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Abstract: Background—Human Gait Recognition (HGR) is an approach
based on biometric and is being widely used for surveillance. HGR is adopted
by researchers for the past several decades. Several factors are there that affect
the system performance such as the walking variation due to clothes, a person
carrying some luggage, variations in the view angle. Proposed—In this work, a
new method is introduced to overcome different problems of HGR. A hybrid
method is proposed or efficient HGR using deep learning and selection of
best features. Four major steps are involved in this work-preprocessing of
the video frames, manipulation of the pre-trained CNN model VGG-16 for
the computation of the features, removing redundant features extracted from
the CNN model, and classification. In the reduction of irrelevant features
Principal Score and Kurtosis based approach is proposed named PSbK. After
that, the features of PSbK are fused in one materix. Finally, this fused vector
is fed to the One against All Multi Support Vector Machine (OAMSVM)
classifier for the final results. Results—The system is evaluated by utilizing the
CASIA B database and six angles 00°, 18°, 36°, 54°, 72°, and 90° are used
and attained the accuracy of 95.80%, 96.0%, 95.90%, 96.20%, 95.60%, and
95.50%, respectively. Conclusion—The comparison with recent methods show
the proposed method work better.
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1 Introduction

The walking pattern of an individual is referred to as Gait [1]. A lot of research is being
carried out on Gait at present. The analysis of human gait was started in the 1960 s [2]. At the
start, the Human Gait Recognition (HGR) was used for the diagnosis of various diseases such as
spinal stenosis, Parkinson’s [3], and walking pattern distortion due to age factor. HGR was used
to diagnose these diseases at early stages. At present, HGR is used for the recognition of a person
from the walking pattern [4,5]. Plenty of techniques has been used in the past for recognition
of an individual such as fingerprints, iris, retina, face recognition, ear biometrics, footprints, and
recognition from the pattern of palm veins [6,7]. The method of HGR is preferable because there
is no need for individual cooperation. An individual can be recognized from a distance by his/her
walking style. The recent studies show that there are 24 different components of human gait that
can be used to extract the feature and these features can be further used for recognition [8,9].

Massive research has been done by the researchers on the HGR. This method has been used
to minimize various types of security risks, such as an embassy, bank, airport, video surveillance,
and military purpose [10,11]. This method is easy to use for recognition but, several factors
harshly reduce the system performance such as inferior lighting conditions, view angle changes,
can be seen in Fig. 1 [12], different types of clothes [13], and different carrying conditions.
A bunch of methods based on traditional features and CNN features are instituted [14].

(with bag) (wearing coat) (normal walk)

Figure 1: CASIA B sample frames [15]

HGR can be separated into two distinct groups. One group is based on a model [16] and
the second group is called model free. The model-based technique uses various attributes such
as joint angle. These methods are considered better for angle variations, clothing condition,
and carrying conditions. A high-level model can be obtained through this approach but, the
computational cost of this method is high. The model-free approach is based on the human body
silhouette. This method is cost-effective but, is sensitive towards the different covariant such as
angle variations, clothes, shadow, and luggage carrying conditions [I7]. Therefore, the tradeoff
between accuracy and computational cost should be considered. HGR is a steps process such
as frames preprocessing, segmentation of region of interest, attribute computation, and finally
recognition [18].

Preprocessing is a key step in Computer Vision (CV) and the computation of good attributes
is based on the noiseless image [19]. This step is used for the improvement of image quality
and this is achieved by eliminating the noise, contrast improvement, and background eliminating.
Good features and segmentation are achieved with the help of preprocessing. Several techniques
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are being utilized for preprocessing of frames such as watershed, thresholding, and background
removing [20].

After the process of preprocessing, the attributes of computing is a significant step [21] and is
used to compute the features from image frames. The main interest is to compute the important
attributes and eliminating the rest. The system efficiency is affected if there are irrelevant features.
Therefore, the main concern is the extraction of relevant features only. After the computation of
features, another concern is to reduce the dimensionality of these features. The feature reduction
method is used to improve system efficiency by working on relevant features only and eliminating
the redundant [22]. Many techniques are impelemented in literature for features reduction and
selection such as entropy based selection [23], variances based reduction [24], and name a few
more [25].

Plenty of research has been carried out by the researchers on HGR recently. Several tech-
niques are applied for the recognition such as (i) HGR based on human silhouette; (ii)) HGR
features based on the traditional or classical methods; (iii) methods based on deep learning. The
techniques based on the human silhouette are very slow and space-taking. Sometimes the incorrect
silhouette gives incorrect and irrelevant attributes that affect the system reliability. The feature
computation through the classical techniques is based on the low level of attributes and they
are concerned with a specific problem. Therefore a fully automized system is needed for the
feature computation which gives a high level of the descriptor. For the computation of high-level
descriptor, a lot of techniques are offered in the literature work. There exist several problems that
affect the system reliability such as various carrying conditions, clotting problems, variations in the
view angles, insufficient lighting, the speed of a person, shadow of feet. These factors distort the
human silhouette thus leads to inaccurate features. To address these factors the main contributions
in the field of the HGR are:

a) Frames transformation based on HSV and selection of the best channel which gives the
maximum features and information.

b) The computation of deep features by utilizing the VGG-16 pre-trained model with the help
of transfer learning.

c) Selection of high-quality attributes with the help of a hybrid approach based on Principal
Score and Kurtosis (PSaK).

d) Merging the selected attributes and fed to the One-against-All Multi SVM (OAMSVM).

Section 2 represents the related work of this study. The proposed work which includes fine-
tune deep models, selection of important features, and recognition, is discussed in Section 3.
Results and comparison are discussed in Section 4. The conclusion is given in Section 5.

2 Related Work

Several techniques are used for HGR recently to recognize a person from the walking pattern.
Castro et al. [26] deployed a method for HGR that is based on CNN features. In this technique,
high-level descriptor learning has been done by using low-level features. To test their method,
they used an HGR dataset called TUM-GAID and during experimental analysis, they reach an
accuracy of 88.9%. Alotaibi et al. [27] instituted an HGR system that is based on CNN attributes.
In this method, they tried to minimize the problem of occlusion that degrade system efficiency.
To handle the problem of small data, they carried out augmentation of the data. Fine-tuning
on the dataset is also carried out. CASIA-B database is used to assess the system performance.
The 90° angle of CASIA-B dataset is used and achieved the accuracy of 98.3%, 83.87%, and
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89.12% on three variations nm, bg, and cl accordingly. Li et al. [28] deployed a new network
called DEEPNET in which they tried to minimize the problem that comes due to view variations.
For solving this problem, they adopted the Joint Bayesian. The normalization of the gait phase is
done by using Normalized Auto Correlation (NAC). After the normalization, the gait attributes
are computed. For the assessment of the system, the OULP database is used and an accuracy
of 89.3% is attained. Arshad et al. [4] used a method for HGR to sort out the problem of the
different variations. For the computation of gait features, two CNN models VGG26 and AlexNet
are used. The feature vector is computed by using entropy and Kurtosis. After computation, both
vectors are fused. Fuzzy Entropy Controlled Kurtosiss (FEcK) is utilized for the selection of best
features. Experimental analysis has been done on AVAMVG by achieving 99.8%, CASIA-A by
achieving 99.7%, CASIA-B by achieving 93.3%, and CASIA-C by achieving 92.2% of recognition
rate. To overcome the dilemma of angle variation Deng et al. [29] deployed a new HGR method.
The fusion of knowledge and deterministic learning is done in this method. CASIA-B database
is used for experimental analysis and 88%, 87%, and 86% recognition rate is attained on three
angles 18°, 36°, and 54° accordingly.

Mehmood et al. [5] addresses the problem of variation by using a hybrid approach for feature
selection. The gait attributes are computed from the image frames by using DenseNet-201. Two
layers avg_pool and fc1000 are used for the computation of attributes. The parallel order method
is used to merge these features. For the selection of attributes, an algorithm based on Kurtosis
and firefly is used. CASIA-B is used to assess the system’s performance. The accuracy of 94.3% on
18°, 93.8% on 36°, and 94.7% on 54° angle are attained, respectively. Rani et al. [30] introduced
an ANN-based HGR system to identify a person from the way he walks. Image preprocessing is
done background subtraction. The morphological based operation is used for tracking of image
silhouette. The self-similarity-based technique is used for the assessment of the system. They
evaluated the system on the CASIA dataset and observed the better performance of the system
as compared to current techniques.

Zhang et al. [31] introduced a novel method to minimize the drawback of variation of clothes,
angles, and carrying things. LSTM and CNN are used for the computation of attributes from
RGB image frames. After that, the attributes are fused. The assessment of the system is done by
using CASIA-B, FVG, and USF by achieving 81.8%, 87.8%, and 99.5% accordingly. To conquer
the problem of covariations Yu et al. [32] instituted a new approach. CNN is utilized to compute
the feature from the images. A Stack progressive based autoencoder is utilized to deal with the
problem of variations. For reduction of features, PCA is utilized and final features are fed to the
KNN algorithm. The approach is tested SZU RGB D and CASIA-B and a recognition rate of
63.90% with variations and 97% without variations were achieved. Marcin et al. [33] presented a
new technique and analyzed that how different types of shoes affect the walking style of people.
The total walking cycles of 2700 were analyzed obtained from 81 individuals. The accuracy of
99% was achieved on the dataset of 81 individuals. Khan et al. [34] introduced an HGR approach
and used the sequence of video to compute the attributes. In this technique, a codebook is
generated. After the generation of the codebook, the encoding of vector-based on fisher vector is
done. CASIA-A and TUM GAID are used for assessment of the system and 100% and 97.74%
recognition rate was attained, respectively.

3 Proposed Methodology

A fully mechanized HGR system is proposed that is based on very deep features of neu-
ral networks. The proposed method is based on four steps such as: preprocessing of image
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frames, feature extraction through CNN model VGG-16, feature selection through a novel com-
bined method, and at last final recognition with the help of supervised learning. The complete
architecture of the system is illustrated in Fig. 2.

Input image Preprocessing and Best Channel Selection Feature Extration
' ™\
r 2 VGG-16
Origual lmage H Chumael 5 Cheal V Chamead Best Selecied Charael H
>
LN A

Figure 2: Proposed system architecture for HGR

3.1 Frame Preprocessing

Preprocessing plays an important role in CV and image processing to improve the quality of
the given data [35]. Preprocessing includes, resizing of images, background removal, noise removal,
and changing the color space of the image such as RGB to Gray. In this work, preprocessing
is carried out to prepare data for the neural network. Initially, the image resizing is carried out.
After that minimum set count based on all classes is done. Later the HSV is performed and the
best channel is selected. Mathematically, HSV transformation is specified as:

The R, G, B values are divided by 255 to change the range from 0.255 to 0.1:

oy = w /255, a)g/ = wg/255, wp = wp/255 (1)
Cmax = max(wy/, 0y, wp’) (2
Cmin = min(w;, wg', wp) 3)

A = Cmax — Cmin 4)



348 CMC, 2022, vol.70, no.1

A=0
° x ((a)g — ) ) Cmax = wy
Hue(H) = — 5
° % ((wb wr) 6) Cmax = ;' ©
° x (( mod6> Cmax = wy’
0, Cmax =0
Saturation(S) = (6)
, Cmax#0
Cmax
Value(V) = Cmax (7)

where, wp, s, and wy symbolize three channels of HSV conversion. The notation w;, wg, and
wp demonstrates red, green, and blue channels of the original image frame. After that, the best
information channel wj; is selected which is presented in Fig. 3. This figure specifies the first
channel of HSV and the best channel is further processed.

Orignal Image Best Selected Channel

Figure 3: HSV color transformation and channel selection

3.2 Deep Learning Feature Computing

Feature computing is a very important part of machine learning and pattern recognition
[36,37]. The main objective of this step the extraction of important features from the objects
that are presented in the image frame. After the computation of the feature, the next step is the
prediction of the object category [38]. Numerous types of features are available such as: based
on geometry, shape, and texture. By utilizing these features the author tries to achieve higher
accuracy but fails due to a huge dataset. Deep learning is becoming important and being used by
many researchers because it works efficiently on large as well as small databases. Convolutional
Neural Network (CNN) is famous types of layers-based networks that are used to extract the
efficient and relevant features of the object [14]. The CNN model is based on pooling, ReLu,
convolution, softmax, and fully connected (FC) layers. Low-level feature extraction is carried out
by convolution layer and high-level information is obtained on FC layers.
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In the proposed work, a pre-trained CNN model name VGG-16 is applied for the compu-
tation of features. The computation of features based on transfer learning is computed from the
third last layer named fc6 and the second last layer named fc8. The features of both layers are
combined in one matrix which proceeds in the next step. The description of each step involved in
the VGG-16 model is described as follows:

3.2.1 VGG-16

VGG-16 is a famous CNN model that is being used for efficient feature computation. The
size of the input image used for VGG-16 is 224 x 224 x 3. This network can be used for RGB
images also. The architecture of VGG-16 is based on the input layer, 5 layers of the max pool,
five segments of convolution layers having 13 layers of the total, and 3 Fully Connected (FC)
layers. The filters of 3 x 3 are used in the first two convolutional layers. The filter of size 3 x 3
with stride 1 is used. A total of 64 filters are used in the first two layers and it gives an output
of 224 x 224 x 64. After that, the pooling layer is used, and it gives an output of 112 x 112 x 64.
After the pooling layer, two more convolution layers are used having a total 128 of filters and it
gives us the output size of 112 x 112 x 128. After these convolution layers pooling layer is used,
and it gives the output of size 56 x 56 x 128. After this pooling layer, two more convolution layers
are added having a 256 filter. Then pooling layer is added. After that, 3 convolution layers are
added having filters of 512. After this convolution layer, the pooling layer is added again. After
that, 3 convolution layers are added having filters of 512. Then pooling layer is added again after
these convolution layers. Finlay, the fully connected layers are added, and the final output size is
7 x 7 x 512 into the FC layer. There is a total of three FC layers. The total channels at the first
two FC layers are 4096 and at the third FC layer is 1000. ReLU activation function is used in all
hidden layers. The architecture of the VGG-16 is illustrated in Fig. 4.

Figure 4: VGG-16 architecture

In this study, deep feature extraction is carried out by a pre-trained VGG-16CNN model. The
features are computed on two layers fc6 and fc8 for the best extraction of the features. After the
activation function, size of vectors Nx4096 is on fc6 and Nx1000 on fc8 is obtained, where N
represents the number of images. After the extraction of features, the features of both layers are
merged lineally.
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3.2.2 Transfer Learning-Based Feature Extraction

Feature extraction is performed by transfer learning (TL) [39] on pre-trained VGG-16. For
this purpose, the VGG-16 structure was trained on various angles of the HGR database CASIA-B.
Activation is performed on fc6 and fc8 layers of the network and features of both the layers are
merged in parallel order. The input size of the image was 224 x 224 at the input layer. Therefore,
feature extraction through TL was performed on fc6 and fc8. The number of output feature maps
on both layers is N x 4096.

Let v; denotes the fc6 feature vector of dimension N x 4096 and v, denotes the fc8 feature
vector of dimension N x 1000, respectively. Let v3 denote the matrix of feature vector after fusion
represents the fused feature matrix of dimension N x T1 where T1 represents the fused matrix
length. The length of the fused matrix is depending on the maximum dimensional vector like v
or vp.

The maximum dimensional vector is first computed before the fusion of both vectors as
shown below.

T1 =max(vy, v3) ®)

The maximum length vector is specified through this expression and a blank array is found
to make both vector’s length equal. This is performed by a simple subtraction operation to find
the difference in the length of vectors. The mean value of maximum vector T1 is computed
and placed at the lower dimensional vector instead of using zero paddings. The maximum index
of both vectors is identified by defining a threshold. The threshold is mathematically defined as
follows:

vs(@)  if vi(@) = v2())

v<T1>={ A ©)
VsG)  if vi() > @)

In the above equation, the indexes of both vectors are compared and after that concatenation
is performed as follows:

v(i)
v(Fu) N1 = <v (i)) (10)

3.3 Feature Selection

Feature selection is carried out by applying heuristic approach baed on Principle Score and
Kurtosis to only select important features and eliminating the less important features.

Kurtosis: After feature extraction through the VGG-16 deep network, a heuristic-based
approach kurtosis is applied on the computed feature vector FV. The main goal of using this
approach is to select the top features and eliminating the rest. The kurtosis is formulated as:

Y X—X)
E(r) = —— (11)
S

where X is mean value s shows the standard deviation and N refers the vector size. In this process,
a feature vector of dimension N x R1 is obtained and denoted by &(rj). The N represents a feature
vector that includes the top features of each frame. The N represents a feature vector that includes
the top features of each frame.
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Principle Component Analysis: Principal component analysis (PCA) is a statistical technique
that is based on linear transformation. PCA is very useful for pattern recognition and data
analysis and us is widely used in image processing and computer vision. It is used for data
reduction and compression and also for decorrelation. Numerous algorithms that are neural
network and multiple variation-based are being utilized as PCA on the various dataset. PCA can
be defined as the transformation of n number of vectors having N length and n dimension vector
of Y=[y;,¥s ....¥,]" and this vector is formed in x.

x=B(y—m,)) (12)
A simple formula can be generated from this concept, but it is mandatory to remember that

a single input of vector y has N values. The my vector can be described as mean values of input
variables and this can be demonstrated by a relation.

1 N
my=Fly}==3 v, (13)
n=1

The matrix B is based on the covariance matrix Cy. The formation of rows is based on
the eigenvectors v of Cy. The order of these eigenvectors is descending. The matrix Cy can be
evaluated as follows:

1 N
Cy=Fly—my)y—my)T} =3 yayy — mymy (14)
n=1

We know that the vector y is an n dimensional vector so the size of the matrix will be n x n
and the elements the variance of y lying on the main diagonal are Cy(i,1).

Cy(i,i)=F{(y; —my)’) (15)
For Cy(i,)) the covariance is based on other points y;,y; and can be determined as follows.

Cy(i,j)=F{(y,-—m,-)(yJ—mj)} (16)
The rows of B are orthonormal so the inversion of PCA is conceivable as follows:

y=B8B Ty 4+ m, (17)

Due to these properties, PCA can be used in image processing and computer vision. In this
process, a feature matrix of dimension N x R2 is obtained and denoted by y. Finally, by using
Eq. (6), a final matrix of dimensional N x R3 is obtained which is fed to OAMSVM [40] for final
recognition.

4 Results and Analysis

In this section, the proposed system validation is illustrated. The system is tested on
CASIA-B [41] database that is publicly available. This database is used for Multi-view HGR.
This database is based on 124 subjects of which 93 are male and 31 are female. The database is
captured with the difference of 18° that is based on three different walking styles such as a person
with a normal walk (nm), a person with a bag (bg), and a person in the coat (cl). Experiments
are carried on six different angles of CASIA-B such as 00°, 18°, 36°, 54°, 72°, and 90° angles. All



352 CMC, 2022, vol.70, no.1

three gaits nm, bg, and cl are included in each angle. A few sample frames of 00°, 18°, 36°, 54°,
72°, and 90° angles are illustrated in Fig. 5. Six methods are used for the validation of the model
including Linear SVM (L-SVM), Quadratic SVM (Q-SVM), Cubic SVM (C-SVM), Fine Gaussian
SVM (F-SVM), Medium Gaussian SVM (M-SVM), and Cubic Gaussian SVM (CG-SVM). One-
VS-All SVM (M-SVM) approach is utilized for the validation of the model. Statistical methods
such as accuracy, Fales negative rate (FNR), precision, Area under the curve (AUC), and time
are used as performance evaluation measures.

(00 degree Angle) (18 degree Angle) (36 degree Angle) (54 degree Angle) (72 degree Angle) (90 degree Angle)

(with bag)

(wearing coat)

(normal walk)

Figure 5: Sample images of CASIA B

4.1 Implementation Details

The standard ratio of 70:30 is used for the evaluation of the system. It means that for
training purposes 70% of image frames are utilized and for the testing purpose 30% of the image
frames are used. The cross-validation of 10 K-Fold is used while the rate for leaning was 0.0001.
Transfer Learning is used for the training and testing features computation. After the computation
of features, these features along with the labels are fed into M-SVM (Linear method) for final
classification. After that, the trained model is used to predict the test features. All experiments are
done by using MATLAB 2018b, running on a Core i7 machine that contains 16 GB of RAM
and 4 GB NVIDIA GeForce 940MX GPU. Moreover. Matcovnet, a toolbox for deep learning is
used to compute deep features.

4.2 CASIA B Dataset

CASIA-B is a database that is publicly available and use of human gait recognition. The
database was extracted in the indoor environment. There are several variations in the database
such as various angles, carrying, and clothing conditions. This dataset is based on 124 subjects
and this database is extracted from 11 different angles. These angles are 0°, 18°, 36°, 54°, 72°,
90°, 108°, 126°, 144°, 162°, and 180. This database was captured on 352 x 240 resolution at the
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rate of 25 fps. Six angles 0°, 18°, 36°, 54°, 72°, and 90° are utilized in this work. The results are
computed separately and are discussed below.

4.2.1 Exp 1: 0 Angle

The results on 00° angle are given in this section. The results are illustrated in Tab. 1. The
best accuracy is 95.80% and is achieved by L-SVM classifier. The accuracies of the rest of the
classifier Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM are 95.0%. 94.90%, 86.30%. 92.90%,
and 86.20% respectively. The best results of other evaluation parameters Recall, Precision, AUC
are 95.67%, 96.0%, and 99.67% are also achieved on LSVM. The Recall on rest of classifiers
Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 95.0%, 95.0%, 86.33%, 93.33% and 86.0%
respectively. The precision of rest of classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-
SVM is 95.33%, 95.0%, 86.0%, 93.0%, and 87.33% respectively. The AUC of the rest of the
classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM 99.67%, 99.67%, 97.0%. 99.33%, and
97.0% respectively. The computation time of the system is also calculated for all classifiers. The
minimum time is 30.584 (s) in the case of C-SVM. The computational time of rest of classifiers
L-SVM, Q-SVM, F-SVM, M-SVM, and CG-SVM is 31.984, 42.692, 142.93, 49.029, and 38.839 (s)
respectively.

Table 1: Results on 00° angle using proposed method

Method Recall Precision AUC (%) Accuracy (%) Time (s)
L-SVM 95.67 96.0 99.67 95.80 31.984
Q-SVM 95.0 95.33 99.67 95.0 42.692
C-SVM 95.0 95.0 99.67 94.90 30.584
F-SVM 86.33 86.0 97 86.30 142.93
M-SVM 93.33 93.0 99.33 92.90 49.029
CG-SVM 86.0 87.33 97 86.20 38.839

4.2.2 Exp2: 18 Angle

The results on 18° angle are given in this section. The results are illustrated in Tab. 2. The
best accuracy is 96.0% and is achieved by L-SVM classifier. The accuracies of the rest of the
classifier Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM are 95.40%. 94.80%, 84.10%. 93.10%,
and 86.50% respectively. The best results of other evaluation parameters Recall, Precision, AUC
are 96.0%, 96.0%, and 99.67% are also achieved on LSVM. The Recall on the rest of classifiers
Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 95.67%, 94.67%, 84.33%, 93.0% and 86.67%
respectively. The precision of rest of classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-
SVM is 95.33%, 94.67%, 84.33%, 93.0%, and 87.67% respectively. The AUC of the rest of the
classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM 99.67%, 99.67%, 95.67%. 99.0%, and
97.0% respectively. The computation time of the system is also calculated for all classifiers. The
minimum time is 37.656 (s) in the case of L-SVM. The computational time of rest of classifiers Q-
SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 46.457, 42.518, 165.39, 49.378, and 80.243 (s)
respectively.
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Table 2: Results on 18° angle using proposed method

Method Recall Precision AUC (%) Accuracy (%) Time (s)
L-SVM 96.0 96.0 99.67 96.0 37.656
Q-SVM 95.67 95.33 99.67 95.4 46.457
C-SVM 94.67 94.67 99.67 94.80 42.518
F-SVM 84.33 84.33 95.67 84.10 165.39
MG-SVM 93.0 93.0 99.0 93.10 49.378
CG-SVM 86.67 87.67 97.0 86.50 80.243

4.2.3 Exp 3: 36 Angle

The results on 36° angle are given in this section. The results are illustrated in Tab. 3. The best
accuracy is 95.90% and is achieved by L-SVM classifier. The accuracies of the rest of the classifier
Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM are 95.50%. 94.70%, 82.70%. 91.70%, and
86.70% respectively. The best results of other evaluation parameters Recall, Precision, AUC are
96.67%, 96.0%, and 99.67% are also achieved on LSVM. The Recall on the rest of classifiers Q-
SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 95.67%, 94.67%, 82.67%, 91.67%, and 84.67%
respectively. The precision of rest of classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-
SVM is 95.33%, 95.0%, 82.67%, 92.0%, and 86.67% respectively. The AUC of the rest of the
classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM 99.67%, 99.67%, 94.67%. 99.0%, and
96.67% respectively. The computation time of the system is also calculated for all classifiers. The
minimum time is 37.782 (s) in the case of L-SVM. The computational time of rest of classifiers
Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 43.538, 42.54, 154.71, 51.157, and 79.455 (s)
respectively.

Table 3: Results on 36° angle

Method Recall Precision AUC (%) Accuracy (%) Time (s)
L-SVM 96.67 96.0 99.67 95.90 37.782
Q-SVM 95.67 95.33 99.67 95.50 43.538
C-SVM 94.67 95.0 99.67 94.70 42.54
F-SVM 82.67 82.67 94.67 82.70 154.71
MG-SVM 91.67 92.0 99.0 91.70 51.157
CG-SVM 84.67 86.67 96.67 84.70 79.455

4.2.4 Exp 3: 54 Angle

The results on the 54° angle are given in this section. The results are illustrated in Tab. 4.
The best accuracy is 96.20% and is achieved by L-SVM classifier. The accuracies of the rest
of the classifier Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM are 95.90%. 95.50%, 83.10%.
94.60%, and 89.20% respectively. The best results of other evaluation parameters Recall, Precision,
AUC are 96.33%, 96.33%, and 100% are also achieved on LSVM. The Recall on the rest of
classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 96.0%, 95.33%, 83.33%, 93.67%,
and 89.33% respectively. The precision of rest of classifiers Q-SVM, C-SVM, F-SVM, M-SVM,
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and CG-SVM is 96.0%, 95.33%, 83.67%, 94.33%, and 89.67% respectively. The AUC of the rest of
the classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM 99.67%, 99.67%, 96.0%. 99.67%,
and 98.0% respectively. The computation time of the system is also calculated for all classifiers.
The minimum time is 37.50 (s) in the case of L-SVM. The computational time of rest of classifiers
Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 38.571, 43.077, 203.98, 53.16, and 73.748 (s)
respectively.

Table 4: Results on 54° angle using proposed method

Method Recall Precision AUC (%) Accuracy (%) Time (s)
L-SVM 96.33 96.33 100 96.20 37.50
Q-SVM 96.0 96.0 99.67 95.90 38.571
C-SVM 95.33 95.33 99.67 95.50 43.077
F-SVM 83.33 83.67 96.0 83.10 203.98
MG-SVM 93.67 94.33 99.67 94.60 53.16
CG-SVM 89.33 89.67 98.0 89.20 73.748

4.2.5 Exp4:72 Angle

The results on 72° angle are given in this section. The results are illustrated in Tab. 5. The
best accuracy is 95.60% and is achieved by L-SVM classifier. The accuracies of the rest of
the classifier Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM are 94.80%. 93.80%, 80.70%.
91.20%, and 84.40% respectively. The best results of other evaluation parameters Recall, Precision,
AUC are 95.67%, 95.33%, and 100% are also achieved on LSVM. The Recall on the rest of
classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 95.33%, 95.67%, 80.67%, 91.33%,
and 84.67% respectively. The precision of rest of classifiers Q-SVM, C-SVM, F-SVM, M-SVM,
and CG-SVM is 95.0%, 94.0%, 81.0%, 92.0%, and 86.33% respectively. The AUC of the rest of the
classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM 99.67%, 99.33%, 94.33%. 99.0%, and
97.0% respectively. The computation time of the system is also calculated for all classifiers. The
minimum time is 42.984 (s) in the case of L-SVM. The computational time of rest of classifiers Q-
SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 51.448, 47.442, 175.94, 51.312, and 91.519 (s)
respectively.

Table 5: Results on 72° angle

Method Recall Precision AUC (%) Accuracy (%) Time (s)
L-SVM 95.67 95.33 100 95.60 42.984
Q-SVM 95.33 95.0 99.67 94.80 51.448
C-SVM 95.67 94.0 99.33 93.80 47.442
F-SVM 80.67 81.0 94.33 80.70 175.94
MG-SVM 91.33 92.0 99.0 91.20 51.312

CG-SVM 84.67 86.33 97.0 84.40 91.519
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4.2.6 Exp 5: 90 Angle

The results on 90° angle are given in this section. The results are illustrated in Tab. 6. The best
accuracy is 95.50% and is achieved by L-SVM classifier. The accuracies of the rest of the classifier
Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM are 94.90%. 94.0%, 81.30%. 92.0%, and 84.80%
respectively. The best results of other evaluation parameters Recall, Precision, AUC are 95.33%,
95.33%, and 100% are also achieved on LSVM. The Recall on rest of classifiers Q-SVM, C-
SVM, F-SVM, M-SVM, and CG-SVM is 95.0%, 94.33%, 81.33%, 92.0%, and 84.67% respectively.
The precision of rest of classifiers Q-SVM, C-SVM, F-SVM, M-SVM, and CG-SVM is 94.67%,
95.0%, 81.67%, 92.33%, and 86.0% respectively. The AUC of the rest of the classifiers Q-SVM,
C-SVM, F-SVM, M-SVM, and CG-SVM 99.67%, 99.0%, 97.67%. 99.0%, and 96.33% respectively.
The computation time of the system is also calculated for all classifiers. The minimum time is
41.906 (s) in the case of L-SVM. The computational time of rest of classifiers Q-SVM, C-SVM,
F-SVM, M-SVM, and CG-SVM is 51.279, 46.226, 173.12, 55.82, and 88.502 (s) respectively.

Table 6: Results on 90° angle using proposed method

Method Recall Precision AUC (%) Accuracy (%) Time (s)
L-SVM 95.33 95.33 100 95.50 41.906
Q-SVM 95.0 94.67 99.67 94.90 51.279
C-SVM 94.33 95.0 99.0 94.0 46.226
F-SVM 81.33 81.67 97.67 81.30 173.12
MG-SVM 92.0 92.33 99.0 92.0 55.82
CG-SVM 84.67 86.0 96.33 84.80 88.502

4.3 Discussion and Comparison

A detailed discussion is provided in this section. As demonstrated in Fig. 2, the introduced
system is based on few steps such as computation of deep feature by utilizing pre-trained model of
VGG-16, feature fusion, feature selection with the help of PCA and Kurtosis. After that, powerful
features are selected and combined. Finally, the feature vector is fed to Multi-SVM of one against
all methods. The proposed system is assessed by using six different angles of the CASIA B
dataset such as 00°, 18°, 36°, 54°, 72°, and 90°. The results of the angles are calculated separately
and demonstrated in Tabs. 1-0, respectively. The computational time against each angle is also
computed. An extensive comparison has been carried out with the recent HGR methodologies to
assess the proposed methodology as shown in Tab. 7. Mehmood et al. [5] introduced a hybrid
feature selection HGR method based on deep CNN. They used the CASIA B database for the
assessment for techniques and attained the recognition rate of 94.3%, 93.8%, and 94.7% on 18°,
36°, and 54° angles accordingly. Ben et al. [42] introduced an HGR technique called CBDP to
address the problem of view variations. CASIA B dataset is utilized to assess the system and
used CASIA-B dataset and accuracy of 81.77% on 00°, 78.06% on 18°, 78.6% on 36°, 80.16%
on 54°, 79.06% on 72° and, 77.96% on 90° angles is achieved. Anusha et al. [43] advised a novel
HGR method based on binary descriptors and feature dimensionality reduction is also used in
the method. CASIA B dataset is utilized to assess the system performance and the accuracy of
95.20%, 94.60%, 95.40%, 90.40%, and 93.00% is attained on 00°, 18°, 36°, 54°, and 72° angles
consequently. Arshad et al. [8] an HGR methodology based on binomial distribution and achieved
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the recognition rate of 87.70% on CASIA B using 90° angle. Zhang et al. [31] suggested an
encoder-based architecture for HGR to address the problem of variations by utilizing LSTM and
CNN-based networks. The system was assessed by using the CASIA B database and attained a
recognition rate of 91.00% on 54°. In case of our proposed HGR method the recognition rate of
95.80%, 96.0%, 95.90%, 96.20%, 95.60%, and 95.50% is obtained on 00°, 18°, 36°, 54°, 72°, and
90° angles consequently. The strength of this work is selection of best features. The limitation of
this work is less number of predictors for final classification.

Table 7: Comparison with the recent state of the art techniques

Technique Year 00° 18° 36° 54° 72° 90°
Mehmood et al. [5] 2020 - 94.3 93.8 94.7 - -
Ben et al. [42] 2019 81.77 78.06 78.6 80.16 79.06 77.96
Anusha et al. [43] 2020 95.20 94.60 95.40 90.40 93.00 -
Zhang et al. [31] 2019 91.00

Proposed 95.80 96.0 95.90 96.20 95.60 95.50

5 Conclusion

HGR is a biometric-based approach in which an individual is recognized from the walking
pattern. In this work, a new method is introduced for HGR to address various factors such as
view variations, clothes variations, and different carrying conditions. A person wearing a coat, a
person walking normally, and a person carrying a bag. In this work, the feature computation has
been carried out by using pre-trained network VGG-16 instead of using classical feature methods
such as color-based, shape-based, geometric-based features. A PCA and Kurtosis based method is
used for the reduction of the features. Six different angles of CASIA B are utilized to assess the
performance of the system and attained an average recognition rate of more than 90%, which is
better than the recent techniques. The result demonstrated in this work, this can be easily verified
that CNN based features give better performance in the sense of better attributes and accuracy.
Deep features work well for both small datasets and as well as for large databases. Overall, the
introduced approach works well for the various angles of CASIA B and gives a good performance.
However, the introduced method is inefficient in the case of small data. In the future, the same
approach can be applied for different angles of CASIA B and other HGR databases.
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