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Abstract: Routine immunization (RI) of children is the most effective and
timely public health intervention for decreasing child mortality rates around
the globe. Pakistan being a low-and-middle-income-country (LMIC) has one
of the highest child mortality rates in the world occurring mainly due to
vaccine-preventable diseases (VPDs). For improving RI coverage, a critical
need is to establish potential RI defaulters at an early stage, so that appropriate
interventions can be targeted towards such populationwho are identified to be
at risk of missing on their scheduled vaccine uptakes. In this paper, a machine
learning (ML) based predictive model has been proposed to predict defaulting
and non-defaulting children on upcoming immunization visits and examine
the effect of its underlying contributing factors. The predictivemodel uses data
obtained from Paigham-e-Sehat study having immunization records of 3,113
children. The design of predictive model is based on obtaining optimal results
across accuracy, specificity, and sensitivity, to ensure model outcomes remain
practically relevant to the problem addressed. Further optimization of predic-
tive model is obtained through selection of significant features and removing
data bias. Nine machine learning algorithms were applied for prediction of
defaulting children for the next immunizationvisit. The results showed that the
random forest model achieves the optimal accuracy of 81.9% with 83.6% sen-
sitivity and 80.3% specificity. The main determinants of vaccination coverage
were found to be vaccine coverage at birth, parental education, and socio-
economic conditions of the defaulting group. This information can assist
relevant policy makers to take proactive and effective measures for developing
evidence based targeted and timely interventions for defaulting children.
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1 Introduction

Routine Immunization (RI) plays an essential role in minimizing the global child morbidity
and mortality rates by saving up to 2–3 million deaths globally each year [1]. However, 1.5 million
still die due to vaccine preventable diseases (VPDs) annually [2]. It was estimated that 50% child
deaths in Pakistan under one year of age have occurred due to VPDs [3]. The problem is not
limited to only Pakistan or other LMICs rather it is also prevalent in regions of developed
countries like the United States where they have adopted interventions such as recall/reminders to
improve RI coverage [4]. The recent COVID-19 outbreak has added challenges regarding the RI
coverage around the globe. Several vaccination campaigns are at risk for delay or cancellation that
will ultimately triggers the outbreaks of VPDs in 2020 and beyond [5]. World Health Organization
(WHO) data on RI coverage shows that more than 117 million children are at risk of missing
measles vaccines alone [6]. Approximately 2 million additional children around the globe under
the age of five are at risk of dying in the next 12 months due to low RI rates.

In Pakistan context, despite the government efforts to provide free vaccination through the
Expanded Programme on Immunization (EPI) initiatives, polio remains endemic in the country. Its
major reasons are low vaccine coverage, lack of understanding, awareness, and education among
parents and other stake holders regarding the need and importance of completing the series of
vaccines in RI. Some other logistics, cultural, social, and economic factors may also contribute
to exacerbate the situation [7,8]. Concerned authorities have shown great interest to address
this problem and taking necessary actions for improving RI coverage. Therefore, WHO aims to
make RI vaccines available to everyone, and everywhere by 2030 with their global immunization
agenda [9].

New innovative technologies can play a vital role in increasing overall RI coverage by pro-
viding information to take proactive and effective measures. With the emergence of modern tools
for data analytics, it has now become much more convenient to study and analyze healthcare
challenges for timely intervention, prediction, and prevention [10]. The use of machine learning
(ML) tools has opened new doors of opportunities which can further help in minimizing the
human effort for performing critical analysis, predicting the outcomes, and making intelligent
decisions. This study makes use of the predictive analytics to improve RI by identifying defaulting
and non-defaulting group of children early at the time of their birth.

The proposed prediction model is optimally designed to achieve better accuracy along with
high sensitivity and specificity rates. Several ML algorithms were tested and evaluated before
selecting random forest as the most optimal algorithm. The results of selected prediction model
are further enhanced by removing data bias using Synthetic Minority Oversampling Techniques
(SMOTE) [11] and selection of useful features. The balanced approach with respect to accuracy,
sensitivity and specificity ensure that model outcomes remain practically relevant to the problem
addressed. Rest of the paper is organized as follows: Section 2 discusses related works followed
by methodology in Section 3. In later Section 4, Section 5 and Section 6, experimental results,
discussion and comparison of study findings and conclusion is reported respectively.

2 Related Works

Several studies have been conducted to improve RI coverage through different technological
interventions. Each study has utilized different tools, methodologies, and datasets of different
demographics to present the findings of their research. Therefore, the study objectives and out-
comes also vary accordingly with their requirements. Zhu et al. [12] developed a clinical decision
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support system (CDSS) for scheduling the timelines and recommendations of RI vaccines using
two CDSS algorithms for data of Regenstrief Medical Record System (RMRS). The study results
showed an agreement rate of 81.3% and 90.6% for the eligible and recommended timelines
compared to those recommended by domain experts. Another work was done by Abegaz et al. [13]
where they have predicted Tetanus Toxoid (TT) immunization in women of childbearing age in
Ethiopia. Among different ML algorithms, Multi-Layer Perceptron (MLP) classifier proved to be
the best with an accuracy of 67.28%. Shastri et al. [14] presented a model to classify districts of
Jammu and Kashmir based on low and high infant mortality regions. They have used children
immunization data for classification and used Bayesian Transductive Adversarial Networks (TAN)
and Naïve Bayes algorithms for classification. Bayesian TAN achieved an accuracy of 90.91% and
Naïve Bayes attained an accuracy of 86.36%.

Chandir et al. [15] was among pioneers to conduct a study in Pakistan using predictive
analytics to identify children at high risk of defaulting from a RI program. Several ML algorithms
including recursive partitioning, support vector machines (SVMs), random forests, and C-forest
were used. The best results were obtained with a random forest algorithm, which correctly
predicted the defaulting and non-defaulting children with 75.6% accuracy, 94.9% sensitivity and
54.9% specificity rates. A similar study was carried out by Abebe et al. [16] to define infant
immunization status in Ethiopia. They have tested the following ML algorithms including J48
decision trees, Sequential minimal optimization (SMO), SVM, MLP and PART rule. The J48
decision tree resulted in best classification with accuracy of 62.5%, weighted true positive (WTP)
rate/sensitivity of 62.5% and a weighted false positive (WFP) rate of 35.5%. Whereas weighted
true negative (WTN) rate/specificity can be derived as 1-WFP resulting in 64.5%.

Motivated from this work, Qazi et al. [17,18] proposed a prediction model for RI defaulters by
classifying the datasets into sub-groups: not vaccinated, fully immunized, partially high, partially
medium, and partially low. The grouping strategy was based on doses of vaccines taken by child
over the period of 0–15 months. They achieved 98% accuracy with MLP classifier. Pakistan
Health and Demographic Survey 2017–18 data was used comprising of 50,486 records with 1,186
attributes, out of which 7,153 records with 19 attributes were used to classify defaulters based on
only risk intensity levels. As a result, the subset of data was biased towards defaulters only, which
is quite difficult to identify at the time of birth.

Most of the previous studies [15–18] mainly emphasized on highly accurate prediction of
defaulter group but at the cost of ignoring the correct identification of non-defaulting group.
Although, they were able to achieve good accuracy scores, but with low sensitivity or specificity
rates. Here, high sensitivity rate leads to correct prediction of positive class (defaulter group)
whereas high specificity rate leads to correct prediction of negative class (non-defaulting group).
Besides high accuracy, it is extremely important in healthcare domain to develop predictive models
with high sensitivity and specificity scores to ensure correct identification of both the classes. Since
these rates are inversely proportional to each other, it is difficult to maintain a balance to achieve
optimal accuracy [19,20].

Therefore, this study proposed a pareto optimal predictive model which is capable to identify
defaulters and non-defaulters of RI immunization visits early at the time of birth. The proposed
model deploys Synthetic Minority Oversampling Techniques (SMOTE) [11] to overcome the class
imbalance present in the dataset which is one of the major reasons for getting low sensitivity
and/or specificity rates. The model selected 10 most useful features out of total 192 features by
using domain knowledge. These features mainly include status of Bacille Calmette-Guerin BCG
vaccine and socio-economic data variables of the child’s family taken at the time of birth. The
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proposed model has the potential to help policy makers and health experts to take proactive
measures for defaulting group through timely intervention such as smart phone applications, text-
messages or call reminders and through awareness campaigns for improving vaccine uptake. In the
next section, methodology for proposed prediction model is presented for improving RI coverage
in Pakistan.

3 Proposed Methodology

Fig. 1 shows the framework of proposed predictive analytics. It is comprised of five blocks:
data preprocessing, feature selection, modeling and classification, model optimization and model
evaluation. Dataset description along with explanation of each block is given in the next sub
sections.

Data Preprocessing

• Remove incomplete/ 

missing records

• Discretization

• Label Encoding

Feature Selection

• Domain Knowledge

• Literature Survey

Preprocessed 
Data

• 3113 records

• 10 features

Paigham-e-Sehat 
Data

• 3311 records

• 192 features

Modeling & Classification

• Model Selection

• Training Set (2334

records)

• Test Set (779 records)

Model Optimization

• Parameter Tuning

• SMOTE

for oversampling minority 

class

Model Evaluation 

• Prediction Results

• Accuracy, Sensitivity,

Specificity, Precision

Figure 1: Framework of proposed predictive model

3.1 Dataset
Vaccination data for this study was taken from Paigham-e-Sehat study [21], conducted by

Aga Khan University, Pakistan supported by Grand Challenges Canada, Paigham-e-Sehat study.
It aims to improve RI coverage through interventions such as personalized text messages and
automated calls. The dataset comprises 3,311 records and 192 attributes, collected from Karachi
and Matriari district of Pakistan. It includes four intervention arms and one control arm in which
child median age at the time of enrolment was 5 days for each arm.

3.2 Data Preprocessing
Paigham-e-Sehat dataset comprises of 3,311 records which were obtained from baseline and

exit survey interviews. Data preprocessing involves cleaning of missing data, discretization, and
label encoding. Therefore, 7 records from the exit interview were excluded due to incomplete
data. Furthermore, 191 records from the exit survey were discarded due to the following reasons:
refused, home locked, reattempt with no response and lost to follow up. The sample size after
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cleaning was taken to be 3,313 records that match the records of both baseline and exit inter-
view data. Out of these 3,313 records incomplete/missing records were removed, and continuous
discrete values were grouped together by assigning a range of value. Finally, label encoding was
done to assign numeric values to categorical data.

3.3 Feature Selection
Feature selection is the key to the performance of any predictive model. A total of 192

features were initially present in the dataset based on the responses taken from baseline and exit
survey. Since, Paigham-e-Sehat study [21] focuses on improving RI coverage through text/call-
based reminders. Therefore, numerous features belonged to the survey questions such as phone
availability, preferred language, preferred time of reminder, phone usage, caregiver information,
intervention arm, IDs of interviewer and interviewee. All these features were not directly related
to our study outcomes, so the irrelevant features were dropped out from the feature set. City,
gender of child, date of birth, date of death if applicable, age of parents, education level, primary
language, income level, mode of transport and vaccine receive status of polio and BCG vaccine
were shortlisted from baseline and exit survey. Feature selection was performed by using domain
knowledge of health experts involved in this study, and also through comparing feature set used in
previous studies [15–18]. It was deduced that parental education, healthcare utilization, religious
barriers, logistics obstacles and wealth were associated with RI coverage [22]. Based on careful
analysis, ten features were shortlisted whose description is summarized in the Tab. 1:

3.4 Modeling and Classification
3.4.1 Class Labels

Status of received vaccine for week 6, 10 and 14 of each child was available in the dataset.
The class labels were chosen to be defaulters and non-defaulters based on whether they showed
up on week 6, 10 and 14 of vaccination visits. Defaulter class comprises of children who never
showed up for any of the vaccination visits whereas non-defaulter class were of children who at
least showed up on week_6 or onwards.

3.4.2 Model Selection
Total nine supervised ML algorithms were chosen for predictive analytics based on their

superior performance in similar studies [15,23–25]. The chosen ML algorithms are Logistic Regres-
sion, Support Vector Machine (SVM), Naive Bayes, Decision Tree Classification, Random Forest
Classification, Artificial Neural Network (ANN), XG Boost, K-Nearest Neighbors (K-NN) and
Kernel SVM as shown in Fig. 2.

Performance of all these algorithms were evaluated for training of our model. The overview
of each algorithm is discussed as follows:

3.4.3 Logistic Regression
Logistic regression is a statistical mode that predicts the output using the logistic sigmoid

function to calculate a probability value to be mapped on two or more discrete classes [26]. It is
known to be fast and simplistic as compared to kernel SVM and other ensemble methods, but it
may lag in terms of accuracy.
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Table 1: Summary of selected dataset features

Features Categorical inputs Options Encoding

Baseline Survey City Karachi or Matiari 1–2
Gender Male or Female 1–2
Age of Mother Less than 20 years, less than 30

years, less than 40 years, or less than
50 years

1–4

Age of Father Less than 20 years, less than 30
years, less than 40 years, or less than
50 years

1–4

Qualification of Mother No Formal education, Primary,
Middle, Secondary/matric,
Intermediate, Graduate,
Post-Graduation or Madrasa

1–8

Qualification of Father No Formal education, Primary,
Middle, Secondary/matric,
Intermediate, Graduate,
Post-Graduation or Madrasa

1–8

Spoken Language Urdu, Sindhi, Punjabi, Balochi,
Pashto, Bengali, Burmese, Saraiki, or
Others

1–9

Household Income Less than PKR 7,000, PKR
7,000–10,000, PKR 10,000–15,000,
PKR 15,000–20,000, PKR
20,000–30,000, greater than PKR
30,000 or unknown

1–7

Mode of transport By walk, Public transport, Personal
car, Motorcycle or Others

1–5

Exit Survey BCG vaccine status Yes or No 1–2

Random Forest

Supervised ML 

Algorithms

Kernel SVM

Artificial Neural 

Networks
Decision TreesNaïve Bayes

Support Vector 

Machine  (SVM)

XG Boost

Logistic 

Regression

K-Nearest 

Neighbors

Figure 2: Supervised ML algorithms
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3.4.4 K-Nearest Neighbors (K-NN)
A k-nearest-neighbor is a simplest non-parametric classification method where a data point is

classified based on its distance from its nearest neighbors and is assigned the class to which they
belong. Here, k refers to no. of neighbors considered which is usually a smaller odd number but
can be large for more accurate results. It requires data to be normalized and performs slowly with
larger datasets.

3.4.5 Support Vector Machines (SVMs)
SVM works by visualizing feature set as a point in n-dimensional space (where n is number

of features in your dataset) with the feature value taken as value of a coordinate [26]. Then,
classification is done by determining the hyper-plane that best separates the two classes. It is a
non-probabilistic method suitable for smaller dataset but may require additional computation cost.

3.4.6 Kernel SVM
Kernel SVM is used to convert linear SVM classier to solve a non-linear problem. They

use different types of kernels i.e., linear, polynomial, radial basis function (RBF), and sigmoid
functions to transforms data to a higher dimensional space where the points can be linearly
separated [26]. The mapping of feature space is defined by the dot product between feature space
representations of two data point due to which each kernel will result in different type of feature
space and its performance will vary accordingly.

3.4.7 Naive Bayes
Naive Bayes is a probabilistic classifier based on Bayes’ theorem which assumes that each

feature is statistically independent of each other and contribute equally to the prediction [26]. It
provides extremely fast results and is useful for large datasets but its strong assumption for feature
independence makes it difficult to apply in real-world applications.

3.4.8 Decision Tree Classification
Decision tree is tree-structured based classifier in which internal nodes represent the feature of

a dataset, branches represent the decision rules, and each leaf node represents the outcome [26].
The core algorithm for building decision trees is called ID3, CART, MARS etc. They use entropy
and information gain calculation at each iteration to construct a decision tree. Decision trees are
easy to interpret, requires no normalization and feature selection is done automatically. They tend
to over fit model which can be resolved by limiting tree depth parameter.

3.4.9 Random Forest Classification
Random forests are ensemble method for classification that train a multitude of decision trees

in parallel with bootstrapping and aggregation known as bagging. The small decision trees are
known as estimators each of which provides its own prediction and can solve over fitting problem
faced by decision trees. They are simple and fast to implement and provide better accuracy in
comparison to other classifiers.

3.4.10 XG Boost
Extreme Gradient Boosting (XG Boost) is a decision-tree-based ensemble ML algorithm that

uses a gradient boosting framework to enhance speed and performance of boosted tree algorithms.
It can handle overfitting problem but is sensitive to outliers due to which scalability on larger
datasets is a concern.



382 CMC, 2022, vol.70, no.1

3.4.11 Artificial Neural Network (ANN)
An artificial neural network (ANN) is a nonlinear statistical model based on a set of con-

nected input output network where each connection is linked by a weight and learning is done
through adjustments of these weights on each iteration to achieve specified accuracy score [26].
The performance of neural network depends on learning rule, architecture and transfer function
used. They are computationally accurate but at the cost of being time consuming.

3.5 Model Optimization
3.5.1 Parameter Tuning

Parameter tuning for any ML algorithm is the key to its performance. It refers to choosing
a set of optimal hyperparameters for learning. Tab. 2 summarizes the details of essential tun-
ing parameters for each algorithm. The column of “defined parameter” includes values of the
parameters where we have achieved better accuracy.

Table 2: Summary of algorithm parameters

Algorithms Hyperparameters Definition Parameter values Defined parameter

Logistic
Regression

Solver Algorithm for
optimization
problem

Newton-cg, lbfgs,
liblinear

lbfgs

Penalty Norm used in
penalization

l1, l2, elasticnet l2

C Regularization
parameter.

0.01–100 1

K-Nearest
Neighbors
(K-NN)

Metric Distance metric to
use for the tree

Minkowski Minkowski

Weights weight function uniform, distance Uniform
Kernel Kernel type to be

used in algorithm
Poly, rbf, sigmoid, Rbf

Support Vector
Machine (SVM)

Kernel Kernel type to be
used in algorithm

Linear Linear

Kernel SVM C Regularization
parameter.

0.01–100 1

Naive Bayes Priors Prior probabilities
of the classes

0–1 Default

Decision Tree
Classification

Criterion Function to measure
quality of a split

Gini, entropy Gini

Max_features Number of features
for best split

Integer, float, auto,
sqrt, log2

10

Max_depth Maximum depth of
the tree

2–100 2

Class_weight Weights associated
with classes

Balanced,
balanced_subsample

Balanced

(Continued)
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Table 2: Continued

Algorithms Hyperparameters Definition Parameter values Defined parameter

Random Forest
Classification

N_estimators Number of trees
in the forest

10–100 30

Max_features Number of
features for best
split

Integer, float, sqrt,
log2

10

Max_depth Maximum depth
of the tree

2–100 2

Class_weight Weights associated
with classes

Balanced,
balanced_-
subsample

Balanced

XG Boost N_neighbors Number of
neighbors

1–100 5

Artificial Neural
Network
(ANN)

Optimizer Algorithms to
minimize the
function

Adam, SGD,
adamax

Adam

Loss function To optimize the
parameter values

Categorical
cross-entropy,
binary cross
entropy

Binary cross entropy

Booster Type of model Gbtree, gblinear Gbtree

3.5.2 SMOTE for Imbalance Classification
Paigham-e-Sehat dataset comprising of 3,113 records was inherently imbalanced in terms of

class distribution. It had a minority class of defaulting group with 726 records and a majority
class of 2,387 records of non-defaulter group. This bias in data needs to be resolved through
some data augmentation otherwise it potentially leads to provide insufficient data for training of
minority class, that in turns affect sensitivity or specificity rates. Previous studies seem to overlook
this important aspect towards achieving a good balance between sensitivity and specificity along
with high accuracy. Therefore, either positive or negative class was identified more precisely than
the other. In healthcare domain it is crucially important for predictive models to achieve a balance
between these two to reduce misclassification [19,20].

Synthetic Minority Over-Sampling Techniques (SMOTE) were introduced in 2002 to resolve
imbalance classification problem [11]. SMOTE works by synthesizing new data points of minority
class, thus contributing towards balancing the class distribution without providing any additional
information to the model [27]. Over sampling and under sampling methods are used to sam-
ple the minority class. Therefore, to overcome this bias in available dataset, SMOTE technique
was deployed during training. This resulted in a new sample size of 4,774 records containing
2,387 records of defaulting children while 2,387 records were of none defaulting children. This
optimization results in significant improvements in prediction results.

3.6 Model Evaluation
The focus of this study was to classify defaulting and non-defaulting groups early at the

time of birth with high accuracy as well as maximum scores for sensitivity and specificity.
Thus, performance of prediction models was evaluated using following criteria: confusion matrix
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accuracy, sensitivity, specificity, precision (positive and negative predictive value), as tabulated in
Tab. 3. Where TP = True Positives, TN = True Negatives, FP = False Positives and FN = False
Negatives.

Table 3: Evaluation criteria

Evaluation criteria Description Formula

Confusion Matrix For a binary classification, it
is a 2x2 matrix formed by
counting the number of the
four outcomes of a binary
classifier denoted by TP, FP,
TN, and FN

[
TP FN
FP TN

]

Accuracy Number of all correct
predictions divided by the
total number samples in
dataset

TP+TN
TP+FP+FN+TN

Sensitivity Number of positives the
model predicted correctly, out
of all actual positive

TP
TP+FN

Specificity Proportion of actual
negatives that are correctly
identified

TN
TN+FP

Precision(Positive predicted value) Number of predicted
positives that are true
positives, out of all predicted
positive

TP
TP+FP

Precision(Negative predicted value) Number of incorrect positive
predictions divided by the
total number of negative
predictions

TP
TN+FN

4 Experimental Results

To carry out this study, following four test scenarios were considered with respect to selection
of features and inclusion of SMOTE. The test scenarios are as below:

• Test scenario 1: Using baseline features
• Test scenario 2: Using baseline and exit features
• Test scenario 3: Using baseline features with SMOTE technique
• Test scenario 4: Using baseline and exit features with SMOTE technique

Tab. 4 summarizes the results obtained from first test scenario, nine features of baseline survey
(as in Tab. 1) were used to evaluate the performance of algorithms Among nine algorithms, kernel
SVM achieved the highest accuracy with 76.3% while the sensitivity rate was limited to only 2.1%.
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Kernel SVM model predicted that 24.01% (187/779) children would default; among them, 2.13%
(4/187) children defaulted. Similarly, it was predicted that 76% (592/779) children would come
back for the next vaccination; among them, 99.7% (590/592) children did come back. The highest
sensitivity of 41.2% was achieved by decision tree classification to permit correct identification
of potential defaulters. By contrast, the highest specificity of 100% was achieved using logistic
regression, SVM and ANN for correctly predicting the maximum number of children who will
come back for RI but at the cost of lowest sensitivity of 0.5%, 0% and 0% respectively.

Table 4: Prediction models performance for test scenario 1

Algorithms Confusion
matrix

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision (+ve)
(%)

Precision (−ve)
(%)

Logistic
Regression

[
1 186
0 592

]
76.1 0.5 100.0 100.0 76.1

K-Nearest
Neighbors
(K-NN)

[
31 156
74 518

]
70.5 16.6 87.5 29.5 76.9

Support
Vector
Machine
(SVM)

[
0 187
0 592

]
76.0 0.0 100.0 - 76.0

Kernel SVM
[
4 183
2 590

]
76.3 2.1 99.7 66.7 76.3

Naive Bayes
[
33 154
38 554

]
75.4 17.6 93.6 46.5 78.2

Decision Tree
Classification

[
77 110
149 443

]
66.8 41.2 74.8 34.1 80.1

Random
Forest
Classification

[
42 145
82 510

]
70.9 22.5 86.1 33.9 77.9

XG Boost
[
24 163
27 565

]
75.6 12.8 95.4 47.1 77.6

Artificial
Neural
Network
(ANN)

[
0 187
0 592

]
76.0 0.0 100.0 - 76.0

Tab. 5 summarizes the results obtained from second test scenario, in which performance of
predictive models was evaluated on basis of nine features of baseline survey and one feature of
exit survey as shown in Tab. 1. It was observed that the performance of predictive model was
increased by adding exit survey feature. Among nine algorithms, XG Boost achieved the highest
accuracy with 86.1% while the sensitivity rate was limited to only 46.5%. XG Boost predicted
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that 24.01% (187/779) children would default; among them, 46.5% (87/187) children defaulted.
Similarly, it was predicted that 76% (592/779) children would come back for the next vaccination;
among them, 98.6% (584/592) children did return. The highest sensitivity of 56.1% was achieved
by decision tree classification that will permit correct identification of potential defaulters. By
contrast, the highest specificity of 98.6% was achieved using logistic regression, SVM, Naïve
Bayes, XG Boost and kernel SVM, i.e., to correctly predict the maximum number of children who
will come back for RI but at the cost of lowest sensitivity of 46% respectively.

Table 5: Prediction models performance for test scenario 2

Algorithms Confusion
matrix

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision (+ve)
(%)

Precision (−ve)
(%)

Logistic
Regression

[
86 101
8 584

]
86.0 46.0 98.6 91.5 85.3

K-Nearest
Neighbors
(K-NN)

[
92 95
30 562

]
84.0 49.2 94.9 75.4 85.5

Support
Vector
Machine
(SVM)

[
86 101
8 584

]
86.0 46.0 98.6 91.5 85.3

Kernel SVM
[
446 144
189 415

]
86.0 46.0 98.6 91.5 85.3

Naive Bayes
[
86 101
8 584

]
86.0 46.0 98.6 91.5 85.3

Decision Tree
Classification

[
105 82
95 497

]
77.3 56.1 84.0 52.5 85.8

Random
Forest
Classification

[
102 85
46 546

]
83.2 54.5 92.2 68.9 86.5

XG Boost
[
87 100
2 584

]
86.1 46.5 98.6 91.6 85.4

Artificial
Neural
Network
(ANN)

[
88 99
13 579

]
85.6 47.1 97.8 87.1 85.4

Tab. 6 summarizes the results obtained from third test scenario, in which performance of
predictive models was evaluated on basis of nine features of baseline survey only as in Tab. 1,
along with SMOTE technique. Sample dataset contained 3,113 records out of which 726 records
were of defaulting children whereas 2,387 records were of children who will not default. To cover
this bias in training the model, SMOTE technique was used to oversample the minority class. This
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resulted in a new sample size of 4,774 records containing 2,387 records of defaulting children
while 2,387 records of defaulting children. Random forest achieved the highest accuracy with
78.5% while the specificity rate was limited to 75%. Random forest predicted that 49.4% (590/1194)
children would default; among them, 82% (484/590) children defaulted. Similarly, it was predicted
that 50.5% (604/1194) children would come back for the next immunization visit; out of them,
75% (453/604) children did come back. A sensitivity of 82% was also achieved by random forest
that will permit correct identification of potential defaulters. By contrast, the highest specificity
of 70.2% was achieved using XG Boost but at the cost of lower accuracy.

Table 6: Prediction models performance for test scenario 3

Algorithms Confusion
matrix

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision (+ve)
(%)

Precision (−ve)
(%)

Logistic
Regression

[
414 176
217 387

]
67.1 70.2 64.1 65.6 68.7

K-Nearest
Neighbors
(K-NN)

[
485 105
215 389

]
73.2 82.2 64.4 69.3 78.7

Support
Vector
Machine
(SVM)

[
389 201
253 351

]
62.0 65.9 58.1 60.6 63.6

Kernel SVM
[
446 144
189 415

]
72.1 75.6 68.7 70.2 74.2

Naive Bayes
[
397 193
234 370

]
64.2 67.3 61.3 62.9 65.7

Decision Tree
Classification

[
476 114
191 413

]
74.5 80.7 68.4 71.4 78.4

Random
Forest
Classification

[
484 106
151 453

]
78.5 82.0 75.0 76.2 81.0

XG Boost
[
422 168
180 424

]
70.9 71.5 70.2 70.1 71.6

Artificial
Neural
Network
(ANN)

[
398 192
187 417

]
68.3 67.5 69.0 68.0 68.5

Similarly, Tab. 7 summarizes the results obtained from forth test scenario in which perfor-
mance of predictive models was evaluated on basis of nine features of baseline survey and
one feature of exit survey along with SMOTE technique. Random forest achieved the highest
accuracy with 81.9% while the specificity rate was also achieved to be 80.3%. Random forest
model predicted that 49.4% (590/1194) children would default; among them, 83.5% (493/590)
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children defaulted. Similarly, it was predicted that 50.6% (604/1194) children would come back for
the next vaccination; among them, 80.3% (485/604) children did return. The highest sensitivity of
100% was achieved ANN but at the cost of 0% specificity that will permit correct identification of
potential defaulters but not the children who will come back. By contrast, the highest specificity
of 98.5% was achieved by Naïve Bayes but at the cost of lowest sensitivity of 37.5%.

Table 7: Prediction models performance for test scenario 4

Algorithms Confusion
matrix

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision (+ve)
(%)

Precision (−ve)
(%)

Logistic
Regression

[
409 181
140 464

]
73.1 69.3 76.8 74.5 71.9

K-Nearest
Neighbors
(K-NN)

[
92 95
30 562

]
78.2 80.5 76.0 76.6 80.0

Support
Vector
Machine
(SVM)

[
423 167
203 401

]
69.0 71.7 66.4 67.6 70.6

Kernel SVM
[
446 144
189 415

]
77.6 72.5 82.5 80.1 75.5

Naive Bayes
[
221 369
9 595

]
68.3 37.5 98.5 96.1 61.7

Decision Tree
Classification

[
483 107
150 454

]
78.5 81.9 75.2 76.3 80.9

Random
Forest
Classification

[
493 97
119 485

]
81.9 83.6 80.3 80.6 83.3

XG Boost
[
420 170
110 494

]
76.5 71.2 81.8 79.2 74.4

Artificial
Neural
Network
(ANN)

[
590 0
604 0

]
49.4 100.0 0.0 49.4 -

Fig. 3 depicts the bar graphs for performance comparison of prediction models in different
test scenarios 1–4. Accuracy, sensitivity, and specificity percentages are plotted against each algo-
rithm. Tab. 8 tabulates the performance of most optimal algorithms for each of the four test
scenarios. The results show that decision tree has performed well for test scenario 1 and random
forest has proved to provide consistent high performing results in rest of the test scenarios. It
is also evident that the fourth scenario is proved to be the best scenario for training prediction
models.
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Figure 3: Performance comparison of prediction models for different test scenarios. (a) Test
scenario 1, (b) Test scenario 2, (c) Test scenario 3, (d) Test scenario 4
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Table 8: Most optimal algorithm for each test scenario

Algorithm (Test
scenario no.)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision (+ve)
(%)

Precision (−ve)
(%)

Decision Tree (1) 66.8 41.2 74.8 34.1 80.1
Random forest (2) 83.2 54.5 92.2 68.9 86.5
Random forest (3) 78.5 82.0 75.0 76.2 81.0
Random forest (4) 81.9 83.6 80.3 80.6 83.3

5 Discussion and Comparison

This study has proposed the use of predictive analytics to improve the RI coverage for
defaulting children early at the time of birth. The approach adopted in the study is relatively
simple, effective, and efficient to be implemented in LMICs and regions where we do not have
adequate amount of data available. The use of SMOTE technique is suggested to compensate
the bias produced due to imbalance in class of defaulting and non-defaulting children. This
optimization method has contributed to increase the overall performance of predictive model
which can be evidently seen from the results presented in this study. The best results were obtained
in test scenario 4 with an accuracy of 81.9% by using random forest algorithm. Tab. 9 presents
a comparison of our results with similar studies reported in open literature.

Table 9: Comparison table of predictive model with other studies

Comparison
Metrics

This study Abebe et al. [16] Qazi et al. [17] Chandir et al. [15]

Year of
Publication

- 2020 2020 2018

Prediction
Outcome

Defaulter Status
(Yes, No)

Immunization Status
(Full, Partial or No)

Defaulter Status
(High risk, Low risk)

Defaulter Status
(Yes, No)

Data
source

Paigham-e-Sehat
Study
Dataset [21]

2011 EDHS dataset
and Children
immunization coverage
data

Pakistan Demographic
and Health Survey
Dataset 2017–18

Zindagi Mehfooz
Digital
Immunization
Registry

Data size 3,311 8,210 50,486 49,439
No. of
features
used

10 12 19 8

ML
Techniques
used

Logistic
Regression,
SVM, Naive
Bayes, Decision
Tree, Random
Forest, ANN, XG
Boost, KNN,
Kernel SVM

J48 Decision trees,
SMO, SVM, MLP
ANN, PART rule

ANN-MLP, Naïve
bayes, Decision Tree,
SVM

Recursive
partitioning,
SVM Random
forests, C-forest

(Continued)
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Table 9: Continued

Comparison
metrics

This study Abebe et al. [16] Qazi et al. [17] Chandir et al. [15]

Best
classifier

Random Forest J48 Decision tree ANN-MLP Random Forest

Accuracy
(%)

81.90% 62.5% 98% 75.60%

Sensitivity
(%)

83.60% 62.50% 98.50% 94.90%

Specificity
(%)

80.30% 64.5% 99.60% 54.90%

It can be seen from the results that our predictive model has performed well in terms of
accuracy, sensitivity, and specificity in comparison to the work of Abebe et al. [16] and Chandir
et al. [15]. Also, we can observe that these studies have not given much importance to specificity
scores which will lead to misclassification while predicting the defaulters. Therefore, it is extremely
important to take account of sensitivity as well specificity scores to design a good classifier.
Whereas the work presented by Qazi et al. [17,18] outperform in terms of all evaluation metrics
for classification of high risk and low risk of defaulters in upcoming RI visits., The performance
edge seems to be achieved mainly due to the utilization of a large dataset and relatively large
number of features to train their model. However, in most of the cases, studies are conducted
with practical constraints in data collection and difficulties in getting information of large number
of features. In such a case, our proposed study can prove to be viable as it has utilized smaller
dataset with only ten basic features for training models. The selected features were demographic
and socio-economic data of each child along with the status of BCG vaccine uptake. Such features
are relatively easier to gather even in resource constraint environment.

Furthermore, another key finding of our study includes the evaluation of graded feature
importance. To further investigate which features are contributing higher for predicting defaulting
children in RI visits, feature (i.e., variable) importance score was calculated. These scores are also
called gini importance or mean decrease impurity [28]. In test scenarios with SMOTE technique
i.e., scenario 3 and 4, random forest was found to be the most optimal algorithm. Therefore,
feature importance of the same is presented in Fig. 4. In Fig. 4a, household income ranks highest
with a score of 18%, qualification of the father as 16% and qualification of mother as 12%.
However, in Fig. 4b status of BCG vaccine ranks highest with a score of 18%, household income
as 15% and qualification of father as 13%. Based on results the targeted intervention areas for
improving RI are low-income groups, parents education especially fathers as they are the head
of the families and primary decision makers in Pakistani society. Moreover, those children who
receive BCG vaccine dose at birth are more likely to come back for next immunization visits.

Therefore, to improve RI coverage it is essential to address above discussed factors along with
the other interventions to create a greater impact of achieving the goal for universal coverage
of RI. The above findings have opened new doors of investigation for taking customized timely
interventions in improving the overall coverage and timeliness of RI. The above discussion shows
that in LMICs like Pakistan; BCG vaccine coverage, poverty and illiteracy are the major causes
of high rate of defaulting children in RI visits and same is aligned with the findings of similar
studies [29–32]. The study findings can be used by health policy makers, health authorities,
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volunteers, charities, immunization programs, concerned government authorities and vaccinators
to increase the overall coverage and timeliness of vaccination within the region. It can also be
used for evidence based targeted interventions for the identified individuals or community of the
defaulting group.

Figure 4: Feature importance: (a) Using baseline features with SMOTE technique, (b) Using
baseline and exit features with SMOTE technique

The feasibility of proposed model is evident especially for practically constrained environ-
ments to correctly identify children in the defaulting group of immunization schedules. The
proposed model uses pre-trained models which can be directly deployed using a computer/laptop
to provide offline predictions and storage of data using local server instead of a remote sever
which will require internet connectivity. Hence, the communities with low immunization rates
especially backward areas can get the most benefit out of this study. Moreover, it can also help
in improving other immunizations programs, and their coverage including COVID-19. To further
evaluate the effectiveness of this model, one must take account of the demographic data which
may influence the health system for overall improvement in RI coverage.

6 Conclusion

Lack of routine immunization coverage is a major concern all around the globe. It is
extremely important for a child to receive vaccine doses at specific scheduled stages. To facilitate
improvement in RI coverage, this study presents a predictive tool to help identify children who
are likely to miss or delay the initial doses of vaccine. To improve practical relevance of the
predictive model, it is optimized for accuracy, sensitivity as well as specificity. Data biases were
technically removed to further improve performance. The study also highlighted significant features
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contributing to poor RI coverage. It was found that from Pakistan’s perspective; BCG vaccine
coverage, qualification of father and household income are key factors contributing towards the
coverage of routine immunization. These results are in line with the findings of other similar
studies for LMIC. We suggest that behavioral change requires to be addressed with the help of
technological tools and interventions for providing awareness and assistance towards the defaulting
group of people. Also, non-health factors such as the economy and education remain equally
important to improve RI coverage. To achieve improved immunization coverage and timeliness,
this study showcases potential avenues to help the concerned vaccinators, health authorities and
policy makers to develop appropriate strategies, make timely decisions and take proactive measures
for evidence based targeted interventions.
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