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Abstract: The novel Coronavirus disease 2019 (COVID-19) pandemic has
begun in China and is still affecting thousands of patient lives worldwide daily.
AlthoughChestX-ray andComputedTomography are the gold standardmed-
ical imaging modalities for diagnosing potentially infected COVID-19 cases,
applying Ultrasound (US) imaging technique to accomplish this crucial diag-
nosing task has attracted many physicians recently. In this article, we propose
two modified deep learning classifiers to identify COVID-19 and pneumo-
nia diseases in US images, based on generative adversarial neural networks
(GANs). The proposed image classifiers are a semi-supervised GAN and a
modified GANwith auxiliary classifier. Each one includes a modified discrim-
inator to identify the class of the US image using semi-supervised learning
technique, keeping its main function of defining the “realness” of tested
images. Extensive tests have been successfully conducted on public dataset
of US images acquired with a convex US probe. This study demonstrated
the feasibility of using chest US images with two GAN classifiers as a new
radiological tool for clinical check of COVID-19 patients. The results of our
proposed GAN models showed that high accuracy values above 91.0% were
obtained under different sizes of limited training data, outperforming other
deep learning-based methods, such as transfer learning models in the recent
studies. Consequently, the clinical implementation of our computer-aided
diagnosis of US-COVID-19 is the future work of this study.
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1 Introduction

Infections of the novel Coronavirus disease 2019 (COVID-19) became a worldwide pandemic
in 2020 as reported by the World Health Organization (WHO) [1]. Nearly 14 million COVID-19
patients have been positively tested and registered in August 2020. More than 8 million have
totally recovered, but nearly 600,000 patients have died, most of whom are older than 65 years.
Although most infected people remain asymptomatic or have slight flu symptoms, the immune
system of other patients strongly responds against the coronavirus. Currently, the development
of suitable vaccine is still in progress, but may require months, even years. Therefore, the most
efficient methods to prevent the expansion of the disease remain early detection of infected people
as well as their isolation and the quarantine of any persons in contact with patients [1].

Beside the genetic and serology tests, imaging of the lungs was also investigated to detect
COVID-19 patients. Computed tomography (CT) is the gold standard medical imaging modal-
ity for pneumonia diagnosis. Several studies showed that typical patterns corresponding to the
COVID-19 disease is visible with this technique [2]. Also, the chest X-ray imaging which is
more accessible due to the lower costs of the devices and the easier image acquisition process,
showed to be reliable to detect COVID-19 patients. However, this imaging method does not
seem to be suitable for the detection of COVID-19 patients at early stage of the disease [3].
Moreover, very recent studies showed that the lungs of COVID-19 patients depict specific patterns
in ultrasound (US) images which are different from healthy people and from patients suffering
from pneumonia [3]. However, it is well known that US images are difficult to understand and
interpret, especially by non-experts. Only limited part of the body is depicted in the images and
the image contrast is low. Moreover, specific artefacts and the speckle noise resulting from the
physical principles of this imaging technique reduce the general visual quality of the images [4,5].
Therefore, computer-assisted tools could support non-experts in the interpretation of the US
images and in the confirmation of positive COVID-19 patients.

Recently, deep learning techniques become the most promising tools developed in all fields
of medicine, engineering, and computer science [6]. The principle includes algorithms which can
learn extracted features from annotated data. The goal of these algorithms is to automatically
accomplish specific tasks based on the previous training. There are three modes of neural network
learning, which are supervised, semi-supervised and unsupervised learning. The key difference
between the three types of learning is the use of data in the training phase. Supervised learning
models are trained based on fully labeled data. In contrast, unsupervised learning is used when
no labeled data are available for training. However, the training data of semi-supervised learning
includes both majority data (unlabeled) and limited data (labeled) [7].

Deep learning plays a significant role in medicine, for example in the field of cancer diagnosis,
because such models can achieve accurate performance comparable to human level. Moreover, an
important application of such approaches is the automatic analysis of medical images [8]. The
most performed tasks are the segmentation of organs and structures as well as the classification
between healthy and pathological images. CT and magnetic resonance (MR) remain the most
popular imaging modality to evaluate deep learning algorithms, mainly because of the large
available data set. For example, in the field of the detection of COVID-19 patients, this technique
has been already evaluated on CT and X-ray image data with success [9,10]. Applications using
US imaging were also reported. The detection of breast tumors, distinguishing tissues of benign
and malignant liver tumors and of thyroid nodules, the detection of cerebral embolic signal to
predict the risk of stroke, the segmentation of kidney are examples of performed tasks [11–13].
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Convolutional neural networks (CNNs) remain the most popular deep learning networks for image
analysis, also applied to US images [14].

In general, the main limitation of deep learning methods is the requirement of large image
datasets with their annotations. The latter is usually manually performed by physicians but is
an extremely time-consuming task. Transfer learning represents a main approach for training
CNN models. It aims at transferring the knowledge from a similar task which has been already
learned [15,16] and therefore, in reusing a pre-trained model knowledge for another task. This
technique is relevant because CNN models need large datasets to accurately perform tasks like
features extraction and single or multi-label classification. Hence, the transfer learning models
can achieve good results on small datasets. It has many applications in medical imaging, such
as classification and surgical tool tracking of abdominal and cardiac radiographs [17,18] and
COVID-19 detection [19]. The visual geometry group (VGG) [20] and residual neural networks
(Resnet) [21] are the most popular pretrained models, which have been widely applied for realizing
the concept of transfer learning approach.

Generative Adversarial Networks (GANs) are another specific kind of deep learning methods
and can overcome the above limitation concerning the requirement of large dataset [22,23].
Moreover, GANs can be coupled with classification algorithms to perform image classification
tasks. Therefore, these approaches are especially well adapted to the subjects of medical imaging,
especially when the dataset and the annotations are limited. Examples of US imaging-based appli-
cations are the simulation of obstetrics freehand and pathological intravascular US images [24,25],
and the registration of MR and transrectal US images [26]. The main application of GANs to
the COVID-19 is the augmentation of X-ray images of the chest to improve the diagnosis of
COVID-19 patients. In [27], a GAN with deep transfer learning is used. The collected dataset
includes 307 images from four different classes, namely COVID-19, normal, bacterial and viral
non-COVID-19 pneumonia diseases. Three classifiers were evaluated: the Alexnet, Googlenet and
Restnet18. In [28], Generative Adversarial Network with Auxiliary Classifier (AC-GAN) was
introduced as a proposed model called CovidGAN. It was demonstrated that the resulted synthetic
images of CovidGAN improved the overall performance. Classification accuracy using a proposed
CNN model after adding synthetic images increased from 85.0% to 95.0%. Sedik et al. [29] utilized
the potency of GANs for data augmentation to leverage the learnability of the CNN and the
Convolutional Long Short-Term Memory (ConvLSTM). Jamshidi et al. [30] investigated the use
of artificial intelligence models for diagnosis and treatment systems of current Coronavirus disease.
They proposed a model including the GAN for probability estimation of the viral gastrointestinal
infection.

In this paper, two semi-supervised learning-based GAN models are introduced to assist radi-
ologists to identify COVID-19 and pneumonia diseases using US images. The main advancements
of this study are highlighted as follow:

• Demonstrating the feasibility of using the US imaging in the clinical routine of infectious
COVID-19 diagnosis.

• Proposing two GAN-based classifiers without transfer learning for COVID-19 and bacterial
pneumonia detection in lung US images.

• Introducing a modified auxiliary classifier GAN model to accomplish diagnostic tasks of
COVID-19 and pneumonia diseases based on semi-supervised learning technique.

• Comparing to previous studies and recent deep learning models, our proposed GAN classi-
fiers achieved superior performance to detect the potential lung diseases by testing the same
US image dataset.
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The remainder of this paper is divided into the following sections. Section 2 presents an
overview of basic GAN architectures. In addition, the US dataset and the proposed GAN clas-
sifiers are described to confirm the infectious COVID-19 and bacterial pneumonia in US images.
Experiments and comparative evaluation of our proposed classifiers with previous studies and
transfer learning models are given in Section 3. Finally, this study is discussed and concluded with
prospects of this research work in Sections 4 and 5, respectively.

2 Materials and Methods

2.1 Dataset
The public lung US POCUS database [3] has been used in this study. It consists of 911 images

extracted from 47 videos of convex US probe scanning. This dataset includes three different classes
of images: infectious COVID-19 (339 images), bacterial pneumonia (277 images), and the healthy
lung (255 images), as presented in Fig. 1. Small subpleural consolidation and pleural irregularities
can be shown for the positive case of COVID-19, while dynamic air bronchograms surrounded
by alveolar consolidation are the main symptoms of bacterial pneumonia disease [3].

Figure 1: Three ultrasound images represent different cases of COVID-19, bacterial pneumonia,
and healthy lung

2.2 Overview of Basic GAN Architectures
Design and implementation of GANs have recently become an attractive research topic for

artificial intelligence experts. The GAN model is a powerful class of deep neural networks. It was
developed by Goodfellow [22] and has already been successfully applied to image processing, e.g.,
segmentation [31], and image de-noising [32]. The GAN is one of the most effective networks that
generates synthetic images and was extensively used for image augmentation [33,34].

GANs include two networks, in general a generator and discriminator as depicted in Fig. 2A,
which are trained simultaneously. Fake images were produced by the generator and the task of the
discriminator is to identify the input images (real or fake images) [23]. Therefore, the discriminator
estimates the probability of the real image from the dataset or synthesized output image from the
generator. Training the GAN is a min-max type of competitive learning between the generator G
and the discriminator D, as given by

min
G

max
D

V(G, D)=Ex∼pdata(x)[logD(x)+Ez∼pz(x)[log(1−D(G(z)))] (1)
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where z represents a random noise. pdata and pz are the real and generated data distributions,
respectively. D(x) gives the discriminator output value of the real sample, x, probability [35]. G(z)
is the noisy sample generated by G. The function of D is to correctly identify its input data
source, such that the resulted output of D(x) = 1 if the data source is real, while the discriminator
D(G(z)) = 0 for the generated data by G(z). It is important to maximize training accuracy of the
discriminator D to perform this iterative binary classification process [36].

This study is focused on two types of GAN models, which are semi-supervised GAN [37],
and auxiliary classifier with GAN (AC-GAN) [38], as shown in Fig. 2, respectively. For semi-
supervised GAN classifier, the class labels C of real data are added to train the discriminator. The
G generates the fake data from the labeled and unlabeled images, where there is a small number
of labeled images and large number of unlabeled images. The discriminator distinguishes between
generated images (fake images) and real normal images as a switch on/off classification model.
Moreover, classes of real images are also included as output of the discriminator D (Fig. 2B).

Figure 2: Workflow of different GAN models: (A) Basic GAN model (A); (B) Semi-supervised
GAN classifier; and (C) GAN with an auxiliary classifier, namely (AC-GAN)

The AC-GAN model was proposed to incorporate the class label information into the gener-
ator G and consequently, adjusting the objective function of the discriminator D [38]. In Fig. 2C,
the auxiliary classifier assigns each real sample to its specific class. Similarly, generated samples are
assigned to the corresponding class labels added to the random noise z. Therefore, the generation
and discrimination capabilities of this GAN model can be further improved. As a result, labeled
and unlabeled samples are able together to enhance the trained model convergence. This is useful
for real applications when only a limited number of labeled samples is available to accomplish the
training phase of CNN classifiers.
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2.3 Proposed GAN Classifiers
The goal of this study is to propose new GAN models that can classify US images of the

chest into the following classes: healthy lung, infectious COVID-19, and bacterial pneumonia
disease. The proposed GAN models include a modified discriminator to determine the specific
class of the US image using semi-supervised learning technique, keeping its main function of
defining the “realness” of tested images, as described in detail below.

2.3.1 Semi-Supervised GAN Classifier
The schematic diagram of our proposed semi-supervised GAN classifier is depicted in Fig. 3.

The G and D models are both trained on the dataset of lung US images including number
of classes (N = 3), which are the COVID-19, bacterial pneumonia, and healthy lung. The
discriminator predicts the additional class of fake images, which are the output of generator.
For semi-supervised GAN classifier [39], the D is trained in unsupervised and supervised modes
simultaneously. In unsupervised training mode, the discriminator predicts if the input image is real
or fake image. In supervised learning mode, the D is trained to predict the class label for real US
images.

Figure 3: Schematic diagram of proposed semi-supervised GAN classifier to detect COVID-19,
bacterial pneumonia, and healthy lung cases in US images

As shown in Fig. 3, the semi-supervised GAN is trained using three sources of training data
as follows [40]: First, real labeled US images have been used to perform the usual classification
task in supervised learning mode. Second, real unlabeled US images have been used for training
the discriminator to learn which images are real in unsupervised mode. In this study, we assumed



CMC, 2022, vol.70, no.1 1689

the trained US images can be similarly used as labeled and unlabeled data for both supervised and
unsupervised learning modes. Finally, the generated images by G have been utilized for training
the discriminator D to identify the features of fake US images. The discriminator loss combined
two types of loss functions as follows. First, the supervised loss function is represented in Eq. (2),
based on the negative log probability of the image label y given that the input image x is assigned
to the true class.

Lsupervised =−Ex,y∼pdata(x,y) logPmodel (y | x, y<N+ 1) (2)

where Pmodel represents the model prediction of the image class.

Second, the unsupervised loss function combines the loss functions of the unlabeled real and
generated (or fake) images, such that true unlabeled US image is assigned to one of N classes,
and fake images to its (N + 1)th class, as given by

Lunsupervised =−Ex,y∼pdata(x,y) log [1− pmodel (y=N + 1 | x)]−Ex∼G log [pmodel (y=N+ 1 | x)] (3)

Combining Eqs. (2) and (3) to define the loss function of the discriminator D as

LD =−Ex,y∼pdata(x,y) [logpmodel (y | x)]−Ex∼G log [pmodel (y=N+ 1 | x)] (4)

Hence, the unlabeled images reduce the loss function of the discriminator in Eq. (4) by
providing more training samples for the semi-supervised GAN classifier. In addition, the loss
function of the generator G can be defined in Eq. (5), where f (x) is the activation function on
the intermediate D layer. preal and pfake are the probability distributions of real and fake images,
respectively. The function LG is designed to allow the generator to produce a synthetic image that
matches the features in the discriminator D layer, improving the overall performance of GAN
classification.

LG =
∥∥∥ f (x)

(
Ex∼preal −Ex∼pfake

)∥∥∥
2

2
(5)

2.3.2 Modified AC-GAN classifier
Similar to the traditional AC-GAN [38], our modified AC-GAN classifier is also conditioned

on the class labels to produce fake images with accepted quality. The auxiliary classifier is also
included to predict the label of real classes with additional binary decision if the input image
of D is either real or fake. Furthermore, the modified AC-GAN model includes both supervised
and unsupervised learning modes to handle the classified real US images with the corresponding
real classes as shown in Fig. 4. Every generated image of the AC-GAN has a related class label,
c ∼ pc . In this case, the output of G including the noise z is the fake images: Xfake = G(c, z).
The objective function Vacgan combines the log-likehood of both the correct source, Ls, and the
correct class, Lc, as represented in Eqs. (6)–(8), where the generator G is trained to minimize the
difference (Lc−Ls), but the discriminator D aims at maximizing the summation (Ls + Lc) [38].

Vacgan (G,D)=Ls+Lc (6)

Ls =E [logP (S= real |Xreal)]+E
[
logP

(
S= fake |Xfake

)]
(7)

Lc =E [logP (C = c |Xreal)]+E
[
logP

(
C = c |Xfake

)]
(8)

In Fig. 4, our modified AC-GAN has still two outputs like typical GAN models. First, a
binary classification to determine if the US image is real or fake. Second, the output of auxiliary
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classifier gives the predicted class labels corresponding to only real US images using unsupervised
learning mode. Therefore, we added the operator (⊗) as a switcher to force the output of D to
perform the link between each real US image and the true predicted class label in supervised
learning mode. This avoids repetitive discriminator and generator to create additional samples for
all classes in this study, while resulting in successful identification of COVID-19 and bacterial
pneumonia diseases in the tested lung US images. Additionally, the prediction of class label for
fake images can be also obtained using the modified AC-GAN, as presented in [41], but it is not
the focus of this study to generate high resolution synthetic US images.

Figure 4: Schematic diagram of our modified AC-GAN classifier for identifying COVID-19, bac-
terial pneumonia, and healthy lung status in US images. The switching symbol (⊗) indicates
forcing the neural network to the supervised learning mode for linking each real image with the
corresponding class label

2.4 Performance Analysis of GAN Classificiation
The classification performance of the proposed GAN models for COVID-19 in US images can

be quantified using the following evaluation metrics: First, a confusion matrix is estimated based
on the cross validation [42]. Four expected outcomes of the confusion matrix are true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). Second, the accuracy is one
of the important metrics for image-based classifiers, as given in (9). Third, the precision is given in
(10) to represent relationship between the true positive predicted values and all positive predicted
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values. Fourth, the sensitivity or recall in (11) presents the ratio between the true predictive positive
values and the summation of both predicted true positive and predicted false values. Fifth, the
specificity or the true negative rate measures the true predictive negative values to the summation
of true negative and predicted false positive values, as given in (12). Finally, F1-score is the overall
accuracy measure of the developed classifier in (13).

accuracy (%)= TP+TN
TP+FP+FN +TN

100% (9)

precision= TP
TP+FP

(10)

recall= TP
TP+FN

(11)

specificity= TN
TN +FP

(12)

F1-score= 2 (recall ∗ precision)
recall+ precision

(13)

Using the above evaluation metrics in Eqs. (9)–(13), the performance of our proposed GAN
classifiers has been also compared with two pre-trained deep learning models, namely, Vgg-16 [20]
and Resnet-50 [21], besides two previous studies of COVID-Net and POCOVID-Net [3] to validate
the contributions of this research work.

3 Results and Evaluation

3.1 Experimental Setup
All tested US images were converted to the grayscale format. They are also scaled to a fixed

size of 28 × 28 pixels to save computing resources without affecting the resulting accuracy of
our proposed classifiers. The two GAN models have been implemented using open-source Python
Development Environment (Spyder V3.3.6) including TensorFlow and Keras packages [43]. All
programs were executed on a PC with Intel(R) Core(TM) i7-2.2 GHz processor and RAM of
16 GB. Running GAN classifiers were done based on a graphical processing unit (GPU) NVIDIA.

3.2 Results
Multi-label classification of lung US images was carried out using our proposed GAN models

depicted in Figs. 3 and 4. The US dataset [3] was randomly split into 80% and 20% for training
and test sets, respectively. The hyperparameter settings are carefully tuned and fixed for our semi-
supervised GAN and modified AC-GAN classifiers, and also for re-implemented CNN models,
i.e., Vgg-16 and Resnet-50, such that: Batch size = 100, number of epochs = 200, the learning
rate = 0.0001, and the stochastic optimizer is Adam [44] to achieve desirable convergence behavior
during the training phase. The activation functions used for the discriminator output layers are
Sigmoid for binary real/fake classification, and Softmax for identifying three real classes of US
images.

Fig. 5 depicts the confusion matrices of the proposed semi-supervised GAN and modified
GAN classifiers. According to 80–20% split dataset, the tested US images are distributed for each
class as (80 images) for positive COVID-19, (56 images) for bacterial pneumonia disease, and
(47 images) for normal cases. In Fig. 5A, the semi-supervised GAN showed a perfect accurate
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detection of COVID-19 infection and missing one identified sample for both bacterial pneumonia
and healthy lung cases. In contrast, the modified AC-GAN model resulted only a misclassification
of one sample for COVID-19 case, while all tested images of bacterial pneumonia and healthy
lungs were identified successfully. The performance of proposed GAN classifiers is identical and
achieved the diagnostic task of lung US guidance accurately.

Figure 5: Confusion matrix of proposed GAN classifiers: (A) semi-supervised GAN; and (B)
modified AC-GAN

Table 1: Performance comparison of different classification methods using lung US images

Method Class Sensitivity
(Recall)

Specificity Precision F1-score Accuracy (%)

VGG-16 [20] COVID-19 0.94 0.94 0.93 0.93 92.90
Pneumonia 0.98 1.00∗ 1.00 0.98
Healthy lung 0.86 0.95 0.85 0.86

Resnet-50 [21] COVID-19 0.96 1.00 1.00 0.98 98.36
Pneumonia 1.00 1.00 1.00 1.00
Healthy lung 1.00 0.98 0.94 0.97

COVID-Net [45] COVID-19 0.98 0.57 0.77 0.86 81.00
Pneumonia 0.89 0.98 0.95 0.92
Healthy lung 0.01 1.00 0.20 0.01

POCOVID-Net [3] COVID-19 0.96 0.79 0.88 0.92 89.00
Pneumonia 0.93 0.98 0.95 0.94
Healthy lung 0.55 0.98 0.78 0.62

Semi-Supervised
GAN (ours)

COVID-19 1.00 0.99 0.99 0.99 99.00
Pneumonia 0.98 0.99 0.98 0.98
Healthy lung 0.98 1.00 1.00 0.99

Modified
AC-GAN (ours)

COVID-19 0.99 1.00 1.00 0.99 99.45
Pneumonia 1.00 1.00 1.00 1.00
Healthy lung 1.00 0.99 0.98 0.99

Note: ∗Best evaluation values are indicated in bold.
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3.3 Overall Evaluation of GAN Classifiers
Tab. 1 illustrates the comparative performance of the proposed GAN models and competing

methods including transfer learning-based classifiers, i.e., Vgg-16 and Resnet-50, and previous
studies of COVID-Net and POCOVID-Net. The modified AC-GAN classifier showed the best
accuracy of 99.45% among other models. Also, the semi-supervised GAN and Resnet-50 models
achieved approximately similar. classification accuracy of 99.0% and 98.36%, respectively. The
COVID-Net showed the worst case with 81.0% accuracy.

To verify the effectiveness of our proposed GAN classifiers for identifying the status of lung
US scans on limited dataset, we tested pre-trained models against our GAN classifiers at three
different sizes of test images by changing the percentage of dataset split into: 20%, 50%, and 70%
test set of the full dataset, as shown in Fig. 6. The classification accuracy is decreased for Vgg-16
and Resnet-50 to be less than 90% at 70% test data. The modified AC-GAN classifiers showed
unchanged performance when the trained data is decreased till 50%. The semi-supervised GAN
classifier showed better performance than the modified AC-GAN when the number of training
data decreases until 30% of the dataset.

Figure 6: Comparative accuracy of lung US classifiers at different sizes of tested images as a
percentage of the full dataset. The proposed GAN classifiers of COVID-19 and pneumonia
diseases achieved outperformance under limited training data

4 Discussion

In this work deep learning approaches using GAN models were presented to automatically
detect COVID-19 patients from patients with pneumonia and healthy subjects using US images
of the chest. US imaging is not the standard method to diagnose patients with lung diseases but
presents certain advantages regarding the simplicity of the imaging process and the cost of the
devices. Moreover, a recent clinical study of Zhang et al. [46] showed that lung US scanning is
feasible for COVID-19 patients; age range 21–92 years old. However, the images are complex to
understand and interpret in general. In the case of COVID-19, the signature of the disease is not
universally known yet. Therefore, computer-assisted tools can support physicians in this task.

Two semi-supervised GAN and AC-GAN methods were optimized for this specific medical
application. The main advantage of these approaches is the generation of additional synthetic
images with labels very similar to the real ones and which considerably improves the performance
of the image classification process. Therefore, a restricted dataset of patient data with their labels
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can be enough to train the model and provide very good classification results. In our application,
the scanning of infected patients still remains limited due to the recent development of the
COVID-19 disease. Also, image labelling is very time consuming, and physicians have usually very
little time to perform this task.

Both GAN methods were evaluated on the POCUS image database which consists in 911
chest US images of COVID-19 patients, pneumonia patients and healthy volunteers. The perfor-
mances of the semi-supervised GAN and AC-GAN were compared to the performances of other
deep learning methods, as illustrated in Tab. 1. The COVID-Net and POCOVID-Net provided an
overall accuracy lower than 90%. These results clearly illustrate the lowest performance of both
methods due to the restricted number of patient videos (47) included in the database. Although
the VGG and Resnet methods use transfer learning and are therefore expected to provide good
results when restricted datasets are available. Our results showed that the performances of the
GAN approaches are superior (99.00% and 99.45% accuracy for the GANs instead of 92.90%
and 98.36% accuracy for the VGG and Resnet, respectively.)

The main limitation of GAN models may be the requirement of more computing resources
(larger memory) and the use of the GPU due to the generation of the synthetic data. This
remains a minor disadvantage in comparison with the high performance of the other deep learning
method, especially for supervised learning. However, if large datasets are available, the perfor-
mance of pre-trained CNN models such as the Resnet-50 increases, as shown in Fig. 6. The need
for more resources becomes a drawback. A solution to overcome the problem of limited memory
on PCs is the use of computing capacity on the cloud or edge computing scheme. Nevertheless,
our proposed GAN classifiers still represent a good option to deal with limited datasets and
enhance the classification performance of computer-assisted diagnosis of COVID-19 and bacterial
pneumonia diseases in US images based on suitable computing resources.

5 Conclusions and Future Work

In this study, we presented two GAN models as new classifiers for lung diseases of COVID-19
and bacterial pneumonia in US images. The proposed GAN classifiers utilized deep semi-
supervised learning for identifying the predicted class of real images successfully. This research
work demonstrated the feasibility of using lung US images for guiding the radiologists during
clinical check of positive COVID-19 patients. We are currently working towards clinical validation
of our proposed GANs classifiers on larger datasets to assist the procedure of US-guided detec-
tion of COVID-19 infections. Furthermore, the implementation of our computer-aided diagnosis
of US-COVID-19 in the clinical daily routine should be examined.
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