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Abstract:As they have nutritional, therapeutic, so values, plants were regarded
as important and they’re the main source of humankind’s energy supply.
Plant pathogens will affect its leaves at a certain time during crop cultivation,
leading to substantial harm to crop productivity & economic selling price.
In the agriculture industry, the identification of fungal diseases plays a vital
role. However, it requires immense labor, greater planning time, and extensive
knowledge of plant pathogens. Computerized approaches are developed and
tested by different researchers to classify plant disease identification, and that
in many cases they have also had important results several times. Therefore,
the proposed study presents a new framework for the recognition of fruits and
vegetable diseases. This work comprises of the two phases wherein the phase-I
improved localization model is presented that comprises of the two different
types of the deep learningmodels such asYouOnly LookOnce (YOLO)v2 and
OpenExchangeNeural (ONNX)model. The localizationmodel is constructed
by the combination of the deep features that are extracted from the ONNX
model and features learning has been done through the convolutional-05 layer
and transferred as input to the YOLOv2 model. The localized images passed
as input to classify the different types of plant diseases. The classification
model is constructed by ensembling the deep features learning, where features
are extracted dimension of 1 × 1000 from pre-trained Efficientnetb0 model
and supplied to next 07 layers of the convolutional neural network such as
01 features input, 01 ReLU, 01 Batch-normalization, 02 fully-connected. The
proposed model classifies the plant input images into associated labels with
approximately 95%prediction scores that are far better as compared to current
published work in this domain.
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1 Introduction

The emergence of plant pathogens has a detrimental impact on crop development, then if
plant pathogens are not identified timely, there would be a rise in food poverty. In general, major
commodities like rice, maize, and so on., are important for guaranteeing the supply of food and
agricultural development [1]. The early indicator and prediction seem to be the source of efficient
prevention and treatment for crop ailments [2]. They play key responsibility for management and
decision support systems for agricultural development [3]. For now, nevertheless, the observations
made by seasoned farmers are indeed the predominant method for plant ailments identification
in rural regions of advanced nations; this involves constant supervision of specialists, and that
could be extremely costly in agricultural activities. Besides that, in some remote regions, farmers
might have to go hundreds of miles to reach experts, which makes consultation too costly [4].
Nevertheless, that technique could be achieved in small regions and might not be well generalized.
Plant pathogens detection through a computerized algorithm is a significant task, as it can prove
beneficial in tracking vast areas of the crops, and thereby automatically diagnose the pathogen as
promptly as possible on leaf tissue [5]. Therefore, searching for a quick, automated, less costly,
and reliable framework to perform the detection of plant ailments is of great practical value [6].
Usually, plant leaves are the first indicator for detection of the plant’s pathogens, as well as the
signs of most ailments that might start to occur on leaves [7]. As in previous years, the primary
classification methods which were widely used during disease diagnosis in crops involve Random
Forest (RF) [8–12], and many more. And since we all realize that perhaps ailments identification
rates of classical techniques depend heavily upon on segmentation of lesion and hand-designed
features through different frameworks, like moments of invariant, Gabor transformation and
dimensionality reduction, etc. [13]. Nevertheless, the artificial developed features involve costly
works and professional expertise, that have a certain subjective nature [14]. Primarily, that is
not easy to determine that features are suitable and stable for disease detection from some of
the derived features [15]. Other than, complicated environmental conditions, many approaches
failed to accurately leaf segmentation, which can proceed to inaccurate recognition of the disease
outcomes [16]. Therefore, that automated identification of disease is also a tough challenge owing
to the difficulty of infected plant leaves [17]. More lately, deep convolutional models, are rapidly
utilized to address certain challenges [18]. While very good findings have been documented in
literature, inquiries so far have utilized datasets with the minimal diversity [19]. Far more visual
materials contain photos exclusively in innovative (laboratory) environments, not really in the
actual wild environments. Throughout, photographs taken in cultivation area environments provide
a wide diversity of history and an extremely unique of disease manifestations. Consequently, there
seem to be a variety of features required to be learned for Convolutional Neural Network (CNN)
and its derivatives, although training certain Neural networks often needs several labelled data and
significant computing resources by scratch to determine the efficiency. Collecting the large number
of the labelled database is certainly a difficult job [20]. Despite drawbacks, the latest studies have
effectively shown the capacity of intelligent systems. Especially, the transfer learning models, that
also mitigates the issues caused by traditional neural networks, i.e., these same remedies composed
of utilizing a pre-trained model where parameters of last layers need to be extrapolated from the
scratch that is normally utilized in the real time application [21]. The core contributing steps of
the proposed study is manifested as follows:

• An improved localization model is constructed by a combination of the YOLOv2 model
and ONNX model, where deep features are analyzed from the convolutional-05 layer and
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transferred to the 09 tiny YOLOv2 models for more precisely localized the different types
of plant diseases.

• After localization, comprehensive features analysis is performed through a pre-trained Effi-
cientnetb0 model and 07 layers CNN model with softmax layer for classification of different
types of plant diseases.

The overall manuscript is organized as follows: where related work is discussed in Section 2,
the proposed framework is explained in Section 3 and experimental outcomes are defined in
Section 4, and finally obtained outcomes are written in Section 5.

2 Related Work

As of now, Deep Learning (DL) is a slicing technique for classification problems of land
spread, which may also demonstrate support for certain distinct tasks. In the hyperspectral analy-
sis, various kinds of Deep Neural Networks (DNNs) have produced remarkable outcomes [22]. In
crop pattern tasks [23], and pathogens discovery [24]. In such investigations, the GoogLeNet [25]
networks showed the best-classified outcomes. It was also suggested that if models are pre-trained,
stronger findings were obtained. The researchers in [26] offer a detailed overview and easy-to-use
empirical categorization of Machine Learning (ML) approaches to enable the plant network to
implement the required ML techniques and best-practice guidelines for various attributes of biotic
and abiotic stress correctly & effectively. Reference [27] reflects different forms of Parkinson’s
Disease (PD), diverse sophisticated ML methods for PD recognition, this summary also presents
major inspection gaps that will aid in further research to recognize pathology. Reference [28]
uses visualization and ML techniques to coordinate backwoods landscape on terrain database
generated from the tool of Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) images to use Box Plot and Heat Map to explain the accumulated knowledge. Ref-
erence [29] to tweak & test slicing CNN Model for characterization of PD based on photos.
Reference [30] reviewed the steps of a general structure for PD exploration & close investigation
on methods of ML characterization for PD position. Reference [30] suggested a system using
the K-nearest Neighbor (KNN) classifier for Leaf Pathogens Detection (PLDD) & classification.
Reference [31] developed the programmed PLDD and order based on artificial intelligence for
the snappy and easy place of the ailment and later characterized it and conducted anticipated
solutions to cure the disease. The Global Pooling of Dilated CNN (GPDCNN) for PD recogni-
tion is suggested in [32]. References [33–36] based on the most recent progress on explorations
related to ML for rational data analytics and diverse approaches related to existing computing
requirements for various group applications. References [37–40] introduced new technique for leaf
categorization using DL on the limited datasets. Reference [41] offers a range of approaches to
discuss, optimization and allow multidisciplinary ML studies in the healthcare informatics. Ref-
erences [42–45] explored that practicality and probability of the pre-symptomatic tobacco disease
identification utilizing hyperspectral analysis, together with technique for variable preference and
ML. References [46–54] presented a novel model of identification of leaf disease based on DCNN
process.

3 Proposed Framework

The proposed architecture contains two core steps as shown in Fig. 1, i.e., localization and
classification. The localization model is built by a combination of two convolutional neural
models, where deep features learning is performed using an open neural network such as ONNX
and extracts features from the convolutional-05 layers and transferred as input to the tinyYOLOv2
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model contains 09 layers. After localization, classification of different types of plant disease is
implemented using dual-mode of the convolutional neural models i.e., firstly, deep features are
extracted from pre-trained Efficientnetb0 model. The extracted features dimension of 1 * 1000
is transferred to the next 07-layer convolutional neural model for deep features analysis. Later
softmax layer is utilized to classified the plant diseases into corresponding classes.

PhaseII: Dual Training for Plant Disease Classification

Features Analysis Using Convolutional Neural Network
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Figure 1: Core steps of the proposed architecture

3.1 Localization of Different Types of Plant Disease Using YOLOv2-ONNX Model
YOLOv2 model is utilized for the localization. For localization, a new framework is proposed

by the combination of ONNX and the tinyYOLOv2 model. The ONNX model comprises the 35
layers such as 01 input, 02 element-wise affine, 08 batch-norm, 09 convolutional, 01 regression,
08 LeakyReLU, 06 max-pooling.

The proposed localization model is constructed by using 24 layers of the ONNX model i.e.,
01 input, 02 elementwise affine, 06 convolutional, 05 batch-normalization, 05 LeakyReLU, 05 max-
pooling that are transferred as an input to the 09 layers of tiny YOLOv2 model, and trained on
tuned parameters that are manifested as Tab. 1. The flow diagram of the proposed localization
model is drawn in Fig. 2.

Tab. 1, shown the learning parameters that are selected after the experimentation for more
precise localization. The activation units of localization model are given in Tab. 2.
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Table 1: Building parameters of the proposed model

Optimizer Adam

Epochs 500
Mini-batch-size 64
Rate of learning 0.0001

Figure 2: Proposed localization model

3.2 Features Extraction Using Efficientnetb0 Model
Efficientnetb0 [55] network consists of 290 layers, in which 65 convolutional, 49 batch-

normalization, 65 sigmoid, 65 element-wise multiplication, 15 group convolution, 16 global average
pooling, 09 addition, fully connected, softmax & classification. The input image size of 256×256×
3 is passed to the Efficientnetb0 model for features learning in a pipeline. The final feature vector
length of 17984 * 1000 is supplied to the convolutional neural network for further informative
features analysis. The proposed model is trained on the tuned hyperparameters as given in Tab. 3.

The feature-length of 17984 * 1000 that is obtained from the pre-trained Efficientnetb0 model
that is supplied to the CNN model contains 07 layers were 01 features input layer, 01 batch-
normalization, 02 fully connected layers, ReLU, softmax and classification. In this model again
features are learned on 10-fold cross-validation with a variety of optimizer solvers such as adam,
sgdm, and RMSProp. The best optimizer selection is still a difficult task, to overcome this
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problem, thus in this study suitable optimizer is selected after the extensive experiment as shown
in Tab. 4.

Table 2: Activation units of the proposed localization model

Convolution Affine elementwise Batch-norm Leaky-ReLU Pooling YOLOv2-transform

128× 128× 16 128× 128× 3 128× 128× 16 128× 128× 16 64× 64× 16 4× 4× 120
Convolution Affine elementwise Batch-norm Leaky-ReLU Pooling YOLOv2-output
64× 64× 32 128× 128× 3 64× 64× 32 64× 64× 32 32× 32× 32 –
Convolution – Batch-norm Leaky-ReLU Pooling –
32× 32× 64 – 16× 16× 128 32× 32× 64 16× 16× 64 –
Convolution – Batch-norm Leaky-ReLU Pooling –
16× 16× 128 – 8× 8× 256 16× 16× 128 8× 8× 128 –
Convolution – Batch-norm Leaky-ReLU Pooling –
8× 8× 256 – 4× 4× 512 8× 8× 256 4× 4× 256 –
Convolution – Batch-norm ReLU-YOLOv2 – –
4× 4× 512 – 4× 4× 512 4× 4× 512 – –
Convolution – – ReLU-YOLOv2 – –
4× 4× 512 – – 4× 4× 512 – –
Convolution – – – – –
4× 4× 512 – – – – –
Convolution – – – – –
4× 4× 120 – – – – –

Table 3: Learning parameters of Efficientnetb0 model

Batch-size 08

Optimizer Adam
Epochs 30

Table 4: Computation results of the proposed localization model

Optimizers Batch-size Training results (%)

RMSProp 8 92
Adam 16 97
Sgdm 64 95

Tab. 4, shows the training outcomes that are computed after applying the number of opti-
mizers and different batch-size, in which we observed that adam provides higher accuracy as
compared to other optimizers. The parameters of the CNN model are manifested in Tab. 5.

The features learning process of Efficientnetb0 model and 7 layers convolutional neural
network as shown in Fig. 3.

The classification results are computed on single fully-connected layer of model and also
analyzed after supplied to the proposed selected 7 layers of CNN model as stated in Tab. 6.
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Table 5: Number of parameters of next convolutional neural network

Feature’s input 999

Fully-connected 17984
Batch-norm 17984
ReLU 17984
SoftMax 4, 38

Figure 3: Classification of different types of plant diseases using convolutional neural network

Table 6: Selection of layers

Layers Accuracy (%)

Fully connected layer of efficiengtnet-b0 model 94.6
Fully connected layer of efficiengtnet-b0 model and
01 batch-normalization
02 fully connected
01 ReLU

96.46

Fully connected layer of efficiengtnet-b0 model and
02 batch-normalization
03 fully connected
02 ReLU

95.40

Fully connected layer of efficiengtnet-b0 model and
04 batch-normalization
03 fully connected
02 ReLU

95.78

The empirical analysis from Tab. 6, shows that, experiment is implemented on combination
of different kinds of layers of CNN model, where we observed that bold italic layers provide
improved results as compared to other selected layers. Therefore, the selected number of the layers
are utilized for further experimentation.
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4 Experimental Discussion

The presented study is evaluated on a publically available benchmark dataset such as plant
village [56]. The datasets contain 38 classes. The dataset description is mentioned in Tab. 7.

Table 7: Description of the plant village dataset

Category Classes Training images Testing images

Apple Scab 2016 504
Black rot 1987 497
Cedar apple rust 1760 440
Apple (healthy) 2008 502
Blueberry (healthy) 1816 454
Cherry (sour) 1683 456
Cherry (healthy) 1826 421

Corn Cercospora maize 1642 410
Spot of gray leaf 1642 477
Common rust 1907 465
Healthy of maize 1859 477
Northern leaf blight 1908 412

Grape Black rot 1888 472
Black measles 1920 480
Healthy of corn 1692 423
Grape leaf blight 1722 430

Orange Orange citrus 2010 503
Peach Spot of bacterial 1838 459

Peach healthy 1728 432
Pepper Bell healthy 1913 478

Pepper 1988 497
Potato Early blight 1939 485

Healthy of pepper 1824 456
Late blight 1939 485

Raspberry Leaf mold 1781 445
Soybean Septoria leaf spot 2022 505
Squash Mite of two spider 1736 434
Strawberry Target spot 1824 456

Mosaic virus 1774 444
Tomato Yellow leaf curl virus 1702 425

Scab 1920 480
Black rot 1926 481
Rust cedar apple 1851 463
Healthy (apple) 1882 470
Healthy (blueberry) 1745 436
Cherry (sour) 1741 435
Cherry (healthy) 1827 457
Cercospora maize spot 1790 448
Spot leaf gray 1961 490
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Tab. 7, shows the 12 different categories of fruits and vegetable plants such as apple, orange,
grape, corn, pepper, potato, tomato, raspberry, soybean, and squash. These categories having 38
different classes. The classification results are computed on individual categories and a combina-
tion of different categories with class labels. The experiment is implemented on MATLAB2020Rb
with an NVIDIA toolbox. The proposed model is classified on 10-fold cross-validation.

4.1 Experiment #1 Localization of Different Types of Plant Diseases
The original plant images of the fruits and vegetables are recognized with the actual class

labels by utilizing a proposed YOLOv2 [57] framework. The proposed model is constructed by
a mixture of the two-deep learning models such as ONNX and tinyYOLOv2 model, where a
proposed model is trained on the selected learning parameters. The three different types of losses
are utilized to reduce the error rate amongst predicted & actual class labels. The YOLOv2 losses
are defined as follows:

The localization loss is utilized for the computation of the loss among the ground annotated
masks and the predicted bounding box. The computation parameters of the localization loss are
ground masks, bounding predicted box and position. The confidence loss computes the error
among the detected objects and the actual masks in the i grid cell. The classification loss computes
the mean square error between detected and predicted box in the i grid cell. The mathematical
notations of the YOLOv2 losses is explained as:

weight1

gridcell2∑
i=0

boundingbox∑
j=0

1objij

[
(xi− x̂i)+ (yi− ŷi)2

]

+weight1

gridcell2∑
i=0

boundingbox∑
j=0

1objij

[(
widthi−

√
̂widthi

)2

+
(
heighti−

√
̂heighti

)2
]

+weight2

gridcell2∑
i=0

boundingbox∑
j=0

1objij

[
(ci− ĉi)2

]

+weight3

gridcell2∑
i=0

boundingbox∑
j=0

1noobjij

[(
widthi− ̂widthi

)
+ (ci− ĉi)2

]

+weight4

gridcell2∑
i=0

1noobji

∑
c∈classes

[(
pi(c)− p̂i(c)

)2]
where s represents the number of grid cells, b denotes bounding boxes, xi, yi denote the center
point of the jth bounding box and x̂i, ŷi signify the center point of the truth bounding masks. c
identifies the confidence scores and p demonstrates the probability. The testing outcomes are given
in Tab. 8.

The achieved outcomes show, proposed localization method provides 1.00 localization scores
that are far better as compared to recently published work. This approach might be utilized as
a real-time application for the localization of the different types of plant diseases. The proposed
method localization outcomes are shown in Fig. 4.
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Table 8: Results of localization method

Classes Average precision (Ap) Log miss rate

Scab 1.0 0.0
Black rot 1.0 0.0
Apple of cedar rust 1.0 0.0
(Healthy) apple 1.0 0.0
Blueberry (healthy) 1.0 0.0
Cherry (sour) 1.0 0.0
Cherry (healthy) 1.0 0.0
Leaf maize cercospora spot 1.0 0.0
Spot gray leaf 1.0 0.0
Common rust 1.0 0.0
Healthy of maize 1.0 0.0
Northern leaf blight 1.0 0.0
Black rot 1.0 0.0
Black measles 1.0 0.0
Healthy of corn 1.0 0.0
Grape leaf blight 1.0 0.0
Orange 1.0 0.0
Bacterial spot 1.0 0.0
Peach healthy 1.0 0.0
Bell healthy 1.0 0.0
Pepper 1.0 0.0
Early blight 1.0 0.0
Healthy of pepper 1.0 0.0
Late blight 1.0 0.0
Leaf mold 1.0 0.0
Spot of septoria leaf 1.0 0.0
Two-spotted spider mite 1.0 0.0
Target spot 1.0 0.0
Mosaic virus 1.0 0.0
Yellow leaf curl virus 1.0 0.0

4.2 Experiment #2 Classification of Different Types of Plant Diseases
In this experiment, input images are classified into related class labels. The classification

outcomes are computed on training and testing plant images as given in Tab. 9.

The results in Tab. 9 display, proposed method attained kappa scores of 0.964 and an
accuracy of 96.46%. Whereas 100% accuracy achieved on Leaf Mold, Two-spotted spider mite,
Bacterial spot, Orange Haunglongbing (Citrus greening) classes of plant leaves. The proposed
method achieved outcomes above 99% are Cherry (healthy), Cedar apple rust, Common rust,
Northern Leaf Blight, Healthy of corn, Grape Leaf blight, Target Spot, and Cherry (healthy)
classes of plant leaves. The classification results on the individual classes of the different types of
fruits and vegetables as shown in Tab. 10.
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Figure 4: Shows plants diseases (a, d) input images (b, e) plant localization (c, f) localized with
predicted

Tab. 10, shows the classification results on different types of apples. The 1.0 precision score
was achieved on the apple plant, whereas 99.5% and 98.82% precision scores on healthy classes
of apple and blueberry respectively. The proposed method achieved 1.0 precision scores on bench-
mark classes of the apple plant leaves. The classification outcomes of variants corn types as shown
in Tab. 11.

The classification accuracy on testing images of the corn leaves is 99.95%, 98.06%, 98.14%,
99.92%. The classification outcomes on grape plant diseases as given in Tab. 12.
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Table 9: Classification outcomes on input images

Training results Testing results
Accuracy = 96.46% Accuracy = 96.403%
Kappa = 0.964 Kappa = 0.963

Classes Precision (%) Recall (%) Precision (%) Recall (%)

Black rot 50 17.808 98.859 91.422
Cedar apple rust 99.39 99.79 100 92.807
Apple (healthy) 98.53 99.48 98.024 99.143
Blueberry (healthy) 99.34 97.97 96.569 96.806
Cherry (sour) 98.96 98.58 92.195 100
Cherry (healthy) 99.04 99.75 90.947 100
Maize cercospora leaf spot 99.56 99.61 92.371 100
Gray leaf spot 89.16 97.47 100 92.99
Common rust 99.47 99.84 99.318 100
Healthy of maize 97.79 90.98 96.174 100
Northern leaf blight 99.83 99.89 98.439 100
Black rot 97.82 96.80 97.54 100
Black measles 96.61 98.09 99.842 100
Healthy of corn 99.12 99.88 96.017 100
Blight of grape 98.99 99.94 93.776 100
Orange haunglongbing (citrus greening) 98.90 100 99.101 99.799
Bacterial spot 95.97 100 99.946 76.894
Peach healthy 98.90 98.16 98.088 99.706
Bell healthy 96.39 98.29 98.024 99.62
Pepper 98.39 95.41 97.35 99.791
Early blight 98.96 97.55 98.878 99.773
Healthy of pepper 94.21 97.02 99.947 97.172
Late blight 97.09 98.11 98.18 99.888
Leaf mold 98.25 100 98.178 100
Septoria leaf spot 98.61 98.90 99.152 99.499
Two-spotted spider mite 99.94 100 98.171 100
Target spot 99.71 99.49 98.124 100
Mosaic virus 99.50 98.16 97.456 100
Yellow leaf curl virus 94.06 91.80 95.412 100
Scab 85.93 88.80 99.683 80.564
Black rot 89.08 92.53 97.891 90.636
Cedar apple rust 92.08 96.76 96.201 95.74
Apple (healthy) 91.86 85.17 89.309 90.625
Blueberry (healthy) 90.17 91.33 92.068 96.053
Cherry (sour) 91.40 77.03 88.907 83.229
Cherry (healthy) 93.37 99.72 95.508 99.947
Maize cercospora leaf spot 97.59 97.70 98.994 98.39
Gray leaf spot 95.11 96.93 77.091 99.933
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Table 10: Classification of different types of apple diseases on training benchmark datasets

Training results Testing results

Classes ACC (%) PRE RE F1e ACC (%) PRE RE F1e

Scab 99.9 1.0 1.0 1.0 99.02 1.0 0.96 0.98
Rot 99.97 1.0 1.0 1.0 99.74 1.0 0.99 0.99
Cedar rust 99.97 1.0 1.0 1.0 99.73 1.0 0.99 0.99
Apple (healthy) 99.89 1.0 1.0 1.0 99.5 0.99 0.99 0.99
Blueberry (healthy) 99.97 1.0 1.0 1.0 98.82 0.94 1.0 0.97

Table 11: classification outcomes on different types of corn (maize) leaves

Training results Testing results

Classes ACC (%) PRE RE F1e ACC (%) PRE RE F1e

Cercospora 99.95 1.0 1.0 1.0 99.95 1.0 1.0 1.0
Gray spot 98.06 0.98 0.95 0.96 98.06 0.98 0.95 0.96
Rust 98.14 0.94 0.98 0.96 98.14 0.94 0.98 0.96
Healthy 99.92 1.0 1.0 1.0 99.92 1.0 1.0 1.0

Table 12: Classification outcomes on different types of grape leaves on training/testing dataset

Training results Testing results

Classes ACC (%) PRE RE F1e ACC (%) PRE RE F1e

Black rot 99.95 1.0 1.0 1.0 99.54 0.98 1.0 0.99
Measles 98.06 0.98 0.95 0.96 98.46 0.96 0.98 0.97
Healthy 98.14 0.94 0.98 0.96 97.87 0.98 0.93 0.95
Leaf blight 99.92 1.0 1.0 1.0 99.82 0.99 1.0 1.0

Tab. 12, shows the classification of different types of grape diseases, which attained an accu-
racy of 99.95% on black rot, 98.06% on black measles, 98.14% healthy, and 99.92% on grape
leaf blight. The testing classification accuracy is 99.54% on black rot, 98.46% on black measles,
97.87% on healthy, and 99.82% on grape leaf blight. Tab. 13, shows the comparison with recent
existing works, where the five latest methods results are compared to the proposed methodology.

Tab. 13, shows results comparison i.e., [26,57–60] where a pre-trained VGG model has been
employed for diseases orange detection [26]. The convolutional neural model has been utilized
for Tomato classification and achieved 99.32% and 99.0% accuracy [57,58] respectively. While
pre-trained AlexNet and modified convolutional network have been utilized for the classification
of maize plant disease with 70.5% and 97.89% accuracy respectively [59,60]. As compared to
recent latest studies, the present study provides a new feature learning model for plants diseases
classification. In the literature, no work has been done for the detection of plant disease using 38
different categories of the plant village dataset. As we observed that from the existing literature
method detects the one or two different types of plant disease such as tomato, maize, and
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orange, however, the proposed technique detects the different types of fruits and vegetables more
accurately. The comparison outcomes show results are superior as compared to existing methods.

Table 13: Proposed results comparison

Approaches Year Fruits/vegetable Results (accuracy) (%)

[26] 2021 Orange 89.5
[57] 2018 Tomato 99.32
[58] 2021 99.0
[59] 2020 Maize 70.5
[60] 2019 97.89
Proposed Method Tomato, Maize, Apple, Potato,

Strawberry, Pepper, Peach, Grape
Combination of 38 types of the plant
diseases

99.01, 99.60, 99.30,
98.70, 100.0, 99.74
99.82, 99.95
96.403

5 Conclusion

AI is the field where information communication technology (ICT) reaches multiple applica-
tion fields in the center of the space. The algorithms that dominate AI allow for making decisions.
The big performers mostly in the domain are ML & DL. DL deals with layers and optimizers
identical to the neural system of the human brain, which helps to create a consistent model that
shows greater precision. Therefore, the proposed study developed two optimized models. In the
localization phase, the YOLOv2-Conv5 model is utilized for localization of the different types
of the plants and 1.0 precision scores with 0.0 log miss rate this provides a great impact in
the domain of agriculture for localization of the different types of the plant. In the second
phase, extricated deep features from the plant input using pre-trained Efficientnetb0 model and
transferred as an input to the next 7-layer CNN for the analysis of the complex features. The
classification model achieved accuracy of 99.01% on tomato, 99.60% Maize, 99.30% Apple, 98.70%
Potato, Strawberry 100.0%, Pepper 99.74%, 99.82% peach, and 99.95% on Grape. Furthermore,
classification results are also computed on the combination of different types of plant diseases
and achieved an accuracy of 96.403%. In the future, this work might be utilized as a front-line
tool.
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