20 1584.60 1525.40 1547.40
DS12 6.00 5.60 5.20 5.60 6.20 6.00 7.80 7.20
DS13 303.00 87.00 151.00 172.80 282.80 484.20 465.00 485.80
DS14 568.20 1588.00 833.60 1266.40 1778.60 2826.60 2758.20 2781.80
DS15 66.20 211.60 134.60 87.80 176.40 484.60 454.20 471.40
DS16 1.00 1.20 2.60 1.00 1.00 1.00 3.60 1.20

Table 9: STD of the selected feature subsets of all algorithms

Algorithm BHGSO-V BHGSO-S BEO BMPA HLBDA BGWO BSCA BASO

DS1 7.97 22.58 14.54 14.04 35.27 8.50 8.50 14.58
DS2 0.00 0.00 0.84 0.00 1.10 0.00 1.30 0.45
DS3 0.00 0.89 1.34 0.00 1.00 0.00 1.34 1.10
DS4 48.73 11.67 17.13 55.04 131.79 14.82 15.65 10.62
DS5 4.66 9.92 8.28 1.67 15.08 23.06 26.54 41.65
DS6 0.00 0.00 1.14 0.00 0.45 0.00 1.52 0.00
DS7 0.00 0.00 0.45 0.00 1.79 0.00 1.67 0.84
DS8 0.00 3.29 1.00 0.00 4.02 2.30 2.49 1.67
DS9 0.89 3.21 1.14 2.17 1.41 3.29 2.59 2.51
DS10 19.81 16.96 4.47 26.13 35.80 20.76 23.57 19.20
DS11 16.41 155.31 83.44 35.77 189.96 56.74 29.67 40.43
DS12 1.14 1.58 1.30 1.34 1.48 1.58 2.49 0.84
DS13 135.91 19.38 32.25 29.41 74.62 7.79 13.69 16.72
DS14 314.82 274.09 171.23 510.41 286.04 36.81 54.99 50.80
DS15 62.76 7.53 32.45 23.53 110.02 15.88 10.76 15.96
DS16 0.00 0.45 1.34 0.00 0.00 0.00 1.52 0.45
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Table 10: FRT of all algorithms on all datasets

Algorithm BHGSO-V BHGSO-S BEO BMPA HLBDA BGWO BSCA BASO

DS1 1.8 3.8 2.8 3.8 5 7 6.6 5.2
DS2 3.8 3.8 3.8 3.8 5.4 3.8 7.2 4.4
DS3 3.3 3.3 3.3 4 6.4 3.3 7.8 4.6
DS4 2.2 2 2.6 4.2 4.4 6.4 7.4 6.8
DS5 1.2 2.6 3.8 4.2 3.2 7.4 7 6.6
DS6 4.1 4.1 4.1 4.1 4.9 4.1 6.5 4.1
DS7 3.6 3.6 3.6 3.6 4.5 3.6 7.8 5.7
DS8 2.4 6.5 2.4 2.4 3.4 5.1 7.6 6.2
DS9 2.5 4.7 1.7 3.8 2.9 6.4 8 6
DS10 1.4 4.8 2.6 2 4.2 8 7 6
DS11 1.8 4 2.6 3.6 3.6 6.8 7.2 6.4
DS12 2.6 6 2.4 3.6 4.5 5.5 5.4 6
DS13 1.2 3.4 2.2 4.4 3.8 7.4 7 6.6
DS14 1.2 2.2 3.2 3.8 5 6.8 7.4 6.4
DS15 1.8 2.8 2.2 4.2 4 6.7 8 6.3
DS16 3.8 3.8 3.8 4.5 3.8 3.8 8 4.5
Average 2.42 3.84 2.94 3.75 4.31 5.76 7.24 5.74
Overall Rank 1 4 2 3 5 7 8 6

Table 11: WSRT of BHGSO-V against other selected algorithms on all datasets

Algorithm BHGSO-S BEO BMPA HLBDA BGWO BSCA BASO

DS1 1 0.625 0.3125 0.4375 0.125 0.1875 0.4375
DS2 1 1 1 0.5 0.5 0.125 1
DS3 1 1 1 0.25 1 0.0625 1
DS4 0.0625 0.125 0.0625 0.625 0.0625 0.0625 0.0625
DS5 0.125 0.6875 0.0625 0.625 0.0625 0.0625 0.0625
DS6 1 1 1 1 1 0.25 1
DS7 1 1 1 1 1 0.0625 0.25
DS8 0.0625 1 1 1 0.0625 0.0625 0.0625
DS9 0.875 0.0625 0.3125 0.3125 0.125 0.0625 0.0625
DS10 0.0625 0.625 0.625 0.0625 0.0625 0.0625 0.0625
DS11 0.8125 0.125 0.125 1 0.0625 0.0625 0.0625
DS12 0.125 0.625 0.875 0.75 0.25 0.25 0.125
DS13 0.0625 0.0625 0.125 0.3125 0.0625 0.0625 0.0625
DS14 0.3125 0.0625 0.3125 0.3125 0.0625 0.0625 0.125
DS15 0.1875 0.125 0.0625 0.8125 0.0625 0.0625 0.0625
DS16 1 1 1 1 1 0.0625 1
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Figure 6: RT of all algorithms on all selected datasets

5 Conclusion

Binary versions of the HGSO algorithm are introduced and used to address the FS problems
in wrapper form in this study. Either using S-shaped or V-shaped TFs, the continuous variant
of the HGSO is converted to a binary variant. The proposed techniques can be used for FS in



CMC, 2022, vol.70, no.1 577

machine learning to evaluate various algorithms’ searching abilities. The FS problem is expressed
as a multiobjective problem with an objective function reflecting dimensionality reduction and
classification accuracy. To evaluate the output, 16 datasets from the UCI repository were selected.
For evaluation, the suggested BHGSO are used in the FS problems, and the experimental out-
comes have been compared to advanced FS methods such as BEO, BMPA, HLBDA, BGWO,
BSCA, and BASO. To evaluate various aspects of results, the assessment uses a collection of
evaluation criteria. On most datasets, experimental findings showed that the proposed BHGSO
lead to better outcomes than other strategies. Furthermore, the findings, such as classification
accuracy (>95%) and run time (<5 s for low and medium dimensional problems and <10 s
for high dimensional problem), demonstrate that using a BHGSO with a V-shaped TF can
expressively boost the performance of HGSO in terms of the number of features selected and
classification accuracy. The experimental results reveal that the BHGSO-V searches the feature set
more efficiently and converges to the best solution faster than other optimizations. The continuous
HGSO was also successfully transformed into binary variants that can address several discrete
problems, including the task scheduling, traveling salesman, and knapsack problems.
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