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Abstract: Software-defined networking (SDN) is a paradigm shift in modern
networking.However, centralised controller architecture in SDN imposed flow
setup overhead issue as the control plane handles all flows regardless of size
and priority. Existing frameworks strictly reduce control plane overhead and
it does not focus on rule placement of the flows itself. Furthermore, existing
frameworks do not focus on managing elephant flows like RTSP. Thus, the
proposed mechanism will use the flow statistics gathering method such as
random packet sampling to determine elephant flow and microflow via a pre-
defined threshold. This mechanism will ensure that the control plane works
at an optimum workload because the controller only manages elephant flows
via reactive routing and rule placement respectively. Reactive routing has
reduced link bandwidth usage below the pre-defined threshold. Furthermore,
rule placement has increased average throughput and total transfer to 238%.
Meanwhile, the data plane switches will be able to forward microflows via
multipath wildcard routing without invoking controller in greater responding
time by 85 ms faster in two Transmission Control Protocol (TCP) traffic and
achieved 11% and 12% higher total transfer size and throughput respectively.
Hence, the controller’s workload reduced significantly to 48% in two TCP
traffic.
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1 Introduction

Software-defined networking (SDN) is a new concept conceived to solve these issues. Many
research said that the SDN concept is the future of Internet architecture as it provides flexibility
for users to manage the network. SDN provides an abstraction of the network, which allows
network administrators to configure those network devices seamlessly across the enterprise net-
works. SDN has simplified the overall network in terms of management and provided a global
view on the network topology. SDN manages the networks via centralised controller with the
controller located on the control plane. The data plane that comprises switches or any packet-
forwarding devices will forward packets to their destined egress point. Besides simplifying the
network architectures, SDN is also able to improve Quality-of-Service (QoS) of an industrial
cyber-physical systems, typically robotic cyber-physical system using SDN-based routing mecha-
nism [1] and network slicing purpose [2]. Further, SDN has the potential to ease the manageability
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of the Multiple-Input-Multiple-Output (MIMO) system as there are plenty of research has been
carried out to focus on improving the performance of massive MIMO system, for example, pilot
contamination [3].

Although the future of SDN has been very promising, SDN faced challenges on a large
scale or high-performance networks such as data centres or Internet service provider networks.
As the network grows, OpenFlow controllers experience overhead issues and several researchers
have proposed new architectures to resolve the dilemma. As for the first dilemma, OpenFlow used
pull-based as their read-state mechanism, which causes interference with flow entries and consumes
bandwidth during data gathering state. OpenFlow needs to generate 2N + 4 flow-entry installation
packets with a minimum of two packets in each direction that are directed to and then from a
controller [4]. Aggregating counters via wildcard mechanisms will undermine controller’s ability to
manage specific elephant flows. As a result, all flows regardless of size will be forwarded to the
controller. Additionally, controller like Floodlight not only utilises available link bandwidth but
also focus on finding the shortest path. Thus, some flows might share the same path instead of
being routed to an alternate path. As a result, link bandwidth consumption on the current path
will increase.

Conversely, focusing on reducing the controller’s workload alone whilst neglecting security pol-
icy is not sufficient as security policy is the key factor in alleviating network workload. OpenFlow
can transform security policy into a set of rules that can be installed in OpenFlow switches. Those
transformed rules will then re-route specific flows to alternate paths whereas other flows on the
default path remain unchanged. Thus, flows that are still being re-routed have the same destination
point but use a different path. In other words, the security policy respects endpoint policy but
relaxes routing policy. Rule placement can work with a firewall to help block flows based on
specific services like File Transfer Protocol (FTP) and Real time Streaming Protocol (RTSP) in a
more efficient way. Moreover, rule placement also helps in reducing bandwidth competition and
utilise unused paths by re-routing elephant flows. In this paper, a new mechanism that reduces
the controller’s workload by segregating responsibility to the data plane switches is proposed.
Additionally, rule placement is embedded to handle abnormal elephant flows such as RTSP and
FTP flows. This paper is an extension paper of [5].

This study focuses on offloading the controller’s workload and also ensuring the network flows
are optimized. In brief, this study makes the following contributions:

• An optimized approach that reduce controller’s workload by segregating responsibility to
data-plane switches

• Integrate rule placement to handle elephant flows such as RTSP and FTP flows for an
optimized network bandwidth.

The current work is implemented in an emulated environment using Mininet as there is no
hardware switch support. Further, the traffic generated for the test bed are single and two traffics
to compare the impacts of number of traffic on the link bandwidth utilisation. Due to hardware
limitation of virtual machine used to emulate network environment, the test beds can only be
tested up to two traffics.

2 Related Work

Flow statistics enables SDN architectures to manage their network resources in a more
efficient manner by having a clear overview of network resources utilization.
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2.1 Flow Statistical Collection Process
Packet sampling is one of the crucial factors that will affect controller’s workload and

bandwidth consumption. Since sFlow standard is implemented in ASIC, sFlow can associate
with OpenFlow to provide an integrated flow monitoring system [6] together with support from
hardware and software switches so that sFlow can collect data traffic from switches’ interfaces.
Flow samples collected by embedded sFlow agent in switch or router from switching or routing
ASICs will be compiled as UDP datagrams and sent to central sFlow collector which is sFlow-
RT [7] for traffic data analysis. sFlow datagrams consists of interface statistics samples that are
collected from switch’s ports that performed packet sampling function. The ASIC processor in
switch enables inbound and outbound sampling so that network administrators can monitor traffic
in a particular switch. Thus, sFlow can be configured to collect either inbound or outbound or
both inbound and outbound traffics. Fig. 1 summarizes the overall traffic data collection and
analysis process.

Figure 1: sFlow data collection process

Conversely, sFlow-RT also provides real-time traffic monitoring to see link bandwidth usage
between ports based on the customized flow attributes like flow keys and flow values. Flow
keys can be customized as source port, destination port and flow direction (ingress or egress),
whereas flow values can be set either as the number of frames or bytes. Upon starting sFlow data
collection process, sFlow will perform port mapping to OpenFlow ports.

2.2 Offload the Controller’s Workload
Currently there are few methods to reduce the controller overheads such as transfer of

controls, cache miss, and distributed control plane.
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2.2.1 Transfer of Controls
DevoFlow’s main objective is to maintain all local forwarding decisions in the data plane as

much as possible, in addition to emphasising global visibility over the network. There are two
main functions in DevoFlow, which are the transfer of controls and statistics collection. To reduce
controller workload, DevoFlow collects statistics using several methods such as sampling, triggers
and approximate counters via the data plane’s switches to detect elephant flows instead of using
the default statistics gathering method by OpenFlow such as pull-based and push-based. The three
proposed methods in DevoFlow in collecting statistics have been proved mathematically better
than the default OpenFlow statistics gathering scheme, as the default OpenFlow scheme will cause
interference with the flow entries in the switch itself and also compete with available bandwidth.
DevoFlow used any statistics gathering mechanisms such as sampling or approximate counters to
detect elephant flow. Once a flow exceeds the threshold, which is 10% of NIC bandwidth, it will
immediately trigger the controller to re-route the flows to the least-congested path via the best-fit
bin packing algorithm by Correa and Goemans [8]. Otherwise, it will be categorised as microflow.
Microflow is forwarded by a switch after controller installs flow entries reactively into switches via
oblivious routing [9,10]. Figs. 2 and 3 depict microflow and elephant flow topology in DevoFlow.

Figure 2: DevoFlow-micro flow topology

Figure 3: DevoFlow-elephant flow topology
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The second part, which is the transfer of control where switches will perform forwarding
either using rule cloning or local actions. Rule cloning focus on the Boolean CLONE flag of the
wildcard rule. If the flag is clear, the switch will follow the standard wildcard behaviour. Otherwise,
the switch will clone the rule exactly the same, and the microflow counter will be incremented
whenever any packets of the microflow match the specific rule cloned which helps reduce the
TCAM entries of the switches. Local actions can be sub-divided into multipath support and
rapid re-routing which cloneable microflow will select the best output port based on probability
distribution and backup path if the designated port encounters a problem before updating the
forwarding rules respectively. In other words, the data plane switches will forward elephant flows
to the controller and the controller will find the least-congested path between flow’s endpoints and
re-routes the flow by inserting flow entries reactively at the switches on this path. Moreover, the
controller will reactively install wildcard rules to all edge switches so that each destination will
have a unique spanning tree. Fig. 4 summarises the overall architecture of DevoFlow.

Figure 4: DevoFlow’s architecture

2.2.2 Cache Miss
Conversely, DIFANE [11] emphasised on reducing the overhead of cache misses and dis-

tributed rules in large-area networks. Overall DIFANE architecture is depicted in Fig. 5. In the
DIFANE architecture, the primary controller can partition rules and install them in all ingress
and egress switches to ensure that the packet stays on the data plane at all times. Furthermore,
the controller also generates authority rules for those elected authority switches, and authority
switch will install cache rules into ingress switches. If the first packet arrives at the ingress switch,
it will redirect back to the authority switch, and the authority switch will forward to the egress
switch but the ingress switch will forward subsequent packets directly to the egress switch if it
matches cache rules installed. Otherwise, these packets will be regarded as a cache miss, and the
ingress switch will invoke the authority switch that will update the ingress switch by updating its
forwarding table. This step taken is to ensure TCAM entries of each switch will not be overloaded
and performance will be optimised at the same time. Additionally, link state routing protocol was
also implemented to detect any topology changes, especially changes in the number of controllers,
switches, or report any downstate controller and etc. In a scalable environment, DIFANE will have
several authority switches to reduce the workload of the controller and to achieve availability. In
case any of the authority switches break down, others will take over the responsibility. At the
same time, those authority switches will provide the least stretch path for a particular rule as the
switch will direct the packets to the closest authority switches. If there are changes in the number
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of authority switches, the primary controller will re-partition rules and install all of them into
authority switches.

Figure 5: DIFANE’s architecture

2.2.3 Transfer of Controls and Maintain Data Flows in Data Plane
Kandoo [12] is a hybrid architecture that can merge DevoFlow and DIFANE as a whole

new architecture. Kandoo combined both DevoFlow and DIFANE functionalities to reduce the
controller’s functionalities and maintain data flow in the data plane as much as possible. There
is a two-level hierarchy in Kandoo. Firstly, local controllers execute local applications as close as
possible to switches. Secondly, a centralised root controller runs non-local control applications.
Each switch is managed by a local controller and one local controller can manage a few switches
as pre-configured by network administrators. The main brain would be the logically centralised
root controller which controls all local controllers. The root controller will install flow entries into
switches via the respective local controller which managed the switches. Switches increase as the
network scales and as well as the local controllers. Thus, this architecture is flexible in terms of
expanding the network. The local controller will deal with frequent events such as normal packet
flow directly to switches whereas the root controller will deal with a rare event such as elephant
flow or big packet flow with local controllers.

2.2.4 Distributed Control Plane
Solutions that offer distributed control plane are architecture for scalable intra-domain control

(ASIC) [13], HyperFlow [14], and ONIX [15]. ASIC consists of three layers: load balancing,
controller cluster and distributed system. They are for data sharing to handle large packet flows
in a large-scale environment. The load balancer which is the first layer will process the packets
received from each host and distributed evenly to the second-layer controllers. During this process,
round-robin scheduling or hash scheduling algorithm will be used to calculate the routing paths
which will generate OpenFlow entries in return. Then, these entries will be installed into corre-
sponding switches. The third layer, the storage cluster consists of a master database and many
slave databases. Master database will be responsible for data writing, whereas slave database will
be responsible for data writing. ASIC also adopts a memory caching system, Memcached [16],
to boost memory reading and writing speed. With caching, data fetching and reading time will
be reduced significantly. With these three layers, data flow initialisation will be undergoing load
balancing before routing paths are calculated and packets will be handled by multi-controller
simultaneously to prevent bottleneck on controller and switches.
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In general, HyperFlow is in charge of synchronising controllers’ network wide view, redirect-
ing OpenFlow commands target to a non-directly controlled switch to its respective controller
and redirecting replies from switches to request-originator controllers. With WheelFS [17], each
network partition can operate independently. However, minimal changes need to be made on the
controller to implement HyperFlow, which is to provide appropriate hooks to intercept commands
and serialise events. In other words, a domain should run multiple controllers at the same time,
and each controller should handle the local area OpenFlow switches. For sharing the global
information amongst those controllers, HyperFlow adopts one of the distributed file systems
named WheelFS which is used in WAN. HyperFlow’s controller architecture will be carrying out
six functions which are initialisation, publishing events, replaying events, redirecting commands
targeted to a non-local switch, proxying OpenFlow messages and replies and health checking.
During initialisation, WheelFS client will be publishing an advertisement in the control channel.
Before an event is published, HyperFlow will capture all NOX events and perform selective
serialisation on it. Then, those locally generated events will be published, and the controller state
will be updated. To monitor the controller state, HyperFlow will always listen to the controller’s
advertisements. Failure to advertise will be regarded as the controller is in downstate.

The drawback from HyperFlow and ONIX is they do not work well in handling local control
applications which is more preferred using Kandoo architecture. HyperFlow and ONIX only
support global visibility of rare events such as link-state changes rather than a frequent event like
flow arrivals. In the meantime, ASIC needs to take a longer time to calculate the routing path
if there are a large number of controllers. For HyperFlow, it only deals with infrequent events
and it is not suitable to be implemented in the data centre as some of them might need to deal
with real-time events. These three architectures also do not implement a rule placement algorithm
to seek the best route with the least network resources. Such a distributed controller clustering
mechanism is required [18].

2.3 Rule Placement
SDN architectures such as DevoFlow, DIFANE and distributed control plane are only able to

offload OpenFlow controller’s workload, but none of them are able to manage specific elephant
flows such as FTP and RTSP that might pose security risks in network security. Further, they are
not fully utilizing rule placement to reduce bandwidth competitions and utilizing unused network
paths.

As we all know, network is one of the contributing factors in successful security attacks.
With simple and easy network security management, potential network risks can be reduced
drastically. Access control rule placement enables OpenFlow to transform high-level security policy
like firewall policy into OpenFlow rules so that the data plane switches will restrict specific flows
with these rules. Fig. 6 [19] depicts an example of access control rule placement which transforms
firewall policy into forwarding rules. In the scenario, security policy was invoked and traffic to
destination IPv4 (Internet Protocol Version 4) address of 10.0.0.1 from source IPv4 address of
10.0.0.2 as well as devices with port number 22 will be blocked. These rules will be installed in
Router-1, Router-2, and Router-3. Any incoming flow passing through Router-1 that is going to
10.0.0.1 will be dropped. For Router-2, any flow that has a destination port of 22, it will be
dropped as well. Router-3 will drop any flows that is originated from 10.0.0.2.
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Figure 6: Example of access control rule placement

Reference [20] highlighted the benefits of implementing rule placement in network architec-
ture. The path selected to the egress switch does not consider path cost, delay and so on which
will impose a significant impact on the network as long as the packet flow able to reach the
destination. Each packet will have two paths, which are default flow to the controller and alternate
path. For example, path A has higher traffic than path B, priority will be given to path A as
an alternate path will be provided to the most suitable egress point, whereas path B with lower
traffic will be directed via default path to the controller for further action if rules installed are
full amongst respective switches along the network. Thus, endpoint policy unchanged but routing
policy varies when rule placement is implemented.

As rule placement shows its significance in managing network flows, it can be used to manage
elephant flows such as FTP and RTSP. With rule placement, elephant flow is able to be re-routed
to best available path. Thus, our proposed work classifies network flows such as elephant flows
according to network traffic type such as FTP and RTSP.

Based on Tab. 1 above, it clearly shows that the SDN work that offload controller’s workload
do not optimize network bandwidth. Therefore, we aim to contrive an approach that can reduce
controller’s workload and optimizing network bandwidth by imposing rule placement on elephant
flows.
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Table 1: Summary of SDN related works

SDN work DevoFlow DIFANE ASIC Kandoo HyperFlow & Onix

Num. of
controllers

(Centralized) one (Centralized) one Scale as network
grows

—One root
controller

—Local controller
depend on
number of
switches

Based on
requirements

Controller’s
Responsibility

Compute
least-congested
path for elephant
flow & install flow
entries for
microflow
reactively

—Generate
partition &
authority rules

—Install cache
rules in ingress
switch

To calculate
routing path

—Root → Manage
rare event

—Local → Manage
frequent event

Use WheelFS to
communicate
among controllers

Switch’s
Responsibility

Detect elephant
flow and invoke
controller

—Authority
switch → Cache
rule using
wildcard
mechanism

—Normal switch
→ Forward
matched packet
or direct back to
authority switch
if found
unmatched rule

Normal
forwarding

Detect elephant
flow

Does not concern
about switch in
data plane

Drawbacks —Controller
install wildcard
rules reactively
for microflows

—No rule
placement
included

—Global visibility
affected

—No rule
placement

—Longer time to
calculate
routing path
among large
number of
controllers

—No rule
placement

—Resource
dependent in
order to support
policy
enforcement

—No rule
placement

—Local controller
will not process
OpenFlow event
unless has been
subscribed by
root controller

—No rule
placement

3 Methodology

The proposed mechanism is emulated using Mininet through simple grid network topology
consisting four (4) switches with one host as depicted in Fig. 7.

The brief processes that take place in the flow management mechanism in Fig. 8 are as
follows:-

(1) Elephant flow is generated via iPerf
(2) When flows are transmitted by end device or pass via the switch, the switch with embedded

sFlow agent will collect traffic samples and compile in UDP datagram format
(3) sFlow datagram will be sent to sFlow-RT for traffic data analysis
(4) sFlow-RT will work with elephant flow detection script to analyse collected packet sam-

pling and categorise flows either elephant flow or microflow
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(5) Floodlight controller will perform simple forwarding or rule placement on elephant flow
depending on type of elephant flow whereas data plane switches will forward micro flows
to the destination point.

Figure 7: Network topology of proposed mechanism

Figure 8: Flow management mechanism

3.1 Flow Classification
Fig. 9 depicts the elephant flow detection process. sFlow-RT will invoke elephant flow detec-

tion script which is REST application to classify flows based on pre-defined threshold. Otherwise,
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sFlow-RT will label the incoming flows as micro flow. Elephant flow detection script uses HTTP
methods for RESTful services, i.e., GET, POST, PUT and DELETE to retrieve and analyse flows.
First, the script will use HTTP-PUT to filter ingress flow, excluding discarded packets for the top
ten largest flows. Second, the script will update the pre-defined flow threshold based on the current
NIC bandwidth via HTTP-PUT. Then, the script will monitor the traffic retrieved via HTTP-GET
in every 1000 ms interval and retrieve the top ten largest flows in the interval of 20 s.

Figure 9: Elephant flow detection flow chart

3.2 Elephant Flow Management Process
Based on Fig. 10, elephant flow will be forwarded by a controller via reactive routing whereby

the controller will perform simple forwarding to re-route elephant flow to alleviate network
workload and at the same time utilise alternate path whereas rule placement manages abnormal
elephant flows such as FTP and RTSP flows in-conjunction with security policy.

Figure 10: Elephant flow management process

3.3 Rule Placement
Rule placement transforms security policy into the list of forwarding rules to block potential

services that might consume large link bandwidth such as FTP and RTSP. When sFlow detect
large flow, it will classify the flow as elephant flow and immediately notify controller by installing
a temporary flow entry indicating switch Datapath ID (DPID) and destination IP address and sent
as a packet-in message to the controller. When controller received the packet-in, the controller will
then determine the type of service by getting source port of the flow and assign a new path. The
controller will then block the ports based on specific services for a default path. This approach is
to leverage network bandwidth.
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3.4 Micro Flow Management Process
Fig. 11 describes the microflow handling process. The topology example in Fig. 12 shows that

microflow, which labelled as red line, between Host-1 to Host-3 involve Switch-1 and Switch-2.

Figure 11: Micro flow management process

Figure 12: Micro flow

Round-robin pairing algorithm will use ports from Switch-1 and Switch-2 to identify output
ports and these output ports will become the action for wildcard entries in both switches. To
uniquely identify each wildcard entry, the destination IP address would be extracted from the
incoming flow and added to wildcard entry. Consecutive microflows will be matched against the
existing wildcard entry and new microflows will be assigned new output ports. Fig. 13 shows
round-robin pairing algorithm in assigning output ports to incoming microflows.

The data plane switches will assign output ports in round-robin pairing algorithm for different
microflows to reduce controller’s overhead by minimising the number of packet-in sent to the
controller that used to request new flow entries. The round-robin pairing will get sets of ports to
be assigned as output ports for respective wildcard entries in switches.
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Figure 13: Round-robin pairing algorithm

The round-robin pairing works by getting ports for two switches. Number of rounds to
perform port pairing is halved of the total number of ports for both switches. Two sets of ports
will perform the pairing as a result of splitting total ports for both switches into halved. Before
performing ports pairing, the second set of ports will be inverted and then paired with the first
set of ports. At last, each round will have several paired ports. Switches will handle the packet
forwarding independently only for microflow without the controller to avoid flow setup between
controller and the data plane switches.

Moreover, sFlow’s REST API also enables metrics-based customisation to filter inbound or
outbound flows. Flows can be filtered according to IP source, destination address, input port,
output port, flow direction and etc. If the analysed flow is higher than the defined threshold, then
sFlow-RT will regard the flow as elephant flow and trigger as event before notifying the controller.
The controller will then re-route elephant flows to alternate path via reactive routing. The purpose
of re-routing elephant flows is to alleviate link bandwidth between switches in the default path.
For flows that are lower than the threshold, it will be regarded as microflow. Microflow then will
be forwarded by switches without controller’s involvement.

4 Results and Discussion

Fig. 14 shows elephant flow mitigation for single TCP flow after sFlow-RT detected elephant
flow at switch-4. Before mitigation, elephant flow detected on switch-4 is exceeding flow thresh-
old, consuming high bandwidth between switch-4 and hosts and utilising all available network
resources as the path was assigned by the controller using Dijkstra’s algorithm. However, the
controller does not account for bandwidth competition between flows which has resulted in link
congestion between switch-1 and switch-3 even when an alternate path is available. The link
between switch-1 and switch-2 was underutilised. However, the elephant flow mitigation is expected
to reduce bandwidth competition between flows that were sharing the same path and conserve the
processing power of switches. During the mitigation process, time taken for controller to install
flow entries and switches to forward flows were 6 s, which is between 53 s and 59 s as shown in
Fig. 15.
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Figure 14: Elephant flow mitigation for single TCP traffic

Figure 15: Single TCP flow: delay in re-routing elephant flow

This is due to the limited processing power of Open-vSwitch (OVS). After mitigation, it
is expected that subsequent flows will be lesser than the flow threshold. Default path has been
switched to an alternate path that includes switch-1-port3, switch-2-port2 and switch-4-port1,
which is labelled in a yellow line as depicted in Fig. 14. Default path’s link bandwidth usage
has dropped below 1 Gbps, that is the flow threshold, which means TCP flow no longer need
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to compete for bandwidth with the detected elephant flow in default path as both elephant flow
and TCP flow able to utilise available bandwidth in two different paths. The mechanism helps to
alleviate congested link, thus increases the data throughput.

Fig. 16 shows that without re-routing the elephant flow, the elephant flow will be competing
for network resources like link bandwidth with other TCP flows. Furthermore, default OpenFlow
architecture does not utilise alternate path to accommodate other flows that share the same path.
As a result, the current path’s bandwidth utilisation exceeds 1 Gbps and causes link congestion
between switch-4 and source host. After re-routing elephant flows, Fig. 17 shows that the link
bandwidth usage for default path has been reduced significantly.

Figure 16: Elephant flow without mitigation for two TCP flows

Figure 17: Elephant flow mitigation for two TCP flows
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However, there is a sudden hike in bandwidth usage by switch-1-eth2 between 67 s and 73 s,
which is the path for Host-2 to Host-1 traffic, as there is no traffic between Host-4 and Host-1
that originally passes through switch-3 and waits for new flow entries so that detected elephant
flow will be re-routed and pass through switch-2. Furthermore, the mechanism does not account
for subsequent elephant flow mitigation. The delay for re-routing elephant flows in two TCP traffic
is 6 s as depicted in Fig. 18 but traffics between Host-2 to Host-1 remain unaffected as shown
in Fig. 19. The possible reason for the delay along new path is Open vSwitch, which has lower
processing power.

Figure 18: Two TCP flow: delay in re-routing elephant flows

Figure 19: Delay in re-routing elephant flows for TCP flow
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Without rule placement taking place, the average throughput for TCP path is 1.639 Gbps,
and the average total transfer is 195.4 GB as shown in Figs. 20 and 21.

Figure 20: Throughput on TCP path

Figure 21: Total transfer on TCP path

After implementation of rule placement, the average throughput for TCP path has an increase
of 3.906 Gbps or 238%, whereas the average total transfer has increased from 195.4 to 656 GB
or 238% increase. Without rule placement, both TCP flow and RTP video streaming flow were
sharing the same path which results in link bandwidth competition. After RTP video stream being
re-routed via rule placement, normal TCP path can utilise available bandwidth. Therefore, rule
placement has alleviated link bandwidth.

Fig. 22 shows the first ping and average RTT for single ICMP ping traffic. Reactive flow
insertion of microflow by controller has higher first ping, which required 138 ms more compared
with multipath wildcard routing by the data plane switches without invoking the controller as
expected. Reactive flow insertion causes higher first ping because the controller needs to learn
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topology by sending Link-Layer Discovery Protocol (LLDP) packets to all switches and switch
will respond LLDP packets by sending packet-in message back to the controller. The controller
will instruct the requesting switch to send Address Resolution Protocol (ARP) message to all
neighbouring switches by flooding all ports and waiting for ARP-reply from the destination host.
This process will take more time which resulted in higher round-trip time and first ping. However,
there is a small difference in average round-trip time between reactive flow insertion and multipath
routing that is 1 s.

Figure 22: First ping and average round-trip time for single ICMP traffic

For two ICMP traffics, it showed more signs of multipath wildcard routing as each host can
perform flow forwarding faster than the controller. In Figs. 23 and 24, host-1 act as the server
whereas host-2 and host-3 act as the client. In this scenario, both host-2 and host-3 will send
ICMP ping traffic to host-1 simultaneously.

Mul�path
85 ms
faster

Mul�path
31 ms
faster85.4

0.411 0.39131.2

Figure 23: First ping response time for two ICMP traffic

Both Figs. 22 and 23 shows a higher first ping for controller-managed microflow regardless
of the number of flows because the controller will flood all switches to determine destination host
and then calculate the shortest path which will later be installed in switches along the shortest
path. Unlike multipath wildcard routing, switches will perform round-robin pairing on assigning
output ports for different incoming flows. As a result, the switch can forward microflow by itself
and able to manage flows more quickly. Furthermore, the time for the first ping by multipath
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wildcard routing was so insignificant that it was almost 100 ms faster than default routing by the
controller.

Mul�path
0.9 ms
faster

Mul�path
0.3 ms
faster

Figure 24: Average round-trip time for two ICMP traffic

Figs. 25 and 26 illustrated average throughput and average transfer for single TCP traffic
respectively. There are three attempts to carry out the tests as one attempt might not be sufficient
to determine the actual throughput whereby the first test would require more time to initialise Java
Virtual Machine in order to allocate memory for the Floodlight controller. Multipath wildcard
routing has produced higher throughput and allowed higher transfer capacity compared to default
routing done by the controller. Since the controller will flood all ports to learn the whole network
topology, it will consume more time to handle flows on a larger scale of the network. Results
showed that 1% increase in throughput and total transfer for single TCP traffic.

16.13

16.27
+1%

Figure 25: Average throughput for single TCP traffic

As for two TCP traffic, multipath wildcard routing showed a higher throughput and increase
in average total transfer for both host-1-to-host-3 and host-1-to-host-4 traffics as compared with
default routing done by the controller. Fig. 27 showed that there is an increase in average total
transfer between host-1 and host-4 for multipath wildcard routing, which is 12% higher than the
controller’s routing whereas total transfer between host-1 and host-3 have higher transfer size as
well, which is 11% higher than the controller’s routing. Meanwhile, multipath wildcard routing
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also showed higher throughput between hosts, i.e., host-1-to-host-3 and host-1-to-host-4, which
are 11% higher throughput compared to controller’s routing as shown in Fig. 28.

187.67

189.33
+1%

Figure 26: Average transfer for single TCP traffic

+12%

+11%

78.93 88.56 84.07 93.03

Figure 27: Average transfer for two TCP traffic

6.78

+12%

+11%

7.61 7.22 7.99

Figure 28: Average throughput for two TCP traffic
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Fig. 29 shows that the controller should handle more packet-in if microflow managed by
controller compared with multipath wildcard routing. When the number of flows increase, number
of packet-in messages sent to the controller would be more if the controller handled microflows.
As a result, the controller received 48% more packet-in messages in two TCP traffic as compared
with 23% more packet-in messages in single TCP traffic.

88 68 141 74

+23%

+48%

Figure 29: Number of packet-in received by controller

5 Conclusion

OpenFlow simplifies whole network management by separating network policies from realisa-
tion and its external controller like Floodlight has great functionality such as firewall and load
balancing, but they are still unable to solve the current dilemma such as controller’s overhead
and rule placement issues. In particular, traditional OpenFlow requires the controller to handle
all flows regardless of importance and flow size. Thus, the proposed mechanism used an efficient
packet-sampling tool such as sFlow and sFlow-RT as packet-analysing engines to segregate flows
into two categories, such as elephant flow and microflow via elephant flow detection script that
is invoked in SDN application layer. The mechanism will re-route detected elephant flow into
an alternate path via reactive routing to alleviate link bandwidth below the pre-defined threshold
value; however, there is some loss of traffic in between re-routed elephant traffic as a result of the
delay between controller inserting new flow entries into switches and forwarding done by switches.
The possible reason for this delay is that the new path limits the processing power of OVS switch.
Moreover, rule placement has contributed higher throughput and total transfer for TCP path after
re-routing RTP video streams that shared the same path as TCP flows into the alternate path. This
step can ensure that the security policy is respected besides utilising other unused links. Although
reactive routing in the proposed mechanism causes some delay in processing elephant flow and
only able to assign paths in fixed topology, it still able to reduce link bandwidth usage.

Conversely, the mechanism achieves better throughput and total transfer size in handling
microflows and showed greater significance in two TCP traffic rather than single TCP traffic, which
are 11% and 12% higher than the controller’s default routing in two TCP traffics as compared
with the centralised OpenFlow controller. First ping response time for multipath wildcard routing
in single ICMP traffic showed great difference as compared to two ICMP traffic where first
ping response time in single ICMP traffic for multipath wildcard routing was 100 ms faster than
controller’s default routing. In terms of workload, multipath wildcard routing offloads controller
by 48% less packet-in messages in two TCP traffics and 23% less packet-in messages in single TCP
traffic.
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Traditional OpenFlow does not implement rule placement on flow with specific services like
RTSP. This flow can be crucial in terms of link bandwidth allocation and can be managed
by rule placement. Although rule placement might possess similar functionality with a common
firewall in which both apply security rules based on access control lists, however, traditional
firewall device cannot be disregarded because firewall is a more sophisticated device with higher
processing capacity, designed to filter packets and block unwanted traffic more efficiently. Hence,
rule placement will only be served as an additional security mechanism to help firewall and IDS
to enforce security policies. The proposed mechanism reduces the need for invoking controller for
insignificant flow or microflow and implements high-level security policy by transforming them
into a list of forwarding rules.

In the future, we intent to test our implementation in a bigger network topology that has
more OpenFlow switches with more network traffics.
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