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Abstract: With the modernization of machine learning techniques in health-
care, different innovations including support vector machine (SVM) have
predominantly played a major role in classifying lung cancer, predicting
coronavirus disease 2019, and other diseases. In particular, our algorithm
focuses on integrated datasets as compared with other existing works. In this
study, parallel-based SVM (P-SVM) andmulticlass-basedmultiple submodels
(MMSM-SVM) were used to analyze the optimal classification of lung dis-
eases. This analysis aimed to find the optimal classification of lung diseases
with id and stages, such as key-value pairs in MapReduce combined with
P-SVM and MMSVM for binary and multiclasses, respectively. For non-
linear classification, kernel clustering-based SVM embedded with multiple
submodels was developed. Both algorithms were developed using Apache
spark environment, and data for the analysis were retrieved from microscope
lab, UCI, Kaggle, and General Thoracic surgery database along with some
electronic health records related to various lung diseases to increase the dataset
size to 5 GB. Performance measures were conducted using a 5 GB dataset
with five nodes. Dataset size was finally increased, and task analysis and CPU
utilization were measured.

Keywords: Lung cancer; COVID-19; machine learning; deep learning;
parallel based support vector machine; multiclass-based multiple submodel

1 Introduction

Big data plays a vital role in analyzing extremely large data sets with reduced complexity
and efficient analysis. With enhanced techniques of big data, a large amount of data has been
handled in parallel. In specific, data classification has been performed using salient solutions. In
the real world, data with exponential growth are complex and challenging to classify [1]. Prediction
of coronavirus disease 2019 (COVID-19) is mandatory to prevent the risk of spread, and pre-
determination of lung cancer stages is mandatory to determine lung cells damaged in increasing
stages [2]. In medical science, affected parts can be retrieved and used to diagnose early stages
of the disease [3]. Biopsy is the initial step in diagnosis; during this process, cells are sampled
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and intricately examined under the microscope to predetermine intra-tumoral cells [4]. However,
efficient methods and equipment for accurate recognition and diagnosis remain lacking.

Parallel classification has become appropriate to solve classification problems in big data; in
specific, distributed support vector machines (SVMs) have an iterative MapReduce framework,
improved communication between nodes, and linear classification [5]. Classification and regression
problems have become salient in binary classification, and MapReduce-based distributed parallel-
based SVM (P-SVM) has been proposed to solve them [6]. P-SVM also solves optimization
problems and is used for statistical learning theory to predict hypotheses with improved accuracy
through iterative training of split datasets.

Lung cancer is a leading disease worldwide. For eradication of lung cancer, health checkers
should employ various methods, but processing and extracting results from many datasets are
challenging [7]. A previous study [8] extracted information from several datasets by using P-SVM.
This technique uses row-based, approximate matrix factorization, which loads only essential data
to each machine to perform parallel computation. In addition, some of the computations use big
data tools. Another study [9] solved optimization problems over the cloud by using MapReduce
techniques along with parallel computation. It also used statistical learning theory to predict the
hypothesis that minimizes empirical risks and focused on multiclass parallel computations.

In [10], the author used multiple submodel parallel SVM (MSM-SVM) on a spark to accel-
erate the training process with non-linear SVM. Furthermore, data splitting methods improve the
performance of parallel computations and approximate global solution with several local sub-
models. The author deployed and encountered a multiclass with a “one-against-one” strategy [11].
A new convolutional neural network-based multimodal disease risk prediction algorithm has been
proposed to handle structured and unstructured data [12,13]. In addition, the latent factor model
has been developed to handle incomplete data [14]. The former process also reconstructs missing
data. Reference [15] analyzed the persistence of diabetes by using HUE. Moreover, they accurately
counted the number of persons suffering from diabetes by using SVM. Reference [16] developed a
tele-ecg system with Hadoop and big data framework by using mining techniques for processing
and classifying datasets related to cardiovascular disease. Although Hadoop has been developed,
some of the issues in handling large datasets raised concerns in terms of server handling. The
most significant and essential tool in big data is MapReduce. The efficient use of MapReduce
improves performance [17,18]. The author analyzed MapReduce impacts and penalty parameters
with respect to large-scale datasets, divided datasets into chunks, and processed them under the
Hadoop framework. Another efficient sub-model in MapReduce is an adjoint method [19]. The
MapReduce based adjoint method prevents brain disease by detecting it earlier.

Reference [20] implemented communication efficient versions of parallel SVM and further
developed CA-SVM. The author deployed statistical methods to improve its efficiency in com-
munication and used algorithmic refinements. C-means clustering, which uses the UCI machine
repository to collect data, has been proposed for analyzing patient records [21,22]. The author
provided a framework for predicting and prescribing drugs for specified diseases. Reference [23]
provided predictive pattern matching with Hadoop MapReduce environments to predict diabetes
mellitus. The developed machine learning-based prediction methodology has drawbacks in its early
analysis. Therefore, a new accurate prediction methodology is required to overcome the proposed
methodology.

References [24,25] deliberated the basics of predictive analytics in healthcare. In our system,
RBF acts as a non-linear kernel for SVM with respect to study. The study showed the impacts of
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predictive analytics in healthcare as general applications. A study [26] deployed a parallel RMC
algorithm to classify medical data. This algorithm works better for integrated data as in our
model. Hence, we used this model for comparison with our proposed model. Cascade SVM from a
previous study [27] has been updated and compared with our proposed model. The only difference
with cascade SVM is that it classifies the seed of flowers, which is the general application.

In this study, datasets with underlying SVM with threshold-based techniques for classifi-
cation were developed. Furthermore, classified support vectors were fed to MMSM-SVM with
some parameter changes and passes to MapReduce to extract id and stages from classified
vectors. Apart from multiple submodels, to cluster similar datasets, were incorporated with kernel
clustering-based SVM (KCB-SVM) and de-clustering was reduced and to cover all hidden data the
most of dataset falls near the margin of support vectors. P-SVM and MMSM-SVM with some
parameter settings were convened for binary classification. Finally, id and stages were retrieved
from the MapReduce framework with four nodes of parallel computation. This analysis aimed
to find the optimal classification of lung diseases with id and stages, such as key-value pair
in MapReduce combined with P-SVM and MMSVM for binary and multiclasses, respectively.
In this analysis, the MMSM-SVM algorithm was developed from MSM-SVM to classify high-
dimensional lung disease datasets. Furthermore, the MapReduce technique was utilized to retrieve
different id and stages from the classified support vectors. The obtained result proves that the
developed MMSM-SVM algorithm has 92% higher accuracy in classification with optimal data
sets when compared with other learning techniques. The P-SVM algorithm also has an accuracy
of 90% in classification with different parameter settings for every dataset. Both algorithms were
developed using Apache spark environment, and the data for the analysis were retrieved from
microscope lab, UCI, Kaggle, and General Thoracic surgery database along with some HER
(Electronic Health Records) related to various lung diseases to increase the datasets.

2 Proposed Approach and Methodology

In big data classification, SVM models and sub-models have their own architecture. The
proposed classification architecture is shown in Fig. 1. Samples similar in nature form one cluster,
and others are more likely to become support vectors. Samples in different regions are less likely
able to train. Meanwhile, the training of samples uses local sub-models.

2.1 Modelling of Multi Class-Based Multiple Sub Models Support Vector Machine
Multiclass classification ensembles the most significant part in various classification tasks

because it resides in the stages or classes of datasets. The submodel approach is suited for
multiclass classification. For every class C ∈ DT /C, a complete multiclass with function fi(X) is
trained. The class Ct/ is selected as the preferred class of any sample, where sample ∈DT/C and
wins all other classes using the winner-takes-all strategy. The resultant models can be formed as

f (Yi)= argmaxCt∈DT f̂ct(Y ). (1)

Decision function of local sub models can be derived as

D(x)= sign

(
m∑
i=0

∝iyiK(x,x′)+ b

)
(2)

For one-vs.-all, let training set T = ((x1, y1),(x2, y2),. . .,(xn, yn)), where y = 1. . .k, where k is
the number of classes. Let l = 1. . .k number of classes and l considered as positive class and
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other k − 1 classes are considered as negative classes. With these representations, decision function
becomes

With One-vs.-all,

f (x)= sign(Dl(x)) and (3)

To find if the specified class belongs to or not,

Dr(x)=max(Dl(x)), where r represents the assigned class. (4)

Figure 1: Overall layout of proposed methodology

In multiple submodels, the system must leave away local training by enabling the cluster and
splitting models. Some of the clusters may have classes Ct, where Ct ∈DT with the effect of clas-
sification insight into classes with the largest similarity in the feature space. The clustering model
forms local subsets and classes with high preference. KCB-SVM is incorporated with approximate
hierarchical clustering method, which scans whole large data sets and provides boundary for
similar classes. It also estimates the best boundary with respect to limited resources and provides
high scalability.

In the clustering stage, the clustering feature (CF) for every cluster should include

CF= (c, r), (5)
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where c and r form the center of the cluster and radius.
where the radius is calculated by

ri = max
xi∈Hi

d(xi, ci) (6)

Let (xi, yi) be input parameters and Hi be the geometric metric of the mapped feature space.
Radius is calculated with respect to the cluster center and distance between two data points.

For the RBF kernel, the distance measures are computed as follows:

d(xi,xj)=
√
2− 2exp(−σ‖xi−xj‖22) (7)

Suppose some clusters are not selected for computing the cluster center, then it is computed
as follows:

Y = arg min
i=1,...,nl

d(c(l−1)k, cli) (8)

H(l−1)k is merged into cluster Hly and then CFs of cluster Hly are updated as Hly = Hly, where
H(l−1)k depicts the unselected cluster and Hly depicts the unselected cluster with margin Y(8). The
radius can be calculated as the maximum summation of clusters and unselected clusters with the
distance of clusters and unselected clusters. Here, l is the cluster level.

Declustering can be implemented with the condition for positive classes,

wTci+ b
‖w‖ ≤ ri+ 1

‖w‖ (9)

for negative classes,

wTci+ b
‖w‖ ≤−ri− 1

‖w‖ (10)

Let the parameters be the number of cores, sample size, LC lung cancer datasets with 1 to C,
where C depicts the number of classes, SP sputum datasets, and datasets with 1 to C and DT
depicts datasets and clustering model.

Algorithm 1:

1. Load support vectors of (xi, yi) with more than one classes C to RDD

2. Use RDD.map( ) to generate (id, stages) pairs with RDD

3. Merge the vectors with respect to id to form local subsets {LC}Ci=1 and {SP}Ci=1 with
RDD.groupByKey( );

4. Use KCB-SVM to select subclusters from {LC}

5. Cluster similar classes using WTA.

6. Decluster other classes.

7. Repeat steps 5 and 6 to cover all data points.

8. For i = 1. . .C parallel do

9. fi: X → R.
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10. Yi = argmax{1...C}
11. fi(X) as the final class

2.2 Modelling of Parallel Support Vector Machine
Fig. 2 depicts the layout of P-SVM. The support vectors that are already classified are given

as input to P-SVM. Subvectors are calculated and optimized using P-SVM. Then, the calculated
support vectors of the previous sub-SVM are given as an input to the next sub-SVM. Therefore,
the output of more than two last sub support vectors forms input to the present support vectors.
The process continues until single support vectors are derived as the result. Furthermore, P-SVM
can be achieved in spark using library LIBSVM.

Figure 2: Design of developed approach

Fig. 3 shows the support vectors of sputum, lung cancer, and thoracic surgery datasets with
n size. The size of support vectors may vary for every iteration.
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Figure 3: Parallel SVM architecture

Algorithm 2:

Input: n training instances, m number of machines, s global support vectors, h hypothesis,
v iterations

Output:

1. Load support vectors of (xi, yi) for i = 0, 1

2. Use RDD.map( ) to generate (id, stages) pairs with RDD

3. For i = 0 to 1 do

4. Load xi into hdfs

5. End for

6. Initially h → 0, v → 0 in master node

7. While v > 0

8. V → v + 1

9. For each node in the cluster C, C = c1, c2. . .cm
10. S → s + 1;

11. S → s + n; \\ add global support vectors with subsets of training data

12. Train support vector machine with new merged dataset.

13. Find out all the support vectors with each data subset.

14. Merge all local SVs and calculate the global SVs

15. If hv = hv−1stop, else go to step 8

16. fi(x) as final class

17. Map reduce ( );

18. Generate (id, stages) with MapReduce( )

19. End
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2.3 Modelling of MapReduce
MapReduce is a programming model suitable for processing huge data. The developed

MapReduce is shown in Fig. 4. Hadoop is capable of running MapReduce programs written in
various languages, such as Map phase and Reduce phase. An input to each phase is key-value
pairs, and every programmer needs to specify two functions: map and reduce.

Figure 4: MapReduce framework of proposed methodology

Let MT be a set of all tasks with map function and MD be the results of data after being
split. Let splitting (MS) be as follows,

MS ∈ data (11)

MS depicts the splitting of input data in the map phase with respect to different tasks. The
data derived from MS is the partial function of given input data, which is required.

MT ∈ data→ partition (MT) (12)

map→ partition (MT ∗RD) (13)

Herein, the map phase involves portioning of input data and further returns reduced data,
which is then fed as input to reduce tasks. Therefore, results of map tasks would be of (id, stages)
pairs with unstructured format. The Reduce task is formatted as,

RS ∈ partition(MT ∗RD) (14)



CMC, 2022, vol.70, no.1 1565

The above function (14) Reduce splits (RS) process intermediate results by formatting and
generate partition of reduced data. Then, the reduced task (RT) is given by

RT =Partition(RD) (15)

RT takes input as RS and partitions the reduced data, which is in required format (id, stages).

3 Experimental Setup

We computed the classification accuracy in the data center with three executors per node and
five nodes used. Hence, five nodes with RAM size 64 GB and executor memory at 19 GB and
total big data size to 500 GB are used. Furthermore, we increased data size starting from 5 GB by
leap and bounds and reduced the running time. Hence, we need 15 tasks/node for data and used
75 tasks with five nodes in parallel. Moreover, Pyspark, LIBSVM, and MapReduce for Parallel
SVM binary classification and MMSM-SVM environments were used for the parallel execution
of multiclass. The datasets used in the experiment are listed in Tab. 1. We used 8:2 for sputum,
thoracic surgery, and lung cancer datasets. Sample size for MMSM-SVM was 0.5. The iteration
of the experiment increases by n times, where n depends on the size of the datasets.

a. System specific:

CPU (system specific) Details-cores (4 cores/cpu) No. of nodes
Memory-128 gb 3
Network-10 gbps

Another system core-4 cores/cpu
Memory-64 gb
Network-10 gbps 2

Table 1: Comparison results for binary classification

Methods Sputum datasets Sputum datasets Thoracic surgery Thoracic surgery

C = 2, γ = 0.09 C = 2, γ = 2 C = 2, γ = 0.09 C = 2, γ = 2

Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy

P-SVM∗ 28 0.9032 15 0.904 31 0.921 19 0.9204
MapReduce-
based
adjoint
(2018)

72 0.8404 115 0.8696 70 0.832 100 0.852

Cascade
SVM(2018)

70 0.85 62 0.812 55 0.89 60 0.90

Overall
accuracy∗

90.2% 90.4% 92.2% 92.02%

The datasets used in our work are listed in Tab. 1. Furthermore, 8:2 was considered for
sputum datasets, 7:3 for thoracic surgery datasets, and 5:5 for lung cancer datasets as training
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data. The sample size for MSM-SVM was 0.5. The iteration of the experiment increases by
n times, where n depends on the size of the datasets. We set the iteration as 200 for binary because
stability was achieved in the 200th iteration.

4 Results and Discussion

MMSM-SVM is also a submodel of P-SVM. The difference is that P-SVM classifies well in
binary classification. To obtain accurate results, we used MMSM-SVM and P-SVM for multiclass
and binary classification, respectively. The obtained experimental results are shown in Tabs. 1
and 2 for binary and multiclass classification, respectively. The obtained results were compared
with previous literature [19,27]. C and γ values changed, and time in sec and accuracy were
measured. The analysis was carried out on the basics of C = 2 and γ = 0.09 for sputum datasets,
C = 2 and γ = 2 for sputum datasets, C = 2 and γ = 0.09 for thoracic surgery datasets, and
C = 2 and γ = 2 for thoracic surgery datasets.

Table 2: Comparison results for multiclass classification

Methods Sputum datasets Sputum datasets Lung cancer Lung cancer

C = 2, γ = 0.09 C = 2, γ = 2 C = 2, γ = 0.09 C = 2, γ = 2

Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy

MMSM-
SVM∗

10 0.912 80 0.914 43 0.9222 47 0.924

MapReduce-
based
adjoint
(2018)

72 0.8404 115 0.845 70 0.852 100 0.881

Cascade
SVM (2018)

350 0.85 380 0.87 420 0.86 408 0.87

Overall
accuracy∗

91.2% 91.4% 92.2% 92.02%

As shown in Tab. 1, the proposed methodology takes 28 s and 90% accuracy with C = 2
and γ = 0.09 for sputum datasets while 15 s and 90.4% accuracy for C = 2 and γ = 2 sputum
datasets. Computation timing is 31 s and accuracy is 92.2% for C = 2 and γ = 0.09 thoracic
surgery while 19 s and 92% for C = 2 and γ = 2 thoracic surgery. This analysis indicates that the
proposed methodology takes lesser computational timing with higher accuracy when compared
with the methods in [19,27]. These measures were observed at the dataset size of 5 GB.

The results obtained for multiclass classification are listed in Tab. 2. This analysis was carried
out on the basics of C = 2 and γ = 0.09 for sputum datasets, C = 2 and γ = 2 for sputum
datasets, C = 2 and γ = 0.09 for lung cancer datasets, and C = 2 and γ = 2 for lung cancer
datasets. As shown in Tab. 2, the proposed methodology takes 10 s and 91% accuracy with C = 2
and γ = 0.09 for sputum datasets while 80 s and 91.4% for C = 2 and γ = 2 sputum datasets.
It has 43 s computation timing and 92.2% accuracy for C = 2 and γ = 0.09 lung cancer datasets
while 47 s and 92.4% for C = 2 and γ = 2 lung cancer datasets. The average time for every
model was compared with accuracy metrics to show that our proposed method performs better. As
shown in Fig. 6, at the specified time 120 s, the accuracy of P-SVM is higher than those of other
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existing models. Meanwhile, the accuracy of MMSM-SVM is higher than other existing works, as
shown in Fig. 6b. This analysis indicates that the proposed mythology takes lesser computational
timing with increasing accuracy when compared with the methods in [19,27]. In addition, our
dataset contains replicas of data to increase the dataset size.

The execution time and accuracy of our model analysis for 100–1000 mb samples are listed
in Tabs. 1 and 2, and graphs for the corresponding plots are shown in Fig. 6.

For the five nodes and above parameter settings in Tab. 2, the average time computation and
accuracy for the corresponding time were measured and compared with existing models.

Figs. 5a–5c depict the performance analysis of the sputum, lung cancer, and thoracic surgery
datasets obtained for the proposed methodology. From the perspective of the results in Figs. 4–6,
the accuracy improved to 92.2% and stabilized for varying iterations. Then, we increased the
number of nodes and analyzed the performance. Fig. 6 shows the accuracy analysis for the binary
and multiclass classification. As shown in Fig. 6a, the accuracy of P-SVM is higher than those of
MapReduce and Cascade SVM. The accuracy measures are 3% higher than those of MapReduce
and 8% higher than those of Cascade SVM. As illustrated in Fig. 6b, the accuracy of MMSM-
SVM is higher than those of MapReduce and Cascade SVM. The above figure shows that the
running time for each node is 120 s on average, which increases with increasing dataset size. For
five nodes, it would become 300–380 s for five nodes. Similarly, task analysis was obtained from
below graph for about 5 GB dataset. Hence, we increased the dataset size from 2 to 5 GB, and
metrics outcomes deviate for each dataset size that has been discussed so far.
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Figure 5: (a) Performance analysis for sputum datasets (b) Performance analysis of lung cancer
datasets (c) Performance analysis of thoracic surgery datasets



1568 CMC, 2022, vol.70, no.1

Figure 6: Accuracy analysis (a) Binary classification (b) Multiclass classification

The number of tasks analyzed for 5 GB data shows that it performs the optimal number of
tasks for the corresponding dataset size. That is, it yields only 75 tasks for 5 GB data.

No. of tasks shared between five nodes (number of nodes required and allotted is discussed
in Section 3) are as each node-4 cores, 15 tasks/node. In accordance with MapReduce and other
tasks, optimized performance includes 20 tasks for 2 GB data and increased data set size as in
Tab. 3. We achieved this optimization with respect to all jobs, specifically for MapReduce jobs.
The graph plots are illustrated in Fig. 7. Furthermore AUC values were computed by measuring
the specificity and sensitivity of various algorithms, as shown in Fig. 9. The corresponding values
are listed in Tab. 4.

Table 3: Task analysis

No. of tasks Dataset size (all datasets in GB)

20 2
40 3
60 4
75 5

0
10
20
30
40
50
60
70
80

0 1 2 3 4 5

No.of
Tasks

Dataset size

No.of tasks Vs Dataset size

Figure 7: Task analysis
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Table 4: AUC values

T-BMSVM P-SVM MMSM-SVM Parallel RMC

0.88 0.9 0.92 0.91

From the resource utilization, our algorithms and dataset should achieve better CPU utiliza-
tion. In our study, we achieved about 70%–75% CPU utilization in an average of all algorithms.
Fig. 9 illustrates the varying measures of balanced datasets in all our proposed algorithm. In
specific, datasets utilize 74% in existing works compared with our proposed method. Even though
all mechanisms work well in all metrics, we prove that our datasets work dynamically with respect
to every algorithm. CPU utilization plots are illustrated in Fig. 8.

Figure 8: CPU utilization

Figure 9: AUC scores for various methods

AUC values for the proposed models are specified in Tab. 4.
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Sensitivity and specificity of all the classes in every model are discussed in Tab. 5, from which
AUC values were calculated.

Table 5: Specificity and sensitivity values

Methods Specificity (%) Sensitivity (%)

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Parallel RMC 58 63 60 90 91 85
P-SVM∗ 75.2 80 89 89 88 92
MMSM-SVM∗ 89.8 77 90 90.48 92.63 89
MapReduce based 82 90 89 86.8 92.16 95

The accuracy of the proposed method is 2.3% higher than that of MapReduce and 7.2%
higher than that of Cascade SVM. The results prove that the prediction efficiency using the
proposed algorithm is greater than that using the MapReduce-based adjoint [19] and Cascade
SVM [27]. In some plots, the parallel RMC proposed by [26] has been compared and proves the
efficiency of the proposed models for some parameters.

5 Conclusion

P-SVM and MMSM-SVM were proposed to analyze the optimal classification of diseases,
such as lung cancer. The proposed models for binary and multiclass classifications outperform
other methodologies. For binary classification, P-SVM deployed and retrieved the stages by using
the MapReduce phase. Meanwhile, for multiclass classification, MMSM-SVM retrieved the results
with improved accuracy. Using KCB-SVM, datasets split regarding likely samples in a cluster
so that the training phase is easier to do and works well in nonlinear dimensions. In addition,
the proposed solution approximates better accuracy without repeated training and testing, which
enables the model to use the classification and storage capacity. For load balancing, the model
uses HDFS balancer. The approach enrolls multiclass with the winner-takes-all strategy. Results
show that the support vectors and training time with a large set of data sets scrutinize binary
and multiclass classification with optimized parameter settings. In addition, the proposed method
shows an accuracy of 90% in classification when compared with competitive methodologies. Our
work could diagnose the stages earliest. Thus, the proposed method can be applied to predict
other healthcare-related issues, such as COVID-19, by collecting symptoms of patients from
electronic health records. Our study can prevent COVID-19 by collecting health conditions of
in-patients who treated for other diseases and predict the possibility of COVID-19.
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