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Abstract: In developing countries, medical diagnosis is expensive and time
consuming. Hence, automatic diagnosis can be a good cheap alternative. This
task can be performed with artificial intelligence tools such as deep Convolu-
tional Neural Networks (CNNs). These tools can be used on medical images
to speed up the diagnosis process and save the efforts of specialists. The deep
CNNs allow direct learning from the medical images. However, the accessi-
bility of classified data is still the largest challenge, particularly in the field
of medical imaging. Transfer learning can deliver an effective and promising
solution by transferring knowledge from universal object detection CNNs
to medical image classification. However, because of the inhomogeneity and
enormous overlap in intensity between medical images in terms of features in
the diagnosis of Pneumonia and COVID-19, transfer learning is not usually a
robust solution. Single-Image Super-Resolution (SISR) can facilitate learning
to enhance computer vision functions, apart from enhancing perceptual image
consistency. Consequently, it helps in showing the main features of images.
Motivated by the challenging dilemma of Pneumonia and COVID-19 diagno-
sis, this paper introduces a hybrid CNN model, namely SIGTra, to generate
super-resolution versions of X-ray and CT images. It depends on aGenerative
Adversarial Network (GAN) for the super-resolution reconstruction problem.
Besides, Transfer learning with CNN (TCNN) is adopted for the classification
of images. Three different categories of chest X-ray and CT images can be
classified with the proposed model. A comparison study is presented between
the proposed SIGTramodel and the other related CNNmodels for COVID-19
detection in terms of precision, sensitivity, and accuracy.
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1 Introduction

Pneumonia is a disease that affects one or both lungs and aggravates air sacs. Fluid or pus
(purulent material) fill the bags with air, affecting pus or phlegm to cough, fever, breathing, and
chills difficulties. Pneumonia may be hard to identify because of the variability of symptoms and
the occurrence of Pneumonia with cold and flu cases. Hence, Pneumonia is detected, and the germ
causing the disease is determined by medical professionals. Both physical examination, laboratory
testing (e.g., blood or urine testing), and psychological assessment can be useful in the diagnosis
process. Popular diagnostic tests include chest X-ray images to look for the lung location and
extent of inflammation. The CT scan of chest is required to give a clear view of the lungs and a
look for other problems with them [1].

At the end of 2019, an outbreak of COVID-19 occurred. COVID-19 can be transferred from
person to person in the world. Data from the World Health Organization (WHO) justify why
quarantine action is needed. The WHO declared some classification procedures needed to deal
with COVID-19 based on medical images [2]. In most third-world countries, due to the lack of
funding for healthcare, there is a dire need for Artificial Intelligence (AI) tools that can perform
the diagnosis task accurately in a short time. The need to interpret radiographic images rapidly
inspired researchers to introduce a series of deep learning AI systems [3], which have shown
promising accuracy levels for detecting COVID-19 cases using radiographic imagery [4–6].

With the growing number of infected patients, radiologists find it increasingly difficult to finish
the diagnosis process in a limited time [7]. Analyzing medical images is one of the most important
fields of study for decision-making about all cases. Machine learning and AI approaches are the
basis for automated or Computer-Aided Diagnostic (CAD) systems. X-ray image classification
with transfer learning has been applied using CCNs, which succeeded largely in the classification
task [8]. Recently, a competitive generalized gamma mixture model for medical image diagnosis
was presented in [9].

An overview of some significant works for COVID-19 detection is presented in this section.
In [10], a Deep Learning (DL) approach for classifying chest CT scans based on a CNN model
and ensemble techniques was presented. It depends on light-weight transfer learning with the
EfficientNet-B3 model. In [11], the authors suggested a self-developed model for the diagnosis of
COVID-19, namely CTnet-10. In [12], a DL-assisted approach for quick diagnosis of COVID-19
from X-ray images was presented. Eight pre-trained CNN models were assessed for this purpose.
In [13], the authors presented transfer learning and the adversarial network on CT scans to
annotate COVID-19 and Pneumonia images.

An alternative modeling system described as DeTraC was suggested in [14]. The presented
work in [15] aims to fine-tune the Inception-v3 with multimodal learning for COVID-19 detection
from CT scans and X-ray images. In [16], the authors introduced a two-stage data enhancement
method to classify images from six categories, including COVID-19 images. In [17], the authors
suggested an efficient general Gamma Mixture Model (gGMM) to classify X-ray and CT images.
In [18], the authors proposed a multi-scale classification model of COVID-19 from Pneumonia
Chest X-ray (CXR) images, namely MAG-SD. In [19], the authors proposed a merged semi-
supervised shallow neural network architecture with an automated segmentation network for CT
images, namely PQIS-Net. In [20], different deep learning approaches have been employed to
classify COVID-19, namely a deep extraction function and a fine-tuning pre-trained convolution
neural network.
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In [21], different pre-trained models for learning of features from CT images were used. A
pre-trained fusion algorithm followed by discriminatory correlation analysis was employed. In [22],
the authors presented a method for generating CXR synthetic images by developing a CovidGAN-
based model that depends on an Auxiliary Generative Classification Network (ACGAN). Three
main scenarios for transfer learning were introduced in [23]. The first one is shallow tuning,
which takes only the final classification layer to manage the new task, and freezes the remaining
layer parameters without training. The second is fine tuning, which aims to progressively train
more layers by changing the learning parameters until a significant performance improvement is
achieved. The last one is deep tuning, which aims to retrain all layers in a previously trained
network.

High Resolution (HR) image estimation is a complicated assignment developed on the cor-
responding Low Resolution (LR) image. This process is known as image Super-Resolution (SR).
The image SR has gained a significant attention, and has a wide variety of applications. The latest
researches have been concentrated on reducing the average square error of restoration. However,
these researches often lack concentration on high-frequency information, and their results are
perceptually unsatisfactory. Generally, these research works do not satisfy the requirements of SR
reconstruction. Hence, in this work, a GAN is introduced for medical image SR to improve the
subsequent classification accuracy.

After reviewing the related studies, we can deduce that deep learning can effectively help in the
detection of Pneumonia and COVID-19 from CXR and CT images. However, detail enhancement
in images has not been considered, deeply. Different medical datasets may display similarity as in
the cases of Pneumonia. This, in turn, affects the accuracy of DL classification models. Hence, this
paper introduces a hybrid CNN model, namely SIGTra for generating SR versions of COVID-19,
Pneumonia, and normal images. It depends on a GAN for the SISR reconstruction problem. Dif-
ferent pre-trained TCNN frameworks (DenseNet121, Densenet169, Dense-Net201 [24], ResNet50,
ResNet152 [25], VGG16, VGG19 [26], and Xception [27]), and different full-trained models (CNN
model, LeNet-5 [28], AlexNet [29], VGG16, Inception naïve v1 [30], and Inception v2 with mul-
tiple layers [30]) are considered for the classification task. In addition, more comparative studies
are introduced between the proposed work and the other related CNN models for COVID-19 and
Pneumonia detection. This research work has the following contributions:

• A comprehensive study of the classification process of X-ray and CT images is presented.
Several sources of images are utilized to distinguish between normal and abnormal cases.

• Classification process is studied with and without the proposed SIGTra model for SR image
reconstruction.

• A detailed comparison is presented between the different classification models presented in
this paper with different training/testing ratios.

• A comparison is presented between the best classification results obtained with the proposed
models on SR images and those of different state-of-the-art models.

The rest of this research work is coordinated as follows. The suggested SIGTra model is
presented in Section 2. The simulation and comparison results are presented and analyzed in
Section 3. The conclusion and future work are presented in Section 4.
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2 Proposed SIGTra Model

This section presents the proposed hybrid SIGTra model that comprises the SISR based on
GAN and the TCNN. It distinguishes between COVID-19 and Pneumonia cases. As demonstrated
in Fig. 1, it has three stages: pre-processing, SR, and classification. The pre-processing stage begins
with reading the image dataset, and resizing the images as they come from different sources.
Therefore, the input image size becomes 64 × 64 × 3. The normalization of images between 0
and 1 is also performed to allow higher efficiency in the following stages. The second stage is to
produce a 256 × 256 × 3 HR image from each LR image. The third stage is responsible for the
classification task using CNNs and transfer learning models with and without SR.

Figure 1: General steps of the SIGTra model

2.1 Modified SISR GAN
A significant category of image processing techniques in computer vision and image process-

ing is image SR, which belongs to retrieving HR images from LR ones. It has various applications
in the real world, such as medical imaging, surveillance, and defense. It also helps to enhance
other computer vision functions, apart from enhancing the perceptual image consistency. Since
there are often numerous HR images related to a single LR image, this problem is dramatically
complicated. A single image SR-GAN algorithm has been suggested based on photo-realistic and
natural images [31,32]. To the best of our knowledge, this original algorithm depends on inference
for obtaining photo-realistic images with an up-scaling factor of 4. We adopt this algorithm for
medical image SR to allow an efficient classification process. A perceptual loss function comprising
content loss and adversarial loss is used as shown in Fig. 2. The objective is to generate HR
medical images from the LR ones using the GAN, a generator, and a discriminator. To produce
the HR images, the LR images are fed to the generator. The GAN loss is used during the training
for weight update to generate the HR images. The proposed SR-GAN model is developed based
on that of [31,32] with some adjustments represented in normalization, inclusion of content loss,
and modification of the generator and discriminator according to medical image characteristics.
These modifications will be discussed in detail in the following sub-sections.

The deep ResNet [25] architecture is adopted in this paper with the principles of GANs
to allow SISR of medical images. We develop a new strategy for medical image SISR with an
up-scaling factor of 4. Both Structural Similarity (SSIM), Mean Square Error (MSE), and Peak
Signal-to-Noise Ratio (PSNR) metrics are used for the quality assessment of the obtained images.
An SR-GAN model is developed based on a new perceptual loss. The MSE-based content loss
is replaced by the loss of the DenseNet121 model [24], which is more invariant to the pixel
space changes [33]. This model is tested on two different medical image datasets for a successive
classification task.
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Figure 2: Steps of the modified SR-GAN algorithm

2.1.1 GAN Architecture
We define a discriminator network DθDF as in [34] and enhance it in an alternate projection

method alongside with GθGF to solve the min–max adversarial problem [35]:

m in
GθGF

max
DθDF

V (D,G)=
(
EiHR∼Ptrain(iHR)

[
log DθDF

(
iHR

)]

+EiLR∼PG(iLR)

[
log

(
1−DθDF

(
GθGF

(
iLR

)))])
(1)

The general concept behind this formulation is that a generative model (G) can be trained to
deceive a distinguishable discriminator (D) trained to distinguish SR images from authentic input
images. Our employed generator can be trained to construct SR images that are remarkably similar
to authentic digital medical images. So, it is hard to distinguish by (D). This method allows a
superior perceptual quality belonging to the complex subspace of natural digital images, unlike
SR solutions that depend on decreasing pixel-wise error metrics, such as MSE.

Fig. 3 illustrates the proposed architecture that comprises generator and discriminator net-
works. The generator consists of 8 residual blocks with an identical design. Each block has
two convolutional layers consisting of (3 × 3) kernels and 64 filters followed by a sigmoid
activation function and batch-normalization layers [36]. These residual blocks, inspired by [37], are
followed by four up-sampling blocks and two max-pooling layers. Hence, an up-scaling by 4 is
achieved. This method enables the generator to be trained effectively by reducing and increasing
the resolution to generate HR images. The architectural guidelines introduced in [38] are followed,
and the ReLU activation is used to allow normalization of pixel values between 0 and 1. The
discriminator network is trained and prepared to solve the maximization problem presented in
Eq. (1). It consists of four convolutional layers with 3 × 3 kernels and 64, 128, 256, and 512
filters. The number of features is doubled in each layer. So, max-pooling is used to reduce the
features. After that, four fully-connected layers that contain feature maps of 4096 features and a
definitive sigmoid activation function are used to obtain the classification likelihood.
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Figure 3: The proposed architecture of the generator/discriminator networks with an equivalent
kernel size (k), number of feature maps (F), stride (S), and the same padding (SP) for every
convolutional layer

2.1.2 Loss Function

The concept of perceptual loss lossSR is crucial for the success of the proposed generator
network. Although lossSR is typically modelled based on the MSE, we develop a loss function [39]
that gives a solution based on perceptual characteristics. We formulate the perceptual loss as:

lossSR= lossSRX + 10−3lossSRGAN (2)

Probable options for the content loss lossSRx and the adversarial loss lossSRGAN are listed
below.

• Content Loss

The MSE pixel-wise loss is determined as follows:

lossSRMSE = 1
r2WH

rW∑
x=1

rH∑
y=1

(
lossHRx,y −GθGF

(
lossLR

)
x,y

)2

(3)
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where W , and H define the size of the HR image, and rW and rH define the size of the
reconstructed image.

The MSE is the frequently utilized metric for the optimization of image SR [31,40]. However,
while achieving high PSNR, MSE optimization leads to excessively smooth textures that may
be perceptually unsatisfactory. A loss function that is closer to perceptual similarity is utilized
instead of depending on pixel-wise losses. In [41], the authors used the VGG loss based on ReLU
activation layers of the VGG-19 pre-trained network. In this work, we use the DenseNet121 loss
based on ReLU activation layers of the pre-trained DenseNet121. The feature map obtained by
the jth convolution (after concatenation) is referred to as ϕi, j before the ith batch normalization
layer inside the DenseNet121 network. The DenseNet121 loss is then defined as the Euclidean
distance between the restored image feature representation GθGF

(
iLR

)
and the digital reference

image iHR:

lossSRDenseNet121/i, j =
1

Wi, jHi, j

Wi, j∑
x=1

Hi, j∑
y=1

(
ϕi, j

(
iHR

)
x,y

−ϕi, j

(
GθGF

(
iHR

))
x,y

)2

(4)

Within the DenseNet121 network, Hi, j and Wi, j define the dimensions of the corresponding
function maps.

• Adversarial Loss (GAN Loss)

The generative loss of our SR-GAN model is also added to the perception loss, including
the content loss discussed previously. By attempting to deceive the discriminator network, the
generator network enhances the features of LR images. The generative loss lossSRGAN is defined over

all training samples based on the likelihoods of the discriminator DθDF

(
GθGF

(
iLR

))
as:

lossSRGAN =
N∑
n=1

− logDθDF

(
GθGF

(
iLR

))
(5)

where DθDF

(
GθGF

(
iLR

))
is the likelihood that a standard HR image GθGF

(
iLR

)
is a reconstructed.

We have used a binary cross-entropy for better gradient behavior [32].

2.2 Proposed TCNN and Full Learning Models
In our work, several pre-trained CNN and full-training models are employed to examine

the robustness and effectiveness of the proposed TCNN model with and without the SR-GAN
model. Fine tuning is used to train more layers by changing the parameters of learning until a
significant performance improvement is achieved. DenseNet121, Densenet169, Dense-Net201 [24],
ResNet50, ResNet152 [25], VGG16, VGG19 [26], and Xception [27] are checked. Full training
and deep tuning are performed to retrain all layers in a previously trained network. The proposed
CNN model, LeNet-5 [28], AlexNet [29], VGG16, Inception naïve v1 [30], and Inception v2 with
multiple layers [30] are compared. The proposed CNN model is a full learning model consisting
of batch normalization followed by four convolution layers with 16, 32, 64, and 256 filters
in consequence, and ReLU functions. Four fully-connected layers are dropped out. Finally, a
SoftMax classification layer is utilized as shown in Fig. 4.
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Figure 4: The proposed classification architecture based on (F) feature maps, kernel size (k), stride
(S), and the same padding (SP) for each convolutional layer

In the simulation scenarios, we change all parameters in the last fully-connected layers in
transfer learning through a fine-tuning process. All convolution layers and fully-connected layers
remain as in the deep tuning scenario. All these scenarios are discussed to validate the suggested
work with and without the GAN-based SISR model. The loss of the model is determined by
computing the following sum:

loss=−
N∑
i=1

yi log
(

�
y i

)
(6)

where yi is the rectified label, N is the class number, and
�
y i is the projected output.

The ReLU function is used to replace any obtained negative pixel values with zero. It can be
expressed as follows:

f (x)=max (0,x) (7)

where x is the input value.

A large number of medical images is required for successful training and classification, but
this is costly. This challenge can be treated through transfer learning, which involves tuning of
millions of parameters in CNN architectures. The SIGTra model can be applied on images with
similar features, and hence it is adopted in this paper. We apply transfer learning from a generic
image recognition task to a medical image classification task.

3 Experimental Results and Comparison

Our contribution in this paper is the automatic classification of chest CT and X-ray
datasets [42–45]. The datasets and the simulation experiments are summarized in the subsequent
sub-sections.

3.1 Dataset
For testing the suggested DL frameworks, we used the following image datasets:

(a) COVID-19 CT Dataset Repository on GitHub [42]. This dataset includes 349 axial CT
COVID-19 images and 397 axial CT Non-COVID-19 images.

(b) The Data COVID-19 Collection Image Repository on GitHub [43]. Dr Joseph Cohen
haunts this dataset.

(c) Chest X-Ray Images (Pneumonia) Challenge Detection Dataset [44]. It is accessible on
Kaggle.
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(d) Extensive COVID-19 X-Ray and CT Chest Images Dataset [45]. This data collection is
available on Mendeley.

3.2 Data Pre-Processing
All medical scans are resized to a size of 224 × 224 × 3 or 299 × 299 × 3 according to

the employed DL model. Based on the adopted interpolation technique, the appropriate algorithm
is selected. The INTER_AREA method is used from the OpenCV library. It allows resampling
based on pixel/area relation [46]. To prevent over-fitting, because the number of CT scans is small,
we have employed data processing strategies like arbitrary transformations. Such transformations
comprise the range of rotation, the range of changes in width, and the brightness range. The
transformation parameters are generated randomly for each training sample, and data augmenta-
tion is applied identically for every slice in the tested medical image. For the division of data, we
used different ratios of training/testing [80%/20%], [70%/30%], and [60%/40%] to ensure that the
model works well with various training/testing ratios.

3.3 Training/Classification Dataset
Data augmentation, splitting, and pre-processing procedures are used to expand the training

dataset. Feature maps are extracted with the DL models and sent to the multilayer perceptron
for classification. The suggested model efficiency is assessed by using the trained network on the
test medical images. Every experiment is repeated three times, and then the average outcomes are
calculated.

3.4 Implementation Setup
The utilized medical images of all datasets are resized to 224 × 224 except the Xception

images, which are resized to 299 × 299 for the classification process. For the proposed SR-GAN
model, we begin with images of size 64 × 64. To train the proposed DL models, we test different
batch sizes. The validation-to-training ratios are correspondingly set to different values. After
several trials to choose the best optimizer, Adam’s optimizer was used due to its high efficiency
and short training time. For the classification models, we have used β1 = 0.9 and β2 = 0.999. On
the other hand, for the SR-GAN model, we have used β1 = 0.5 and β2 = 0.999. The learning rate
is firstly set to 0.00001 and then reduced to 0.000001 for the classification process. On the other
hand, it is set to 0.0002 for the SR-GAN model.

A drop-out strategy is adopted to decrease the overfitting probability of the employed DL
models. The realization of the DL models was accomplished through Kaggle that provides note-
book editors with free access to NVIDIA TESLA P100 GPUs and 13 GB RAM operating on
Professional Windows Microsoft 10 (64-bit). For simulation tests, Python 3.7 was utilized. In
addition, TensorFlow and Keras were employed as DL backend.

3.5 Evaluation Metrics
Through our assessment, we use accuracy, recall, f1 score, precision [47], Area Under Curve

of the Receiver Operating Characteristic (AUC ROC) [48], and log loss [49] as evaluation met-
rics. More details about their theoretical and physical meanings, definitions, and mathematical
expressions can be found in [47–49].

3.6 Comparison Results
The results of the binary and ternary classification are presented in this section for the chest

CT and X-ray images with the different DL models including full training of all layers of the
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proposed CNN model, LeNet-5, AlexNet, VGG16, Inception naïve v1, and Inception v2 with
multiple layers. In addition, fine tuning of the top layers of the DenseNet121, Densenet169,
DenseNet201, ResNet50, ResNet152, VGG16, VGG19, and Xception is also considered. Addi-
tionally, to verify the robustness of all DL models, numerous tests are performed on the chest
CT and X-ray scan datasets. We have presented two different scenarios in the simulation results
as illustrated in Sub-sections 3.6.1 and 3.6.2. These scenarios are classification with and without
implementing the SR-GAN model. Tabs. 1 and 3 present the results of both scenarios. It is clear
that the proposed SR-GAN model enhances the classification performance.

The test or validation curve is obtained based on a validation hold-out dataset. The loss of
validation and training is known as the number of miscalculations produced for every instance
of training or invalidation. Generally, the best DL model is a model that can be generalized
well and that has neither over-fitting nor under-fitting. The confusion matrix reflects the overall
performance, as presented in Tab. 2.

3.6.1 Classification Results of the TCNN and DL Models Without the SR-GANModel
Tab. 1 presents the outcomes of various CNN models for ternary and binary classification

with different training/testing ratios (80:20, 70:30, 60:40) on the X-ray and CT scan datasets
without the SR-GAN model. The comparison is made in terms of f1 score, loss, log loss, recall,
accuracy, and precision in the test phase only.

3.6.2 Classification Results of the TCNN and DL Models with the SR-GANModel
For simplicity, we present only the curves and confusion matrices for the 80:20 training/testing

ratio with the SIGTra model. Tab. 2 presents the classification results of X-ray and CT scans.
From the obtained results on the X-ray dataset in Tab. 2, it is noticed the proposed hybrid SIGTra
model (CNN + SR − GAN) achieves a training accuracy of 99.99%, a testing accuracy of
98.53%, a training loss of 0.0008, and a testing loss of 0.091 for 20 epochs. From the confusion
matrix, it is observed that the proposed model can classify 230 images accurately, but three images
of the first class (COVID-19) are labeled as Pneumonia. Similarly, the proposed model can classify
760 images accurately, but five images of the second class (Normal) are labeled as Pneumonia.
In the same way, the proposed model can classify 830 images accurately, but 19 images of the
third class (Pneumonia) are labeled as Normal. The ROC curve demonstrates that the TPR (true
positive rate) and FPR (false positive rate) are nearly equal to 1, which means that the proposed
SIGTra model can efficiently classify different images. Precision-Recall curve reveals a high AUC
with a high level of precision and a high level of recall.

From the obtained results on the CT scan dataset in Tab. 2, it is noticed the proposed hybrid
SIGTra model achieves a training accuracy of 100%, a testing accuracy of 99.08%, a training
loss of 0.0003 and a testing loss of 0.0496 for 36 epochs. From the obtained confusion matrix,
it is observed that the proposed model can classify 260 images accurately for the first class
(COVID-19). Similarly, the proposed model can classify 280 images, accurately. The ROC curve
demonstrates that the TPR and FPR are nearly equal to 0.99. The Precision-Recall curve reveals
a high AUC with a high level of precision and a high level of recall. Therefore, the obtained
outcomes for the proposed model on the X-ray and CT scan datasets prove that it has a little
under-fitting and higher accuracy in testing. It remains nearly stable with different training/testing
ratios compared to other DL models as illustrated in Tab. 3 that presents the outcomes of various
CNN models for ternary and binary classification with the SR-GAN model. The given results
in Tab. 3 prove the superiority of the classification process in terms of f1 score, loss, precision,
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log loss, recall, and accuracy with the proposed hybrid SIGTra model (CNN + SR − GAN)
compared to that with the TCNN model without SR-GAN.

Table 1: Comparison results of the CNN models on X-ray and CT scan datasets

Model name Resolution Train:
Test

Accuracy (%) Loss Precision (%) Recall (%) f 1-score (%) Log loss

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

CNN (224,224,3) 80:20 98.49 97.65 0.0743 0.1155 99 98 98 98 99 98 0.5210 0.8119
70:30 97.74 96.51 0.1011 0.1183 98 96 98 97 98 96 0.7822 1.2068
60:40 97.25 95.11 0.1062 0.1460 97 95 97 95 97 95 0.9496 1.6879

LeNet-5 (224,224,1) 80:20 93.47 90.77 0.1763 0.2329 93 91 92 91 93 91 2.2542 3.1853
70:30 92.27 91.16 0.2199 0.2447 92 91 91 91 92 92 2.6402 2.9164
60:40 91.18 87.51 0.2554 0.3512 92 87 90 87 91 87 3.0458 4.3134

AlexNet (224,224,1) 80:20 95.63 95.12 0.1305 0.1586 96 95 96 95 96 95 1.5089 1.6863
70:30 93.28 92.28 0.1785 0.3168 93 92 93 92 93 92 2.3224 2.6664
60:40 93.04 90.32 0.1972 0.2862 93 90 93 90 93 90 2.4032 3.3445

VGG16
(Full-
Training)

(224,224,1) 80:20 95.47 95.66 0.1304 0.1906 96 96 95 96 95 96 1.5649 1.4989
70:30 95.29 93.12 0.1445 0.2369 96 93 96 93 96 93 1.6269 2.3748
60:40 94.55 93.12 0.1612 0.2840 95 93 94 93 95 93 1.8816 2.3755

Inception
naïve v1

(224,224,1) 80:20 94.66 84.99 0.1478 0.3429 94 85 93 85 94 85 1.8443 5.1839
70:30 94.25 85.16 0.1559 0.3496 94 85 93 85 93 85 1.9871 5.1246
60:40 93.12 83.08 0.1868 0.3884 93 83 92 83 93 83 2.3752 5.8450

Inception v2
with multiple
layers

(224,224,1) 80:20 94.77 95.48 0.1512 0.1727 95 95 95 95 95 95 1.8070 1.5614
70:30 94.86 94.69 0.1416 0.1866 95 95 94 95 94 95 1.7759 1.8332
60:40 94.77 92.58 0.1472 0.2555 95 93 95 93 95 93 1.8070 2.5630

DenseNet121 (224,224,3) 80:20 97.85 96.38 0.0732 0.1143 98 96 98 96 98 96 0.7444 1.2491
70:30 96.73 93.74 0.1068 0.1642 97 94 97 94 97 94 1.1298 2.1639
60:40 96.71 89.05 0.1093 0.2436 97 89 97 89 97 89 1.1358 3.7820

DenseNet169 (224,224,3) 80:20 97.79 96.56 0.0673 0.1079 98 97 98 97 98 97 0.7629 1.1867
70:30 96.87 95.54 0.1041 0.1622 97 96 97 96 97 96 1.0801 1.5397
60:40 96.12 88.42 0.1238 0.3707 97 88 97 88 97 88 1.3406 4.0008

DenseNet201 (224,224,3) 80:20 97.04 97.29 0.1064 0.0901 97 97 97 97 97 97 1.0235 0.9369
70:30 96.91 95.30 0.1128 0.1343 97 95 97 95 97 95 1.0677 1.6229
60:40 96.17 91.86 0.1174 0.1985 96 92 97 92 97 92 1.3219 2.81311

ResNet50 (224,224,3) 80:20 97.74 94.58 0.0966 0.1601 98 95 98 95 98 95 0.7950 1.8737
70:30 97.69 94.58 0.0815 0.1361 98 95 98 95 98 95 0.7946 1.8726
60:40 97.73 94.21 0.0788 0.1404 98 94 98 94 98 94 0.7820 2.0004

ResNet152 (224,224,3) 80:20 98.11 96.56 0.0801 0.1166 98 97 98 97 98 97 0.6513 1.1866
70:30 97.38 94.22 0.0954 0.1527 98 94 98 94 98 94 0.9063 1.9974
60:40 97.23 94.48 0.1243 0.1578 98 94 98 95 98 94 0.9496 1.9066

VGG16 (Pre-
Training)

(224,224,3) 80:20 95.74 94.76 0.1275 0.2499 96 95 97 95 96 95 1.4701 1.8113
70:30 96.95 93.62 0.0981 0.2457 97 94 97 94 97 94 1.0553 2.2055
60:40 95.96 90.59 0.1639 0.2897 96 91 97 90 96 91 1.3965 3.2507

VGG19 (224,224,3) 80:20 96.39 96.75 0.1250 0.1009 97 97 97 97 97 97 1.2468 1.1242
70:30 96.08 96.39 0.1379 0.1029 96 96 97 96 96 96 1.3533 1.2484
60:40 96.55 93.03 0.1136 0.1958 97 93 97 93 97 93 1.1916 2.4068

Xception (299,299,3) 80:20 94.99 85.35 0.1952 0.3527 95 85 95 85 95 85 1.7307 5.0590
70:30 95.26 84.46 0.1898 0.3698 96 84 96 85 96 84 1.6388 5.3681
60:40 94.15 82.35 0.1928 0.3821 94 82 94 82 94 82 2.0202 6.0951
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Table 2: Simulation results of the proposed CNN model with the proposed SR-GAN model on
X-ray and CT scan datasets (Full-training)

X-ray
Accuracy Curve

in the y-axis and # Epochs in the x-axis

Loss Curve

loss in the y-axis and # Epochs in the x-axis
Confusion Matrix

Triple 
classification 

ROC Curve 
and 
Precision-
Recall Curve

CT scan
Accuracy Curve

in the y-axis and # Epochs in the x-axis
Loss Curve

loss in the y-axis and # Epochs in the x-axis
Confusion Matrix

Binary 
classification

ROC Curve
and 
Precision-
Recall Curve

3.7 Discussions and Comparisons
In this study, the binary classification (COVID-19, Normal) and ternary classification

(COVID-19, Normal, and Pneumonia) are investigated on different CT and X-ray scans with
transfer learning and full training using recent DL models to compare with the proposed model
with SR-GAN. From Tabs. 1 and 3, it is noticed that the TCNN model and the fine-tuned
versions of the DensNet121, DensNet169, DensNet201, ResNet152, and VGG19 models achieve
a good performance on CT and X-ray datasets. They outperform the LeNet-5, AlexNet, VGG16
full-training models and the Inception naïve v1, Inception v2 with multiple layers, ResNet50, and
VGG16 pre-training models. The Xception model presents the lowest performance. Some of these
DL models present high performance on CT scans, but low performance on X-ray images. It is
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also observed from the results in Tabs. 1 and 3 that the proposed SR-GAN model enhances the
classification results.

Table 3: Comparison results of the CNN models using the proposed SR-GAN model on the
X-ray and CT scan datasets

Model name Resolution Train:
Test

Accuracy (%) Loss Precision (%) Recall (%) f 1-score (%) Log loss

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

X-ray CT
scan

CNN (224,224,3) 80:20 98.53 99.05 0.0919 0.0496 99 99 99 99 99 99 0.5057 0.3151
70:30 98.19 97.69 0.1071 0.0944 99 98 98 98 98 98 0.6243 0.7964
60:40 97.45 95.98 0.1323 0.1437 98 96 97 96 98 96 0.8803 1.3865

LeNet-5 (224,224,1) 80:20 94.46 93.97 0.1509 0.1771 94 94 94 94 94 94 1.9104 2.0798
70:30 93.60 92.09 0.1771 0.2701 93 92 92 92 93 92 2.2101 2.7311
60:40 92.08 89.14 0.2012 0.2662 92 89 91 89 91 89 2.7346 3.7501

AlexNet (224,224,1) 80:20 96.20 96.16 0.1190 0.1462 97 96 96 96 96 96 1.3111 1.3235
70:30 95.22 94.89 0.1417 0.2754 95 95 95 95 95 95 1.6482 1.7647
60:40 94.11 91.87 0.1793 0.3216 94 92 94 92 94 92 2.0322 2.8046

VGG16
(Full-
Training)

(224,224,1) 80:20 96.85 96.35 0.1019 0.1389 97 96 97 96 97 96 1.0863 1.2605
70:30 96.02 95.25 0.1290 0.2180 96 95 96 95 96 95 1.3735 1.6387
60:40 95.36 93.52 0.1445 0.2966 95 93 96 94 95 94 1.6014 2.2374

Inception
naïve v1

(224,224,1) 80:20 95.77 88.32 0.1198 0.3080 95 88 96 88 96 88 1.4609 4.0337
70:30 95.48 86.13 0.1332 0.3459 96 86 96 86 96 86 1.5608 4.7900
60:40 94.60 83.39 0.1580 0.3916 95 84 95 83 95 83 1.8636 5.7354

Inception v2
with multiple
layers

(224,224,1) 80:20 95.71 96.16 0.1231 0.1543 96 96 95 96 95 96 1.4796 1.3235
70:30 95.19 95.86 0.1419 0.1347 95 96 96 96 95 96 1.6607 1.4286
60:40 94.98 94.16 0.1576 0.2310 95 94 95 94 95 94 1.7325 2.0168

DenseNet121 (224,224,3) 80:20 98.42 96.89 0.0773 0.0902 99 97 99 97 99 97 0.5431 1.0714
70:30 97.07 96.84 0.1082 0.0894 97 97 97 97 97 97 1.0114 1.0898
60:40 97.20 92.79 0.0985 0.2465 97 93 98 93 97 93 0.9646 2.4895

DenseNet169 (224,224,3) 80:20 97.99 96.71 0.0807 0.1005 98 97 98 97 98 97 0.6930 1.1344
70:30 97.54 96.11 0.0933 0.1051 97 96 98 96 98 96 0.8491 1.3413
60:40 97.23 93.79 0.0918 0.1985 97 94 98 94 97 94 0.9552 2.1429

DenseNet201 (224,224,3) 80:20 97.45 97.81 0.0881 0.0760 98 98 98 98 98 98 0.8803 0.7563
70:30 97.07 97.20 0.1021 0.0899 97 97 97 97 97 97 1.0114 0.9640
60:40 96.58 95.34 0.1116 0.1646 97 95 97 95 97 95 1.1800 1.6071

ResNet50 (224,224,3) 80:20 98.10 96.71 0.0828 0.0891 98 97 98 97 98 97 0.6555 1.1344
70:30 98.08 96.60 0.0749 0.1061 98 97 99 97 98 97 0.6618 1.1736
60:40 97.26 95.62 0.0911 0.1225 98 96 98 96 98 96 0.9458 1.5126

ResNet152 (224,224,3) 80:20 98.21 97.99 0.0731 0.0760 98 98 99 98 98 98 0.6181 0.6932
70:30 97.93 96.60 0.0864 0.1045 98 97 98 97 98 97 0.7117 1.1736
60:40 97.72 95.71 0.1039 0.1681 98 96 98 96 98 96 0.7866 1.4811

VGG16 (Pre-
Training)

(224,224,3) 80:20 97.12 96.16 0.0983 0.1470 97 96 98 96 97 96 0.9927 1.3235
70:30 96.85 96.11 0.1075 0.1224 97 96 97 96 97 96 1.0863 1.3413
60:40 96.23 95.62 0.1395 0.1280 96 96 97 96 97 96 1.3017 1.5126

VGG19 (224,224,3) 80:20 97.72 97.81 0.0818 0.0892 98 98 98 98 98 98 0.7866 0.7563
70:30 97.36 97.33 0.1090 0.0825 98 97 98 97 98 97 0.9115 0.9221
60:40 96.69 95.71 0.1321 0.1468 97 96 97 96 97 96 1.1425 1.4811

Xception (299,299,3) 80:20 95.77 93.06 0.1457 0.1985 96 93 95 93 96 93 1.4609 2.3950
70:30 95.51 92.71 0.1520 0.1848 96 93 96 93 96 93 1.5483 2.5149
60:40 94.22 89.05 0.2697 0.3003 94 89 94 89 94 89 1.9947 3.7816
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To further prove the classification efficacy of the suggested SIGTra model, we compared it
with other recent related works as presented in Tab. 4 in terms of the achieved accuracy, recall,
precision, and f1 score. It is demonstrated that the proposed model exceeds all other recent related
models in terms of all used evaluation metrics. In addition, the accuracy of the proposed CNN
model is compared to those of various pre-trained transfer learning models with and without
employing the proposed SR-GAN. It is noticed that the proposed hybrid SIGTra model achieves
a superior classification accuracy compared to those of other models. It achieves an accuracy of
98.53% on X-ray images and 99.05% on CT scans.

Table 4: Comparison of the proposed work with other traditional models

Model name Method Modality Accuracy
(%)

Precision
(%)

Recall
(%)

f 1-score
(%)

EfficientNet-B3-GAP [10]
2021

COVID19-CT CT 88.18 88.18 88.18 88.15

A comprehensive
study [12] 2021

ResNet-50 X-ray 97.50 95.24 100.00 98.36
ResNet-50 96.67 96.67 96.67 96.67
VGG-16 97.50 96.72 98.33 97.52

Semisupervised
Adversarial [13] 2021

DenseNet121 CT scan 92.0 – – –
VGG16 93.33 – – –
ResNet50 99.0 – – –
COVID-19-Net 98.45 – – –

CovidGAN [23] 2020 CNN-AD X-ray 85 95 69 –
CNN-SA 95 97 90 –

DeTraC [15] 2021 AlexNet X-ray 95.66 93.49 97.53 –
VGG19 97.35 96.34 98.23 –
ResNet 95.12 91.87 97.91 –

Multi-task pipeline [16]
2020

Inception-v3 CT scan 98.1 – – –

Shrunken features [17]
2021

Feature vectors X-ray 86.54 86.35 83.15 84.55
SAE 71.92 69.89 68.91 69.13
PCA 94.23 96.73 91.88 93.99

Gamma Mixture [18]
2021

gIMM-FD X-ray 94.08 – – –
IMM-FD CT scan 84.23 – – –

Multiscale Attention
Guided [19] 2021

VGG16 X-ray 90.68 94.90 91.05 89.44
ResNet 93.41 96.26 93.71 93.12
MAG-SD 95.85 97.73 95.74 95.54

Semi-supervised Shallow
Learning [20] 2021

ResNet50 CT scan 98.4 98.3 98.6 98.5
Semi-supervised Shallow 98.4 98.6 98.5 98.3

Deep Learning
Approaches [21] 2021

ResNet50 Features + SVM X-ray 95.79 97.78 94.00 95.92
Fine-tuning of ResNet50 92.63 97.78 88.00 92.63
BSIF + SVM 91.58 93.33 90.00 91.84

Discriminant correlation
analysis [22] 2021

CCSHNet CT scan – 97.03 97 97.02

SIGTra (Proposed work)
2021

SR-GAN+TCNN CT scan 99.05 99 99 99
X-ray 98.53 99 99 99

4 Conclusions and Future Work

This paper presented a proposed hybrid SIGTra model to classify chest X-ray images and
CT scans into Normal, COVID-19, and Pneumonia classes. The proposed SIGTra model is
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used to improve the classification process with an SISR stage based on the SR-GAN. The
paper introduced comprehensive comparisons between different DL models including the pro-
posed model, LeNet-5, AlexNet, VGG16, Inception naïve v1, Inception v2 with multiple layers,
DenseNet121, DenseNet169, DenseNet201, ResNet50, ResNet152, VGG16, VGG19, and Xcep-
tion. Several experimentations have been performed on chest X-ray and CT images. The proposed
SIGTra model leads to superior results compared to other DL models. Future research may
include developing a complete Pneumonia classification system through deep learning, super-
resolution, and classification. Moreover, the classification process can be performed on more
datasets, with more advanced techniques. Efficient sub-pixel and Very Deep SR (VDSR) can also
be considered as new tools for SISR.
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