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Abstract: Linear antenna arrays (LAs) can be used to accurately predict the
direction of arrival (DOAs) of various targets of interest in a given area. How-
ever, under certain conditions, LA suffers from the problem of ambiguities
among the angles of targets, whichmay result in misinterpretation of such tar-
gets. In order to cope up with such ambiguities, various techniques have been
proposed. Unfortunately, none of them fully resolved such a problem because
of rank deficiency and high computational cost. We aimed to resolve such a
problem by proposing an algorithm using differential geometry. The proposed
algorithm uses a specially designed doublet antenna array, which is made
up of two individual linear arrays. Two angle observation models, ambigu-
ous observation model (AOM) and estimated observation model (EOM), are
derived for each individual array. The ambiguous set of angles is contained
in the AOM, which is obtained from the corresponding array elements using
differential geometry. The EOM for each array, on the other hand, contains
estimated angles of all sources impinging signals on each array, as calculated
by a direction-finding algorithm such as the genetic algorithm. The algorithm
then contrasts the EOM of each array with its AOM, selecting the output of
that array whose EOM has the minimum correlation with its corresponding
AOM. In comparison to existing techniques, the proposed algorithm improves
estimation accuracy and has greater precision in antenna aperture selection,
resulting in improved resolution capabilities and the potential to be used
more widely in practical scenarios. The simulation results using MATLAB
authenticates the effectiveness of the proposed algorithm.
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1 Introduction

Source localization through an array of sensors is always been a significant research direction
in the past decades and even today and is widely utilized in various fields including radar,
sonar, wireless communication and acoustics [1–4]. In this context, most commonly, uniform
linear arrays (ULA) are used comprising of antennas usually spaced a half-wavelength apart.
In order to achieve high resolution for more sources with the least number of antennas while
keeping cost and hardware complexity low, linear arrays with antenna’s spacing more than
half-wavelength are deployed and numerous high-resolution algorithms like, Multiple Signal Clas-
sification (MUSIC) [5], JoDeG [6], Min-Norm [7], Space-Alternating Generalized Maximization-
expectation (SAGE) [8] and Estimation of Signal parameters via Rotational Invariance Techniques
(ESPRIT) [9], etc. have been proposed for one dimensional (1-D) direction of arrival (DOA)
estimation problem.

Unfortunately, while increasing the spacing amongst the sensors of the linear antenna array
from half-wavelength, although better resolution is achieved, under certain particular conditions,
the array offers ambiguity among the angles of sources, and all these high-resolution algorithms
generate an ambiguous error in the process of DOA estimation and the wrong estimation of DOA
is achieved, which has a direct impact on the application of antenna array. This may result in
misinterpretation of the target of interest [10]. For a linear array of antennas, an ambiguous error
will occur, if any of the response vectors become a linear combination of two or more other
response vectors. In such a case, this linear dependency amongst the response vectors leads to
the failure of all these high-resolution algorithms in the identification of exact signal sources [11].
Briefly speaking, the larger the aperture of the array of sensors, the better the resolution achieved
and more the array suffers from potential ambiguities [12].

The major problem in source localization with linear antenna array, having sensor spacing
more than half-wavelengths is to resolve the directional ambiguity offered by the array due to
its geometry. Aiming to resolve such a problem, we propose a novel algorithm based on the
application of differential geometry. The proposed algorithm is based on a spatially designed
doublet antenna array comprising of two different linear antenna arrays, having fixed sensor
spacing, in terms of wavelength. Firstly, the corresponding responses of each individual antenna
array are modeled using the concept of array manifolds. The shape of the manifold of a linear
array of N omnidirectional antennas is a circular hyperhelix [13], located on an N-dimensional
complex sphere. Due to such shape, application of differential geometry is much more convenient
and beneficial in the analysis of geometrical properties of LA’s and achieve dramatic results.
Secondly, all possible an ambiguous set of directions exists in the manifold of each individual
array are calculated based on uniform partitioning of their respective manifolds, and is obtained
by dividing lengths of each manifold with their respective differences between any two sensor
locations. For each antenna array, ambiguous set of directions calculated in this way is termed
as an ambiguous observation model (AOM). The AOM calculated for both individual antenna
arrays remain the same until the position of the sensors is fixed. Like AOM, each individual array
has an angle observation model named as estimated observation model (EOM). The EOM for
each individual array includes all the estimated angles via a direction-finding algorithm such as
a genetic algorithm. The EOM calculated for both individual antenna arrays are off course not
constant and gets updated when any source changes its position from its previous one. Finally,
by utilizing both the observation models i.e., AOM and EOM for both individual arrays, the
algorithm compares the EOM of each array with its corresponding AOM and selects the output
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of that array whose EOM has a minimum correlation with its corresponding AOM. Simulation
results revealed that output selected in such a way is corrected and unambiguous.

Authors’ Motivation and Contribution

After a comprehensive literature review of the existing techniques for ambiguity resolution
offered by a 1-D linear antenna array, it was observed that these techniques are based on hard
problems and complex mathematics and hence, required high computational cost. These tech-
niques suffer from rank deficiency issues and do not guarantee the required positive semidefinite
augmented covariance matrix. Moreover, these techniques are constrained dependent and do not
guarantee ambiguity resolution for generalized antenna array configuration. There is a critical
need to propose a new generalized technique, which can successfully resolve the problem of
ambiguity.

Motivated by the aforementioned objectives, the authors propose a new scheme for the
resolution of ambiguities inherent in the manifold of a linear array. The proposed technique is
based on differential geometry. Our contribution in this research work has some salient features
as follows:

• We introduce a novel architecture for designing a newly doublet antenna array, comprising
of two independent linear arrays, whose sensor’s positions are selected in such a way that,
all ambiguous directions for both the arrays must be unique.

• We propose an efficient technique along with genetic algorithm, which must choose
unambiguous (true) direction of arrival of sources, impinging signals on the proposed
doublet antenna array either from ambiguous or unambiguous directions using far field
approximation.

• The proposed technique when implemented along with the newly designed doublet antenna
array, provides better and unambiguous results as compared to the classical method of
ambiguity resolution using a single array.

• The proposed algorithm improves estimation accuracy and has greater precision in antenna
aperture selection, which predominantly improves the resolution capabilities of the antenna
array.

The remaining paper is organized as follow: Section 2, presents related work on ambiguity
resolution. Section 3, presents identification and calculation of all possible ambiguous sets and
ambiguous generator sets for any linear array configuration. Section 4, introduces proposed tech-
nique along with its implementation and working to counter the problem of ambiguity inherent
in the manifold of a linear array. Section 5, presents simulation results. Section 6, discusses
performance comparison of DOA estimation using classical technique with the newly proposed
technique, while Section 7, concludes the paper and suggest future work.

2 Related Work

2.1 Geometric Parameterization of Array Manifolds
The parameterization of different curves and surfaces can be obtained from a branch of

mathematics known as differential geometry; see [13–15]. Differential geometry is the branch of
mathematics which deals with the application of differential calculus to curves, surfaces and higher
dimensional mathematical objects (manifolds) in order to investigate its geometrical properties.
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Here are some basic concepts related to differential geometry which will we will be using in
this article.

s
def=

p∫
0

∥∥∥∥da(p)dp

∥∥∥∥dp (1)

where “s” is arc length, “p” could be any generic directional parameter i.e., p= θ and a(p) is the
manifold vector which must be differentiable at all possible points, i.e.,

ds
dp

=
∥∥∥∥da(p)dp

∥∥∥∥ (2)

For a linear array with N number of sensors, the relationship between the azimuth angle θ

and the arc length s could be simplified as,

s(θ)= π‖r‖(1− cos θ) (3)

θ(s)= cos−1
(
1− s

π‖r‖
)

(4)

2.2 Current Solutions
In this section, the authors explore related research on the ambiguity resolution problem. In

reference [16] the authors proposed a generalized augmentation approach for fully augmentable
array geometries, which successfully resolve manifold ambiguities for non-uniform linear arrays,
with the approximation that the corresponding fisher information matrix must not be rank defi-
cient [17]. However, it requires a high signal-to-noise ratio and a large number of snapshots, when
there is minimum separation in terms of the spatial frequency amongst the ambiguous and unam-
biguous sources. Reference [18] presents, array interpolation method, to overcome the problem
of rank deficiency. The technique presented can successfully recover the data from the elements
of the virtual ULA’s by imposing a linear interpolation on the elemental data of a real sparse
linear array, and those coefficients are selected which has minimum interpolation error for a source
impinging from a particular angular sector. However, disadvantage of using this technique is, it
needs to know the angular sector. For improving the covariance matrix, the direct augmentation
approach (DAA) is used in the proposed Toeplitz completion method [19], but unfortunately it
does not guarantee the required positive semidefinite augmented covariance matrix. In order to
construct such a matrix, an iterative DAA algorithm is proposed in [20,21], but unfortunately,
it does not guarantee the global convergence due to its complicated iterative procedure. Wiener
array interpolation is proposed in [22], which uses the maximum likelihood (ML) method to
estimate SNR and utilize the calibration angles to recover the array steering matrix and can
achieve the mean square error optimum solution. However, this method requires the initial DOA
estimation. The proposed scheme in this research article differs from currents schemes, because it
is quite simple, and is based on a doublet antenna array instead of a single antenna array. Due
to the prior knowledge of the ambiguities for both individual arrays, calculated using differential
geometry, the algorithm efficiently resolves the ambiguity problem.
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3 Ambiguous Sets and Ambiguous Generator Sets

In this section, we are going to present the definition of Ambiguous set of DOA’s and their
rank of ambiguity.

Definition-1: Ambiguous Set: An order set of DOA’s P = [θ1, θ2, θ3, . . . , θm], is said to be an
ambiguous set of DOA’s

If m≤N and the matrix A(θ) ε CN∗m with columns the manifold vectors a(θ1),a(θ2), . . . ,a(θm)

has rank <m i.e., rank (A(θ)) <m

Or

If m > N and all the subsets θ i of θ . which contains exactly N number of elements are
themselves ambiguous set of DOA’s i.e.,

Definition-2: Rank of Ambiguity: For any ambiguous set of DOA’s rank of ambiguity is defined
as;

Rank of Ambiguity= ρa=
{
rank(A(θ)) if m≤ N
min
∀i

(rank(A(θ i))) if m>N

In [23] the authors discussed issue related to rank-ambiguity of an array while estimating
direction of arrival.

Definition-3: Ambiguous Generator set: If we have a set s= [0, s1, s2, . . . , sc−1] comprising of
“c” number of arc lengths where 2 ≤ c≤N. This set of arc lengths will be ambiguous generator
set if all the following three conditions are satisfied.

i. First element of the set must be zero followed by the remaining non-zero elements.
ii. For the matrix, A(s) ε CN∗c rank of the matrix A(s) should be less than c i.e.,
rank(A(s)) < c
iii. If we take any subset si consisting of “w” elements from the given set s with ρ ≤ w≤ c
then the rank(A(si))= ρ.

3.1 Identification of Ambiguous Generator Sets in Array Manifolds
This section presents identification and calculation of ambiguous generator sets (AGS) inher-

ent in any linear array’s manifold having arbitrary geometry by uniformly partitioning the
Hyperhelices curve [11]. It should be noted here, that in [24] it has been proven that linear array
having spatial array manifold are Hyperhelices curves. Hyperhelices curves are constant curvature
curves. For a linear array, AGS is identified by partitioning the manifold into equal segments
i.e.; uniform partitioning the manifold. This is achieved by dividing the manifold’s total length lm
through absolute difference between the locations of any two sensors of the same array (|ri− rj|)
i.e., lm

|ri−rj| .

The following theorem when applied to any linear array manifold will results in an ambiguous
set.

Theorem 1: If we have a linear array consisting of N number of sensors in half wavelengths,
with sensor’s position r= [r1, r2, . . . , rN ]T then any subset consisting of N number of elements of
the set of arc lengths si,j is an ambiguous set, if the following two conditions are true;
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i) Last element of the set of arc lengths si,j should be greater than zero and less than total
length of the manifold (lm).

ii) c≥N− 1 where, c is number of non-zero elements.

Where,

si,j =
[
0,

lm
|ri− rj| , 2

lm
|ri− rj| , 3

lm
|ri− rj| , . . . , c

lm
|ri− rj|

]T
∀i, j with i �= j (5)

The value of number of non-zero elements “c” can be found using the following expression,

c
lm

|ri− rj| < lm⇒ c=
{
fix(||ri − rj||) if |ri− rj| /∈ N+
|ri− rj| − 1 if |ri− rj| ∈N+ (6)

3.2 Calculation of Ambiguous Set of DOAs for Non-Uniform Linear Array
Steps for calculation of all possible ambiguous set of arc lengths and ambiguous set of

directions inherent in the manifold of a non-uniform linear array are given below:

Step 1) Calculate the total length of the array manifold lm by using the formula lm = 2π‖r‖.
Step 2) Calculate Hadamard difference between sensor’s positions with its self to get
(N2× 1) real vector i.e., �r= r�r.
Step 3) Eliminate all entries of �r which are lesser than unity to form a new vector �̇r. The
idea of eliminating such entries is that it does not satisfy the first condition of Theorem
1. i.e., c= 1+fix(�rij) and cannot contribute in producing ambiguous generator sets.

where, �̇r ∈Rd×1 and d= N
2

(N− 1)

Step 4) Find out set of arc lengths si,j for each entry of the vector �̇r by using Eq. (5).
There will be total “d” set of arc lengths and each set of arc lengths corresponds to a
different partition of the manifold.
Step 5) Identify those set of arc lengths si,j and get eliminated in which the number of
nonzero entries is smaller than N− 1. such entries should be eliminated because it cannot
produce ambiguous generator sets.
Step 6) all the remaining set of arc lengths si,j must have same and equal lengths, if not
then append zero where required.
Step 7) for each set of arc lengths, si,j calculate the AGS using the rules below.

Rule a) if all the nonzero elements of a set si,j are unique and do not repeat in any
other set, then the number of ambiguous generator sets (AGS) produced by that particular

set si,j are
(

c
N− 1

)
. All these AGS’s are possible subsets each having N number of ele-

ments of the same set si,j. All these ambiguous generator sets have rank of ambiguity=
ρa =N− 1.
Rule b) if all the nonzero elements of a set si,j are not unique and repeat in any
other set then ambiguous generator sets having rank of ambiguity = ρa < N − 1 might
be achieved. All the subsets of that particular si,j with their first element 0 and with
length 2, 3, 4, . . . ,min(N,c+ 1) must be considered. For all these subsets to be ambiguous
generator sets all the three conditions of definition-3 must be satisfied.
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Step 8) Create a matrix M whose rows are the entire ambiguous generator sets found in
Step 7. Eliminate the duplicate rows if any.
Step 9) for the matrix M above, calculate matrix θAmbig using Eq. (4) which consist of all
the ambiguous set of directions in terms of degrees.

4 Proposed Technique and Its Implementation

In this study, we aim to resolve the problem of ambiguity offered by any linear antenna array
configuration in the process of direction of arrival estimation of sources. For this purpose, we
propose a new technique which gives unambiguous results irrespective of the impinging signals.
Unlike the classical method of DOA estimation, which uses a single antenna array, the proposed
technique is based on a newly designed doublet antenna array.

4.1 Designing of the Doublet Antenna Array
We aim to design a new array in such a way that it includes two different linear arrays i.e.,

array 1 and array 2, both having different sensor positions, which makes it a doublet antenna
array. r 1 is the vector which represents the location of sensors for array 1 (A1) and r 2 is the
vector which represent the location of sensors for array 2 (A2). In order to make the overall output
of proposed array ambiguity free, we must choose r 1 and r 2 i.e., antenna’s separation for both the
individual arrays carefully, so that the ambiguous set of arc lengths and hence ambiguous set of
directions for both the arrays are unique i.e., no ambiguities should be common among both the
arrays or the two sets of ambiguities should be completely disjoint. Fig. 1 represents the proposed
architecture for designing an ambiguity-free antenna array.

Figure 1: Architecture for our proposed doublet antenna array
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In order to achieve the desired doublet antenna array in which both the individual antenna
array must not have any ambiguous angles common, then we have to choose the position of
the antenna elements for both the arrays i.e., r 1 and r 2 in such a way that there should be
no inter-sensor spacing common in between both the arrays. In light of the proposed archi-
tecture for designing a doublet antenna array, we choose, r 1 = [−3 − 1 − 0.52 2.5] and r 2 =
[−3.5 − 0.25 3.75 5.1] where r 1 and r 2 are the vectors which represents the location of sensors
in half wavelengths for array 1 and array 2 respectively. The ambiguous sets of directions i.e.,
ambiguous observation model (AOM) for both the arrays are calculated below:

• Calculations of AOM for Array 1:

a. Manifold’s length = lm = 28.4483
b. Hadamard difference between vector representing sensor’s positions with its self after
eliminating those entries which are smaller than unity is �r1 i.e.,

�r1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�r1,2 = 02
�r1,3 = 2.5
�r1,4 = 05
�r1,5 = 5.5
�r2,4 = 03
�r2,5 = 3.5
�r3,4 = 2.5
�r3,5 = 03

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c. Dimension of �r1 is d = 8, so eight uniform basic sets exist and are listed in Tab. 1

Table 1: Set of ambiguous arc lengths for �r1
s�ri,j

T s1 s2 s3 s4 s5 s6 s7

s�r1,2
T 0 14.2241 – – – – –

s�r1,3
T 0 11.3793 22.7586 – – – –

s�r1,4
T 0 5.6897 11.3793 17.0690 22.7586 – –

s�r1,5
T 0 5.1724 10.3448 15.5172 20.6896 25.8621 –

s�r2,4 0 9.4828 18.9655 – – – –
s�r2,5

T 0 8.1281 16.2562 24.3842 – – –
s�r3,4

T 0 11.3793 22.7586 – – – –
s�r3,5

T 0 9.4828 18.9655 – – – –

d. That uniform basic set which has less than N − 1 non-zero elements are eliminated.
We can clearly see from Tab. 1 that only the set s�r1,4

T and s�r1,5
T satisfies the second

condition of Theorem 1 i.e., c≥N− 1 Where c is number of non-zero elements and hence,
both of them are the ambiguous set of arc lengths.
e. Make the length of both set of arc lengths equal since length of s�r1,5

T and s�r1,4
T are

not equal. So Matrix S consisting of set of ambiguous arc lengths is

S =
[
0 5.6897 11.3793 17.0690 22.7586 0
0 5.1724 10.3448 15.5172 20.6896 25.8621

]
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f. Ambiguous generator sets (AGS) is calculated for both set of arc lengths using rule 7(a)
as both these set are unique and do not repeat. AGS produced by each set of arc lengths

are
(

c
N− 1

)
.

For row1{S}: c= 4 and N = 5 so
(
4
4

)
= 1 ambiguous generator set is produced Row1{S} i.e.,

[
0 5.6897 11.3793 17.0690 22.7586

]

For row2{S}: c= 5 and N = 5 so,
(
5
4

)
= 5 ambiguous generator sets is produced by Row2{S}

by taking all the subsets of N elements of Row2{S} i.e.,⎡
⎢⎢⎢⎢⎣
0 5.1724 10.3448 15.5172 20.6896
0 5.1724 10.3448 15.5172 25.8621
0 5.1724 10.3448 20.6896 25.8621
0 5.1724 15.5172 20.6896 25.8621
0 10.3448 15.5172 20.6896 25.8621

⎤
⎥⎥⎥⎥⎦

g. Create Matrix M whose rows are all the Ambiguous generator sets produced above i.e.,

M=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 5.6897 11.3793 17.0690 22.7586
0 5.1724 10.3448 15.5172 20.6896
0 5.1724 10.3448 15.5172 25.8621
0 5.1724 10.3448 20.6896 25.8621
0 5.1724 15.5172 20.6896 25.8621
0 10.3448 15.5172 20.6896 25.8621

⎤
⎥⎥⎥⎥⎥⎥⎦

h. Ambiguous set of directions for all the elements of M in terms of degrees are calculated
using Eq. (4). All the ambiguous DOA’s (In Degrees) can be written in matrix form as,

θAmbig(Array1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 53.1301 78.4630 101.5370 126.8699
0 50.4788 74.1734 95.2159 117.0357
0 50.4788 74.1734 95.2159 144.9032
0 50.4788 74.1734 117.0357 144.9032
0 50.4788 95.2159 117.0357 144.9032
0 74.1734 95.2159 117.0357 144.9032

⎤
⎥⎥⎥⎥⎥⎥⎦

• Calculation of AOM for Array 2:

a. Manifold’s length = lm = 45.4761
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b. Hadamard difference between vector representing sensor’s positions with its self after
eliminating those entries which are smaller than unity is �r2 i.e.,

�r2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

�r1,2 = 3.25
�r1,3 = 7.25
�r1,4 = 8.60
�r2,3 = 004
�r2,4 = 5.35
�r3,4 = 1.35

⎤
⎥⎥⎥⎥⎥⎥⎦

c. Dimension of �r2 is d = 6, so there are six uniform basic sets exists and are listed
in Tab. 2.

d. That uniform basic set which has less than P− 1 non-zero elements are eliminated.
We can clearly see from Tab. 2 that only the set s�r3,4

T does not satisfy the second
condition of Theorem 1 i.e., c≥P− 1 Where c is number of non-zero elements and
hence eliminated.

Table 2: Set of ambiguous arc lengths for �r2
s�ri,j

T s1 s2 s3 s4 s5 s6 s7 s8 s9

s�r1,2
T 0 13.9927 27.9853 41.9780 – – – – –

s�r1,3
T 0 6.2726 12.5451 18.8177 25.0903 31.3628 37.6354 43.9080 –

s�r1,4
T 0 5.2879 10.5758 15.8638 21.1517 26.4396 31.7275 37.0154 42.3034

s�r2,3 0 11.3690 22.7381 34.1071 – – – – –
s�r2,4 0 8.5002 17.0004 25.5006 34.0008 42.5010 –
s�r3,4

T 0 33.686 – – – – –

e. Make the length of all set of arc lengths equal if not. So Matrix S consisting of
set of ambiguous arc lengths all with equal lengths.

S=

⎡
⎢⎢⎢⎢⎣
0 13.9927 27.9853 41.9780 0 0 0 0 0
0 6.2726 12.5451 18.8177 25.0903 31.3628 37.6354 43.9080 0
0 5.2879 10.5758 15.8638 21.1517 26.4396 31.7275 37.0154 42.3034
0 11.3690 22.7381 34.1071 0 0 0 0 0
0 8.5002 17.0004 25.5006 34.0008 42.5010 0 0 0

⎤
⎥⎥⎥⎥⎦

f. Ambiguous generator sets (AGS) is calculated for all set of arc lengths using rule
7(a) as all these sets are unique and do not repeat. AGS produced by each set of

arc lengths are
(

c
P− 1

)
. Here for simplicity we are not showing the ambiguous

generator sets due to large number of sets.

For row1{S}: c= 3 and P= 4 so
(
3
3

)
= 1 ambiguous generator set is produced Row1{S} i.e.,

For row2{S}: c = 7 and N = P so,
(
7
3

)
= 35 ambiguous generator sets is produced by

Row2{S} by taking all the subsets of P elements of Row2{S}.
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For row3{S}: c= 8 and P= 4 so,
(
8
3

)
= 56 ambiguous generator sets is produced by Row3{S}

by taking all the subsets of P elements of Row3{S}.

For row4{S}: c= 3 and P= 4 so,
(
3
3

)
= 1 ambiguous generator sets is produced by Row4{S}

by taking all the subsets of P elements of Row4{S}.

For row5{S}: c= 5 and P= 4 so,
(
5
3

)
= 10 ambiguous generator sets is produced by Row2{S}

by taking all the subsets of P elements of Row5{S}.
g. Matrix M contains all the ambiguous generator sets produced above. For simplicity we are

just showing the ambiguous generator sets produced for Row5{S}.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 8.5002 17.0004 25.5006
0 8.5002 17.0004 34.0008
0 8.5002 17.0004 42.5010
0 8.5002 25.5006 34.0008
0 8.5002 25.5006 42.5010
0 8.5002 34.0008 42.5010
0 17.0004 25.5006 34.0008
0 17.0004 25.5006 42.5010
0 17.0004 34.0008 42.5010
0 25.5006 34.0008 42.5010

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h. For simplicity we are stating only few of the ambiguous set(s) of directions for array 2 i.e.,
θAmbig(Array2)⎡
⎢⎢⎢⎢⎣
0 67.3801 103.3424 147.7958 NaN NaN NaN NaN
0 43.6028 63.3669 80.0718 95.9378 112.2910 130.9327 158.5967
0 39.8753 57.6640 72.4027 85.9994 99.3689 113.2877 128.8959
0 60.0000 90.0000 120.000 NaN NaN NaN NaN
0 51.2320 75.3842 96.9784 119.6913 150.3610 NaN NaN

NaN
NaN

149.3688
NaN
NaN

⎤
⎥⎥⎥⎥⎦

It should be noted that all the values containing both θAmbig(Array1) and θAmbig(Array2) are
in degrees. From θAmbig(Array1) and θAmbig(Array2) we can clearly see that both the arrays have
different sets of ambiguous directions because we have chosen r 1 and r 2 in such a way that
none of the inter-sensor spacing between both the arrays is common. In this case our proposed
technique will work accurately and the overall output of the doublet array is unambiguous. i.e.,
Our direction finding algorithm works efficiently. But if we deliberately choose r 1 and r 2 in a
way that there are common inter-sensor spacing’s between the arrays, than in that case, common
ambiguous directions exists and the algorithm does not work effectively, and the overall output
of the proposed doublet antenna array might become ambiguous.
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4.2 Proposed Technique and It’s Working
In Section 4.1, we have designed a doublet antenna array in such a way that no ambiguous

directions are common among both the individual arrays. Also for each of the individual antenna
array ambiguous set of DOA have been calculated. Fig. 2 represents signals impinging on the
doublet antenna array from a single source, assuming far field approximation.

Figure 2: Signals impinging on designed doublet antenna array from far field

Green filled circles represent position of antenna’s for array 1 in terms of half wavelengths,
while red filled circles represent antenna’s position of array 2 in terms of half wavelength. The
position of all the antennas are selected according to Fig. 1. Genetic Algorithm (GA) is used as
a direction finding (DF) algorithm for estimation of DOA of signals impinging on the designed
doublet array shown in Fig. 2 and has been implemented in Matlab R2014b as a simulation tool,
assuming five (05) sources.

Fig. 3 represents a flow chart which shows working of GA. Due its heuristic and globally con-
vergence nature it works quite well in DOA estimation, and provide best possible directions of all
the sources impinging on antenna array. Fig. 4 illustrates working of the proposed technique along
with genetic algorithm, which chooses unambiguous (true) DOA of different sources impinging
on designed array using far field approximation. After the sources imping signals from far field on
the doublet antenna array, all possible ambiguous sets of DOA i.e., ambiguous observation model
are calculated for both arrays. After that genetic algorithm estimates DOA of all the sources
simultaneously for both the arrays i.e., estimated observation model is calculated. Once the EOM
of all the sources for both arrays is achieved; the proposed technique compares all the estimated
DOA of sources for both the individual arrays with all the ambiguous sets of DOA. If all the
estimated DOA of sources does not belong to any of the ambiguous sets of DOA, then there is no
ambiguity exists in the estimated DOAs of both the arrays i.e., DOA estimation of both the arrays
are correct and the algorithm chooses either output of array 1 or array 2. But if the estimated
DOA by any of the array belongs to any ambiguous set of DOA, then the problem of ambiguity
is said to arise, and in such case the algorithm will have to decide the unambiguous/correct DOA
as follow:

a. If the estimated DOA either by array 1 or array 2 belongs to any ambiguous sets
(or subset) of array 1, then choose output of array 2. In other words, output of that
array should be selected which gives a null set when taking intersection with their own
ambiguous sets.
b. If the estimated DOA either by array 1 or array 2 belongs to any ambiguous sets
(or subset) of array 2, then choose output of array 1. In other words, output of that
array should be selected which gives a null set when taking intersection with their own
ambiguous sets.
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c. If the estimated DOA either by array 1 or array 2 belongs to both ambiguous sets of
array 1 and array 2, then choose output of that array is selected whose EOM has minimum
correlation with its AOM. It is important to be noted here that in our proposed technique,
the comparison is done by flooring down both the value i.e., both the estimated and
ambiguous DOAs. This could be done because genetic algorithm is a heuristic technique
which not necessarily estimates the exact fractional values of a decimal number.

Figure 3: Working of genetic algorithm (GA)

5 Results

The proposed doublet antenna array is used for DOA estimation of 5 sources, along with
direction finding algorithm i.e., GA implemented in Matlab R2014b. For the proposed doublet
array, simulations have been carried out in three different scenarios i.e., all sources impinging
signals on the doublet array from ambiguous, unambiguous and semi ambiguous directions and
the results are tabulated in Tab. 5. In order to compare results of the proposed technique with
the classical technique of DOA estimation i.e., DOA estimation using a single array, simulations
for both the techniques (proposed technique and classical technique) are performed. Tabs. 3 and 4
shows simulation results in case of a using a single array i.e., array 1 and array 2 respectively.

• GA Parameters are:

No. of sources = 5, No. of cycles = 2000, Error threshold = 0.001.

Number of required chromosomes = 400, Number of genes in each chromosome = 10.

• Cost function =
∥∥∥ ∥∥∥ Y

norm(Y)
· YHAT
norm(YHAT)

∥∥∥− 1
∥∥∥ where, Y is the received observations at the

doublet array input and YHAT is the estimated observations by GA.
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Figure 4: Working of the proposed algorithm, which choose unambiguous (true) direction of
sources, which impinge signals on the proposed doublet antenna array. Output of that array is
selected, whose EOM has minimum correlation with its corresponding AOM

Table 3: Simulation results of DOA estimation of 5 sources using array 1

Actual DOAs (Degrees)
of 5 sources

Estimated DOAs
(Degrees) of 5 sources

Response of array
(Ambiguous/Unambiguous)

[0 53.1301 78.4630 101.5370
126.8699]

[4.8819 51.3909 72.5841 95.3149
123.6985]

Wrong/Ambiguous

[0 50.4788 74.1734 117.0357
144.9032]

[11.5387 53.2108 75.1255 118.5095
146.7036]

Wrong/Ambiguous

[0 39.8753 57.6640 72.4027
85.9994]

[0.5691 39.5703 57.3568 71.9848
85.8990]

Almost Correct/
Unambiguous
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Table 4: Simulation results of DOA estimation of 5 sources using array 2

Actual DOAs (Degrees)
of sources 5

Estimated DOAs
(Degrees) of 5 sources

Response of array
(Ambiguous/Unambiguous)

[0 39.8753 57.6640 72.4027
85.9994]

[13.1725 44.4640 63.3785 78.3437
89.1084]

Wrong/Ambiguous

[0 43.6028 63.3669 80.0718
130.9327]

[24.5811 51.2983 66.0170 85.6576
99.4953]

Wrong/Ambiguous

[0 53.1301 78.4630 101.5370
126.8699]

[0.0883 53.6315 78.5644 101.0103
126.0503]

Almost
Correct/Unambiguous

5.1 Direction of Arrival Estimation Using Classical Technique
In classical method of DOA estimation, when using a single array for DOA estimation,

i.e., array 1, then, if signals impinging on the array are from ambiguous direction(s) (from any
of the ambiguous set of DOAs calculated for array 1) then the output is wrong/ambiguous.
In case, if the signals impinging on array 1 from unambiguous directions (does not belong to
any of the ambiguous set of DOAs calculated for array 1) then the response of the array is
correct/unambiguous. Simulations are performed for array 1 to show its behavior to the signals
impinging either from ambiguous or unambiguous directions. Results are tabulated in Tab. 3.
Similar is true for array 2 whose results are presented in Tab. 4.

• Simulation Results for Array 1

For array 1 i.e., r 1 = [−3 − 1 − 0.5 2 2.5] where r 1 represents sensor’s position for
array 1.

i) Case 1: All signals impinging on array 1 are from ambiguous directions i.e., THETA = [0
53.1301 78.4630 101.5370 126.8699]. In this case Genetic Algorithm is not accurately esti-
mating directions of all the signals impinging on array 1. Instead of estimating 101.5370◦
for the fourth source, GA estimates 95.3149◦ which is almost an ambiguous direction for
the same array. Moreover, due to ambiguity offered by the array to the given set of DOA’s,
GA is incapable of accurately estimating other directions as well. Estimated DOA’s are
listed in Tab. 3.

ii) Case 2: All signals impinging on array 1 are from another set of ambiguous directions
i.e., THETA = [0 50.4788 74.1734 117.0357 144.9032]. In this case GA is not accurately
estimating directions of all the signals impinging on array 1. Instead of estimating 50.4788◦
for the second source, Genetic Algorithm estimates 53.2108◦ which is almost an ambiguous
direction for the same array. Estimated DOA’s are listed in Tab. 3.

iii) Case 3: All signals impinging on array 1 are from unambiguous directions i.e., THETA =
[0 39.8753 57.6640 72.4027 85.9994]. In this case GA is accurately estimating direction of
all the sources which impinge signals on array 1. Estimated DOA’s are listed in Tab. 3.

• Simulation Results for Array 2

For array 2 i.e., r2 = [−3.5 − 0.25 3.75 5.1] where r2 represents sensor’s position for
array 2.

i) Case 1: All signals impinging on array 2 are from ambiguous directions i.e., THETA = [0
39.8753 57.6640 72.4027 85.9994]. In this case GA is not accurately estimating directions of
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all the signals impinging on array 2. Instead of estimating 72.4027◦ for the fourth source,
Genetic Algorithm estimates 63.3785◦ which is almost an ambiguous direction for the same
array. Moreover, due to ambiguity offered by the array to the given set of DOA’s, GA is
incapable of accurately estimating other directions as well. Estimated DOA’s are listed in
Tab. 4.

ii) Case 2: All signals impinging on array 2 are from ambiguous directions i.e., THETA = [0
43.6028 63.3669 80.0718 130.9327]. In this case GA is not accurately estimating directions
of all the signals impinging on array 2. Instead of estimating 80.0718◦ for the fourth
source, Genetic Algorithm estimates 85.6576◦ which is almost an ambiguous direction for
the same array. Estimated DOA’s are listed in Tab. 4.

iii) Case 3: All signals impinging on array 2 are from unambiguous directions i.e., THETA =
[0 53.1301 78.4630 101.5370 126.8699]. In this case GA accurately estimates direction of
all the sources which impinge signals on array 2. Estimated DOA’s are listed in Tab. 4.

5.2 Direction of Arrival Estimation Using the Proposed Doublet Antenna Array
Simulations are performed for the following five (05) cases using our proposed doublet array

and results are tabulated in Tab. 5.

Table 5: Simulation results of DOA estimation of 5 sources using the proposed technique

Actual DOAs (Degrees)
of 5 sources

Estimated DOAs
(Degrees) of 5 sources
for array 1

Estimated DOAs
(Degrees) of 5 sources
for array 2

Response of
array 1

Response of
array 2

Selection of
correct DOA’s

[0 53.1301 78.4630
101.5370 126.8699]

[13.5261 54.8501 74.2837
96.1527 123.7291]

[0.2477 54.3057 77.8478
101.9691 125.7926]

Ambiguous Unambiguous Algorithm selects
output of array 2

[0 50.4788 74.1734
117.0357 144.9032]

[9.1087 53.2165 74.3198
119.0127 147.3613]

[0.6775 50.4273 73.8072
117.1167 145.1986]

Ambiguous Unambiguous Algorithm selects
output of a
array 2

[0 39.8753 57.6640
72.4027 85.9994]

[0.3691 85.7184 39.2175
72.3118 57.4951]

[85.3458 68.1996 17.3912
43.0209 54.1020]

Unambiguous Ambiguous Algorithm selects
output of array 1

[0 43.6028 63.3669
80.0718 130.9327]

[0.6431 43.5137 63.6942
80.4876 130.8149]

[1.7702 33.2288 82.9423
90.9772 101.6003]

Unambiguous Ambiguous Algorithm selects
output of array 1

[0 39.8753 53.1301
78.4630 101.5370]

[1.2318 39.7263 53.2568
78.5396 101.5860]

[1.1429 39.3241 52.9148
78.9640 101.1739]

ambiguous Ambiguous Algorithm selects
output of a
array 2

i) Case 1: THETA = [0 53.1301 78.4630 101.5370 126.8699] i.e., All these DOA’s are unam-
biguous for array 2 but ambiguous for array 1 because all of them belong to θAmbig(Array 1).
In this case Genetic Algorithm is accurately estimating directions of all the signals imping-
ing on array 2 while the directions estimated for array 1 are ambiguous because EOM
when compared with the AOM does not give a null set, which means that one or more of
the directions are ambiguous, so the proposed algorithm selects output of array 2. Results
are tabulated in Tab. 5.

ii) Case 2: THETA = [0 50.4788 74.1734 117.0357 144.9032] i.e., All these DOA’s are unam-
biguous for array 2 but ambiguous for array 1, because all of them belong to θAmbig(Array 1).
So the proposed algorithm selects output of array 2. Results are tabulated in Tab. 5.
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iii) Case 3: THETA = [0 39.8753 57.6640 72.4027 85.9994] i.e., All these DOA’s are unambigu-
ous for array 1 but ambiguous for array 2, because all of them belong to θAmbig(Array 2).
So the proposed algorithm selects output of array 1. Results are tabulated in Tab. 5.

iv) Case 4: THETA = [0 43.6028 63.3669 80.0718 130.9327] i.e., All these DOA’s are
unambiguous for array 1 but ambiguous for array 2, because all of them belong to
θAmbig(Array 2). So the proposed algorithm selects output of array 1. Results are tabulated
in Tab. 5.

v) Case 5: THETA = [0 39.8753 53.1301 78.4630 101.5370] i.e., All these DOA’s are partially
ambiguous for both arrays because all of them belong to θAmbig(Array 1) and θAmbig(Array 2).
In such circumstances, the algorithm selects output of that array, whose EOM has min-
imum correlation with its corresponding AOM. In this case the algorithm selects output
of array 2 because, the output of array 2 has only a single estimated DOA that is
matched with their ambiguous DOA i.e., estimated DOA for array 2 is 39.3241◦ while the
ambiguous DOA is 39.7263◦. It should be noted that all the values should be floor down
before correlation. Results are tabulated in Tab. 5.

6 Performance Comparison

After carried out simulations for DOA estimation using the classical technique, as well as,
utilizing our proposed technique for different cases, we observed that the proposed technique
estimates all the DOAs impinging on the doublet antenna array accurately without giving any
overall ambiguous results. From Tab. 5, we can see that almost all the impinging signals from
different directions were somehow ambiguous for the doublet array either for array 1 or array 2,
but the results achieved using the proposed technique are correct/unambiguous. If we compare
the results achieved with the proposed technique given in Tab. 5 with the results achieved using
a classical technique of DOA estimation given in Tabs. 3 and 4, we can see that the results
achieved with a classical technique faces the problem of ambiguity in case if, the impinging signals
on the array are from ambiguous directions. While in the case of DOA estimation using the
proposed technique, we always achieve correct/unambiguous results irrespective of the direction
of the impinging signals. So the proposed technique works well, although the impinging signals
on the doublet array are from ambiguous directions, whereas, the classical technique fails under
such scenarios.

7 Conclusions and Future Work

In this research article, we proposed a newly designed doublet antenna array along with an
efficient technique for estimation of direction of sources by utilizing the concept of differential
geometry and its application in antenna array processing. GA is used to estimate the directions
of sources without having any ambiguity. The proposed technique was shown to be efficient
against the ambiguous directions of sources, as compared to the classical methods for direction
estimation using a single array. We have seen that the application of differential geometry in
antenna array processing for the identification of ambiguities in a linear array, provides good
grounds for resolving the ambiguities inherent in the manifold of a non-uniform linear array. In
the future, we intend to propose a technique for resolving the problem of ambiguities inherent in
the manifolds of planer arrays with the application of differential geometry.
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