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Abstract: Due to the rapid growth of telemedicine and healthcare services,
color medical image security applications have been expanded precipitously.
In this paper, an asymmetric PTFrFT (Phase Truncated Fractional Fourier
Transform)-based color medical image cryptosystem is suggested. Two dif-
ferent phases in the fractional Fourier and output planes are provided as
deciphering keys. Accordingly, the ciphering keys will not be employed for
the deciphering procedure. Thus, the introduced PTFrFT algorithm comprises
asymmetric ciphering and deciphering processes in contrast to the tradi-
tional optical symmetric OSH (Optical Scanning Holography) and DRPE
(Double Random Phase Encoding) algorithms. One of the principal impacts
of the introduced asymmetric cryptosystem is that it eliminates the one-
dimensionality aspects of the related symmetric cryptosystems due to its
remarkable feature of phase nonlinear truncation components. More compar-
isons on various colormedical images are examined and analyzed to substanti-
ate the cryptosystem efficacy. The achieved experimental outcomes ensure that
the introduced cryptosystem is robust and secure. It has terrific cryptography
performance compared to conventional cryptography algorithms, even in the
presence of noise and severe channel attacks.

Keywords: Optical encryption; medical image security; symmetric and
asymmetric encryption; OSH; DRPE; PTFrFT

1 Introduction

Digitalization is a huge part of our life today, with broad applications in health, science,
engineering, media, communication, etc. A large amount of digital multimedia data is often
transmitted via open networks with the widespread use of the Internet. Therefore, the security and
integrity of this large amount of data are of great concern [1,2]. A type of the precious data is
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represented with digital images used in various beneficial applications such as military, biometric
authentication, online shopping, online banking, healthcare systems, telemedicine, medical science,
etc. [3–5].

The lack of powerful security and protection tools could cause various threats and attacks,
leading to serious disasters for people and networks. In medical image communication through
the Internet, intruders can simply retrieve the images because of the shortage in security levels.
Therefore, the protection of the transmitted image information becomes a serious problem. Several
papers described different multimedia encryption techniques like those found in [1–21]. There
are several chaotic maps in the state-of-the-art works, such as Arnold map, Logistic map, and
Cat map [12–21]. Various image security and image cryptography techniques based on chaos
systems have been presented in [22–27]. The main disadvantage of the traditional chaotic-map-
based cryptography procedures is that they depend on lower-order chaos functions. Therefore, it
is essential to develop robust cryptography algorithms to avoid this disadvantage.

The conventional cryptography techniques [28–34] have nevertheless been found not appro-
priate for efficient image communication due to their underlying characteristics like large number
of iterations, high pixel redundancy, strong correlation, and large computational cost. So, they
minimize the inclusive security performance. Thus, it is urgent to preclude medical images from the
risks of attacks and threats through employing effective cryptography techniques. Consequently,
due to the importance of medical data security, this paper presents a robust way of managing
and securing color medical image communication for achieving reliable security in telemedicine
applications.

This motivated us, in this paper, to implement an effective and asymmetric optical color
medical image cryptosystem, where two random phases are exploited as ciphering keys that are
distinct from the deciphering keys. The introduced cryptosystem has an attractive advantage
of nonlinear truncation of phase components for the communication of color medical images
through insecure channels. Hence, it is suitable for cloud-based telemedicine and healthcare appli-
cations. Simulation results of the proposed cryptosystem on different color medical images prove
better security performance with lower computational cost in the presence of different types of
noise and multimedia attacks.

The paper is planned as follows. Section 2 presents some work related to medical image secu-
rity. Section 3 introduces the inclusive clarification of the suggested asymmetric cryptosystem for
secure color medical image communication. Simulation outcomes and comparisons are provided
in Section 5. The main concluding remarks are offered in Section 6.

2 Related Work

There is a critical need for telemedicine healthcare opportunities and facilities that can be
delivered through software tools. This will create a healthcare delivery system with more timeliness
and efficiency. Security plays a crucial role in the transmission of medical data via the Internet.
Recently, it has become a challenge to secure medical images in healthcare and telemedicine
applications [35–38]. Gupta et al. [39] introduced a high-security medical image cryptosystem
that depends on logstic map. In [40], the authors introduced a comparison between chaos theory
and elliptic curve cryptography as tools for image security. Abdel-Nabi et al. [41] proposed an
algorithm that merges reversible data steganography and ciphering approaches to achieve the
required protection of stored and transmitted medical data and images.
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In [42], a hybrid approach was proposed for partial encryption. It guarantees optimal and
robust storage and communication of medical information. This approach has low processing time
for the ciphering-deciphering processes. Bharghavi et al. [43] presented an efficient security system
based on chaotic logistic map for reliable medical image transmission. In [44], a robust and fast
medical image ciphering approach was suggested for real-time medical communication services.
In [45], the authors presented a powerful and efficient medical image ciphering approach. Two
chaotic sequences are utilized in this approach for key generation. Then, a diffusion process with
two rounds is adopted to create the encrypted medical images. Dai et al. [46] explained a new
technique for medical image security based on a hybrid structure of Chebyshev maps and logistic
maps to enhance the ciphering performance. In [47], the authors presented a partial encryption
framework based on a chaotic map and DNA encoding for securing medical images.

Puech et al. [48] investigated different ciphering techniques for medical image communication.
The advantage of these techniques is that they can be employed for images, videos, and 3D
objects. In [49], corresponding to cellular automata chaotic features, the authors proposed an
efficient medical image ciphering algorithm. The simulation findings showed that this algorithm
offers more security and speed. Saraswathi et al. [50] introduced an efficient medical image
crptosystem based on an asymmetric stream cipher security technique. It has been concluded that
this cryptosystem is robust against various types of cyberattacks. Suganya et al. [51] proposed
a hybrid cryptosystem that depends on stream-based and block-based ciphering algorithms. This
cryptosystem highly provides integrity control and encryption of medical images. Zhou et al. [52]
suggested a security technique that is capable of full protection of chosen regions/objects in
medical images.

Moreover, several image security systems [53–58] can be exploited in medical imaging services.
In [53], the authors introduced an optical image security algorithm using fringe projection pro-
filometry and Fourier fringe analysis. Das et al. [54] developed an image security system in which
the input image is ciphered based on a user-defined key. Jain et al. [55] proposed a partial-random-
phase-encoding-based color image ciphering and deciphering framework. Li et al. [56] suggested
an effective hybrid image ciphering/compression framework. Ramaraju et al. [57] proposed a least-
significant-bit-based image hiding technique. It hides four images inside a single image to generate
a stego-image that is then ciphered with a secret key. Wen et al. [58] proposed a robust optical
salient region ciphering method, in which the salient regions are pre-ciphered by employing a
chaotic optical ciphering technique.

Although the statistical security analysis of the previous related works [1–58] showed numer-
ous differences, most of the presented methods have significant challenges with ciphering and
deciphering processes. The traditional encryption methods do not achieve the required quality level
in the presence of multimedia assaults. Consequently, the presented state-of-the-art methods have
low performance levels in the presence of multimedia attacks and channel noise. Additionally, the
state-of-the-art methods have not been assessessed with enough evaluation metrics and in-detail
statistical security analysis. In addition, they necessitate additional calculations in the ciphering
and deciphering procedures, and hence, they have large computational cost. Therefore, considering
the shortcomings of the previous encryption methods in the literature, an efficient optical color
medical image cryptosystem based on the asymmetric PTFrFT encryption algorithm is suggested
in this paper for telemedicine and healthcare security applications. The security examination of the
presented algorithm is investigated through visual results, differential analysis, histograms, encryp-
tion quality analysis, information entropy, communication noise analysis, and security analysis.
Therefore, several statistical tests on different samples of color medical images are performed.
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3 Proposed Optical PTFrFT-Based Color Medical Image Cryptosystem

The proposed optical cryptosystem consists of two stages of encryption and decryption as
illustrated in Figs. 1a and 1b. The encryption keys of the medical images comprise the generated
optical keys of arbitrary phase masks (PMs) of the employed asymmetric PTFrFT algorithm.

(a)

(b)

Figure 1: Suggested multi-stage PTFrFT-based color medical image cryptosystem (a) Encryption
stage (b) Decryption stage

The precious aspect of the employed asymmetric PTFrFT cryptosystem is that there are two
distinct ciphering/deciphering secret keys. This tremendous trait has encouraged us to utilize it for
building a secure and robust color medical image cryptosystem. The PTFrFT is estimated with
the FrFT of the plain color medical image with the truncation operation of phase components,
where the amplitude modular part of the FrFT spectrum is merely exploited, and the phase part
of the FrFT spectrum is separated. The ciphering methodology of the introduced cryptosystem is
executed with the steps demonstrated in Fig. 1a.
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1) Separate the input color medical image into the R, G, and B color components IR (m, n),
IG (m, n), and IB (m, n) as offered in Eq. (1).

I (m, n)= [IR (m, n) , IG (m, n) , IB (m, n)] (1)

2) Multiply the separated color components by the first phase masks PMR1, PMG1, and
PMB1, and then apply the first FrFT operation with the first fractional orders OR1, OG1, and
OB1 to produce the primary encrypted image components. Each of these components can be
decomposed into two parts: phase retaining part as in Eqs. (2)–(4) and phase truncated part as
in Eqs. (5)–(7).

ER1 (m, n)=PT{FrFTOR1
[
IR1 (m, n) .PMR1 (m, n)

]
(2)

EG1 (m, n)=PT{FrFTOG1
[
IG1 (m, n) .PMG1 (m, n)

]
(3)

EB1 (m, n)=PT{FrFTOB1
[
IB1 (m, n) .PMB1 (m, n)

]
(4)

PR1 (m, n)=PR{FrFTOR1
[
IR1 (m, n) .PMR1 (m, n)

]
(5)

PG1 (m, n)=PR{FrFTOG1
[
IG1 (m, n) .PMG1 (m, n)

]
(6)

PB1 (m, n)=PR{FrFTOB1
[
IB1 (m, n) .PMB1 (m, n)

]
(7)

where PR{.} and PT{.} are the phase reservation and truncation operators, respectively. The
PMR1 (m, n), PMG1 (m, n), and PMB1 (m, n) are the primary encryption phase masks that are
randomly generated by the 2D Arnold map [3].

3) Similarly, repeat Step (2) through multiplying by the second phase masks PMR2 , PMG2 , and
PMB2 , and performing the second FrFT operation with the second fractional orders OR2 , OG2 ,
and OB2 to produce the final encrypted image components. Each of these components has two
parts: phase retaining part as in Eqs. (8)–(10) and the phase truncated part as in Eqs. (11)–(13).

ER (m, n)=PT{FrFTOR2
[
ER1 (m, n) .PMR2 (m, n)

]
(8)

EG (m, n)=PT{FrFTOG2
[
EG1 (m, n) .PMG2 (m, n)

]
(9)

EB (m, n)=PT{FrFTOB2
[
EB1 (m, n) .PMB2 (m, n)

]
(10)

PR2 (m, n)=PR{FrFTOR2
[
ER1 (m, n) .PMR2 (m, n)

]
(11)

PG2 (m, n)=PR{FrFTOG2
[
EG1 (m, n) .PMG2 (m, n)

]
(12)

PB2 (m, n)=PR{FrFTOB2
[
EB1 (m, n) .PMB2 (m, n)

]
(13)

where the obtained PR2, PG2, and PB2 are then utilized as the decrypted keys. The PMR2 (m, n),
PMG2 (m, n), and PMB2 (m, n) are the final encryption phase masks that are given by Eqs. (14)–
(16) comprising the phase function exp [ jψ (m, n)].

PMR2 (m, n)=PR1 (m, n)× exp [jψR (m,n)] (14)

PMG2 (m, n)=PG1 (m, n)× exp [jψG (m,n)] (15)

PMB2 (m, n)=PB1 (m, n)× exp [jψB (m,n)] (16)

where ψ (m, n) ∈ [0, 2π ].
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The benefit from using two FrFT stages is significantly improving the robustness and security
of the introduced medical image cryptosystem based on the fractional orders and scaling factors
of the FrFT. Due to these advantages, it is highly recommended in the proposed cryptosystem.
More detailed discussions about the FrFT are found [4,5]. The deciphering steps are the inverse of
the above-mentioned ciphering steps, as demonstrated in Fig. 1b. Consequently, the deciphering
procedure can be implemented by exploiting the private deciphering secret keys P2 (m,n) and
P1 (m,n), where the PTFrFT is an asymmetric transform.

4 Results and Discussions

Different color medical images that have different features are chosen and examined to sub-
stantiate the profits of the suggested optical color medical image cryptosystem. The utilized color
medical images are primarily decomposed into their R, G, and B components to be used as the
cryptosystem input. The simulation experiments are performed using a laptop with 8 GB RAM,
and i7-5200 Intel CPU. The utilized software in the simulation tests is the MATLAB R2020b.

4.1 Visual Results
The visual analysis is the most important assessment tool utilized to appraise the security

strength and efficiency of the suggested cryptosystem. The examined color medical images and
their encrypted versions with the suggested optical asymmetric cryptosystem and the conventional
optical symmetric DRPE and OSH cryptosystems [7,9,10,22] are displayed in Fig. 2. It is obvious
that the suggested cryptosystem is more beneficial compared to other cryptosystems in concealing
and diminishing the significant objects contained within the studied color medical images.

Images Image 1 Image 2 Image 3 Image 4 Image 5

Original

Encrypted 
(PTFrFT)
(Proposed 

cryptosystem)

Encrypted 
(OSH)
[7, 10]

Encrypted 
(DRPE)
[9, 22]

Figure 2: Original color medical images and their encrypted versions with the PTFrFT, OSH, and
DRPE cryptosystems
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4.2 Histogram Results
The pixel distributions of the original and ciphered images can be demonstrated through

histogram analysis [16]. Both histograms of the original and ciphered images must be different
to illustrate good encryption. Fig. 3 indicates the histogram security analysis of the examined
original and ciphered images with the suggested and conventional cryptosystems. It is obvious
that the original image histograms are entirely different from the ciphered image histograms. This
proves the reliability of the suggested cryptosystem and the conventional ones.

Images Image 1 Image 2 Image 3 Image 4 Image 5

Original

Encrypted 
(PTFrFT)
(Proposed 

cryptosystem)

Encrypted 
(OSH)
[7, 10]

Encrypted 
(DRPE)
[9, 22]

Figure 3: Histogram outcomes for the PTFrFT, OSH, and DRPE cryptosystems

4.3 Entropy Results
The entropy metric is exploited to describe the unpredictability degree of the ciphered color

medical image. The proposed cryptosystem is close to achieving an ideal entropy value of 8 [23].
Tab. 1 offers the entropy outcomes of the analyzed original, encrypted, and decrypted color
medical images for the suggested optical PTFrFT cryptosystem and the conventional optical
cryptosystems. The obtained superior entropy values for the suggested cryptosystem prove its
robustness and reliability compared to other cryptosystems through achieving better values close
to the desired optimal value.

Table 1: Entropy outcomes for the PTFrFT, OSH, and DRPE cryptosystems

Image Original
image

Encrypted image
(DRPE) [9,22]

Encrypted image
(OSH) [7,10]

Encrypted image
(proposed
cryptosystem)

Decrypted image
(All algorithms)

Image 1 7.422 7.615 7.488 7.821 7.422
Image 2 5.380 6.333 7.073 7.436 5.380
Image 3 6.864 7.130 7.391 7.694 6.864
Image 4 5.083 7.304 7.231 7.798 5.083
Image 5 6.055 7.668 7.536 7.807 6.055
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4.4 Correlation Results
Remarkable cryptosystems are supposed to eliminate any relationship among color medical

image pixels to protect the color medical image content from statistical channel attacks [20].
Tabs. 2–4 demonstrate the diagonal (D), horizontal (H), and vertical (V) correlation outcomes
for the studied original, enciphered, and deciphered color medical images with the proposed
cryptosystem compared to DRPE and OSH cryptosystems. The obtained D, H, and V correla-
tion values are enormously low for the ciphered images obtained by the proposed cryptosystem
compared to the traditional cryptosystems. This proves its superior security performance.

Table 2: Correlation outcomes of the DRPE cryptosystem [9,22]

Image Original Encrypted Decrypted

H V D H V D H V D

Image 1 0.9369 0.9868 0.9483 0.0038 −0.0022 0.0363 0.9369 0.9868 0.9483
Image 2 0.9939 0.9921 0.9784 0.0027 0.0083 0.0056 0.9939 0.9921 0.9784
Image 3 0.9822 0.9948 0.9658 0.0046 −0.0095 0.0088 0.9822 0.9948 0.9658
Image 4 0.9786 0.9601 0.9479 0.0403 0.0461 0.0210 0.9786 0.9601 0.9479
Image 5 0.9625 0.9691 0.9407 0.0951 0.0734 0.0979 0.9625 0.9691 0.9407

Table 3: Correlation outcomes of the OSH cryptosystem [7,10]

Image Original Encrypted Decrypted

D H V D H V D H V

Image 1 0.9369 0.9868 0.9483 0.9652 0.9842 0.9543 0.9369 0.9868 0.9483
Image 2 0.9939 0.9921 0.9784 0.9924 0.9927 0.9860 0.9939 0.9921 0.9784
Image 3 0.9822 0.9948 0.9658 0.9774 0.9898 0.9673 0.9822 0.9948 0.9658
Image 4 0.9786 0.9601 0.9479 0.9564 0.9539 0.9164 0.9786 0.9601 0.9479
Image 5 0.9625 0.9691 0.9407 0.9820 0.9832 0.9731 0.9625 0.9691 0.9407

Table 4: Correlation outcomes of the proposed PTFrFT cryptosystem

Image Original Encrypted Decrypted

D H V D H V D H V

Image 1 0.9369 0.9868 0.9483 −0.0295 −0.0281 0.0637 0.9369 0.9868 0.9483
Image 2 0.9939 0.9921 0.9784 0.0003 0.0599 0.0063 0.9939 0.9921 0.9784
Image 3 0.9822 0.9948 0.9658 0.0552 0.0227 0.0426 0.9822 0.9948 0.9658
Image 4 0.9786 0.9601 0.9479 0.0464 0.1100 0.0868 0.9786 0.9601 0.9479
Image 5 0.9625 0.9691 0.9407 0.1483 0.1006 0.0991 0.9625 0.9691 0.9407
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4.5 Encryption Quality Security Analysis
The deviation irregularity (ID) and the histogram deviation (HD) metrics [53] can be used to

assess the quality performance and ciphering efficacy of the proposed optical cryptosystem. They
are utilized to determine the deviation percentage of the irregularity and histogram difference
between the original and ciphered medical images. Tab. 5 demonstrates the estimated ID and HD
outcomes, where lower values are obtained for both, which is recommended for achieving superior
ciphering efficacy. Consequently, the larger the decorrelation between the original and ciphered
images is, the improved the operation of the suggested cryptosystem compared to the conventional
DRPE and OSH cryptosystems.

Table 5: Histogram and irregular deviation results of the encrypted color medical images

Image DRPE [9,22] OSH [7,10] PTFrFT (proposed cryptosystem)

HD ID HD ID HD ID

Image 1 2.0185 0.0056 1.6903 0.0051 2.0282 0.0057
Image 2 3.3104 0.0052 2.6224 0.0048 3.3021 0.0053
Image 3 2.9012 0.0052 1.5813 0.0042 2.9103 0.0056
Image 4 3.6629 0.0059 3.5748 0.0060 3.6642 0.0060
Image 5 3.6386 0.0063 3.5924 0.0069 3.6400 0.0062

4.6 Differential Security Analysis
The differential security cryptanalysis in terms of the NPCR (Number of Changing Pixel

Rate) and UACI (Unified Averaged Changed Intensity) [44] is employed to verify the robustness
of the proposed cryptosystem in the presence of slight modifications of the encrypted images.
For good security and robustness, it is required to achieve NPCR and UACI values of 0.996 and
0.33, respectively [9]. It is observed that the obtained UACI and NPCR values in Tab. 6 for the
proposed cryptosystem are astonishingly close to the desired values in contrast to the conventional
cryptosystems.

Table 6: NPCR and UACI outcomes of the tested color medical images

Image DRPE [9,22] OSH [7,10] PTFrFT (proposed cryptosystem)

NPCR UACI NPCR UACI NPCR UACI

Image 1 0.9953 0.3346 0.9921 0.3347 0.9954 0.3367
Image 2 0.9950 0.3328 0.9926 0.3392 0.9952 0.3348
Image 3 0.9943 0.3339 0.9845 0.3308 0.9949 0.3353
Image 4 0.9971 0.3362 0.9973 0.3372 0.9968 0.3374
Image 5 0.9884 0.3382 0.9972 0.3359 0.9889 0.3369

4.7 SSIM, FSIM and PSNR Analysis
The SSIM (Structural Similarity), PSNR (Peak Signal-to-Noise Ratio), and FSIM (Feature

Similarity) metrics [12,17] are exploited to assess the cryptosystem performance. In our security
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analysis, these metrics are calculated between the enciphered and plain medical images. They need
to have small values for a proper enciphering process. Tab. 7 demonstrates the obtained results
of the proposed and the conventional DRPE and OSH cryptosystems, where superior values are
delivered by the proposed cryptosystem in contrast to the traditional cryptosystems.

Table 7: SSIM, FSIM and PSNR outcomes between the plain and encrypted medical images for
the PTFrFT, OSH, and DRPE cryptosystems

Image DRPE [9,22] OSH [7,10] PTFrFT (present work)

SSIM FSIM PSNR (dB) SSIM FSIM PSNR (dB) SSIM FSIM PSNR (dB)

Image 1 0.0103 0.5129 10.5681 0.0571 0.5882 13.6879 0.0143 0.4920 10.6102
Image 2 0.0190 0.5210 13.7794 0.0925 0.6643 17.6268 0.0225 0.5203 13.8057
Image 3 0.0120 0.5007 11.7526 0.1181 0.6205 16.7375 0.0119 0.5003 11.7475
Image 4 0.0017 0.4459 8.4068 0.0160 0.5031 11.4350 0.0024 0.4450 8.3806
Image 5 0.0016 0.4386 7.8848 0.0305 0.5226 9.7338 0.0030 0.4371 7.9084

4.8 Edge Security Analysis
The metric of EDR (Edge Differential Ratio) is employed to evaluate the misrepresentations

in the boundaries and borders that result from the encryption process in the color medical
images [24]. Tab. 8 reveals that the EDR outcomes of the examined color medical images are
close to 1 for the proposed PTFrFT cryptosystem. Thus, this guarantees that the encrypted and
plain images are totally different. Fig. 4 shows the Laplacian edge Gaussian results of the original
and enciphered images with the proposed cryptosystem compared to those of the conventional
algorithms. These visual outcomes confirm the amazing benefit of the proposed cryptosystem in
concealing the most important aspects and features within the transmitted medical images.

Table 8: EDR values of the encrypted images for the DRPE, OSH, and PTFrFT cryptosystems

Image EDR

DRPE OSH PTFrFT

Image 1 0.89333 0.91071 0.88889
Image 2 0.90347 0.90227 0.89853
Image 3 0.88289 0.91091 0.88208
Image 4 0.88858 0.88431 0.88351
Image 5 0.89861 0.91836 0.89977

4.9 Key Sensitivity Security Analysis
It is required for a cryptosystem to be susceptible to the control and initial values [17]. This

can be validated by investigating the key security analysis. The suggested cryptosystem provides
different outcomes, when the control parameters are changed. Fig. 5 offers the key sensitivity
outcomes in the form of decrypted images and their histograms using incorrect key values. It is
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observed that the suggested cryptosystem and the tested DRPE and OSH cryptosystems have high
sensitivity to slight changes in control parameters.

Images Image 1 Image 2 Image 3 Image 4 Image 5

Original

Encrypted 
(PTFrFT)
(Proposed 

cryptosystem )

Encrypted 
(OSH)
[7, 10]

Encrypted 
(DRPE)
[9, 22]

Figure 4: Laplacian edge Gaussian results for the plain and enciphered medical images with the
DRPE, OSH, and PTFrFT cryptosystems

Cryptosystem Images Image 1 Image 2 Image 3 Image 4 Image 5

PTFrFT 
(Proposed 

cryptosystem)

Deciphered
image

(incorrect key)

Histogram of 
the deciphered

image 
(incorrect key)

OSH
[7, 10]

Deciphered
image

(incorrect key)

Histogram of 
the deciphered

image 
(incorrect key)

DRPE
[9, 22]

Deciphered
image

(incorrect key)

Histogram of 
the deciphered

image 
(incorrect key)

Figure 5: Results of key sensitivity analysis for the DRPE, OSH, and PTFrFT cryptosystems
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4.10 Effect of Channel Noise
The transmission network commonly encompasses different types of noise. The proposed

decryption process should survive the impact of noise. The effects of Salt and Pepper, Gaussian,
and Speckle noise [14,22,47] are investigated in the simulation experiments. Figs. 6–8 display the
outcomes of deciphered medical images for the encrypted images presented in Fig. 2 in the
presence of noise with different amounts with the proposed PTFrFT and the conventional DRPE
and OSH cryptosystems. It is observed that the deciphered color medical images are measurable
and discernable if the transmission noise affects the enciphered color medical images. Hence, the
proposed cryptosystem has a noticable advantage of resisting the effect of transmission noise
compared to the conventional DRPE and OSH cryptosystems.

Cryptosystem Images Image 1 Image 2 Image 3 Image 4 Image 5

PTFrFT 
(Proposed 

cryptosystem)

Decrypted 
image 

(variance=0.02)

Decrypted 
image 

(variance=0.06)

OSH
[7, 10]

Decrypted 
image 

(variance=0.02)

Decrypted 
image 

(variance=0.06)

DRPE
[9, 22]

Decrypted 
image 

(variance=0.02)

Decrypted 
image 

(variance=0.06)

Figure 6: Decrypted images in the presence of Gaussian noise with the DRPE, OSH, and PTFrFT
cryptosystems

4.11 Computational Processing Analysis
It is recommended for any cryptosystem to have less computations in addition to high security

and efficacy. Tab. 9 presents the estimated values of the encryption/decryption times for the
DRPE, OSH, and PTFrFT cryptosystems. The estimated encryption/decryption computation times
provide evidence that the suggested cryptosystem is highly appropriate for real-time telemedicine
services compared to other conventional cryptosystems.
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Cryptosystem Images Image 1 Image 2 Image 3 Image 4 Image 5

PTFrFT 
(Proposed 

cryptosystem)

Decrypted 
image 

(variance=0.02)

Decrypted 
image 

(variance=0.06)

OSH
[7, 10]

Decrypted 
image 

(variance=0.02)

Decrypted 
image 

(variance=0.06)

DRPE
[9, 22]

Decrypted 
image 

(variance=0.02)

Decrypted 
image 

(variance=0.06)

Figure 7: Decrypted images in the presence of Speckle noise with the DRPE, OSH, and PTFrFT
cryptosystems

4.12 Comparative Study
In this section, we introduce a comprehensive comparative study for evaluating the perfor-

mance of the proposed cryptosystem for confident color medical image transmission compared
to the recent studies [3–6,8,11–21,29,30,32,34] using the color Lena image. The outcomes of the
average UACI, correlation, entropy, PSNR, and NPCR values for the enciphered color image
are demonstrated in Tab. 10. It is noticed that all security evaluation metrics of the proposed
cryptosystem are close or superior to those of the previous studies. Thus, the proposed optical
cryptosystem can survive various types of multimedia attacks due to its robustness and reliability
compared to related cryptosystems. It also achieves a higher level of confusion efficacy. The
obtained outcomes reveal that the proposed optical cryptosystem has minimal complications and
good resistance to various types of attacks compared to the conventional cryptosystems. In
summary, the proposed cryptosystem provides more robustness and security and higher speed.
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Cryptosystem Images Image 1 Image 2 Image 3 Image 4 Image 5
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Figure 8: Decrypted images in the presence of Salt and Pepper noise with the DRPE, OSH, and
PTFrFT cryptosystems

Table 9: Encryption/decryption times for the DRPE, OSH, and PTFrFT cryptosystems

Image Computational time (s)

DRPE [9,22] OSH [7,10] PTFrFT (proposed cryptosystem)

Image 1 3.2934 4.6586 3.2527
Image 2 3.4528 4.8272 3.1596
Image 3 3.4294 4.4495 3.2047
Image 4 3.6364 5.6271 3.3576
Image 5 3.8982 5.7937 3.2129
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Table 10: Comparative study of the proposed cryptosystem and recent related cryptosystems

Cryptosystem PSNR (dB) Correlation Entropy UACI NPCR

[3] – 0.0578 7.9878 0.3397 0.9941
[4] – 0.0069 7.9952 – –
[5] 31.57 0.04267 7.9983 0.3311 0.9954
[6] 30.50 0.0004 7.9896 0.3346 0.9967
[8] – 0.0042 7.9970 0.3352 0.9962
[11] – 0.0037 7.9927 0.3351 0.9959
[12] – −0.0025 7.9972 0.3360 0.9963
[13] 33.87 0.0011 7.9975 0.3358 0.9951
[14] 32.31 0.0130 7.9971 0.3342 0.9961
[15] 32.42 0.0053 7.9893 0.3325 0.9928
[16] 30.84 0.0088 7.9973 0.3357 0.9960
[17] – 0.0025 7.9909 – –
[18] – 0.0116 7.9972 0.3341 0.9946
[19] 33.57 0.0023 7.9896 0.3347 0.9961
[20] – 0.0032 7.9984 0.3368 0.9952
[21] – 0.0000327 7.9980 0.3345 0.9975
[29] – 0.0011 7.9987 0.3330 0.9925
[30] – 0.003768 7.9895 0.3347 0.9963
[32] – 0.0274 – 0.3328 0.9937
[34] – 0.0081 7.9927 0.3342 0.9927
Present work 35.69 −0.00248 7.99837 0.33284 0.99628

5 Conclusion and Suggestions for Future Work

A secure optical cryptosystem was suggested for efficient color medical image communication.
It is based on the utilization of the optical asymmetric PTFrFT algorithm. In the proposed cryp-
tosystem, a multi-stage FrFT with different fractional orders is exploited for allowing a secure and
robust color medical image transmission for telemedicine applications. The suggested asymmetric
cryptosystem depends on two-phase distributions in the fractional Fourier and output planes as
decryption keys. Comparison and simulation experiments have been carried out to compare the
proposed optical cryptosystem with other optical and digital cryptosystems. The obtained results
confirmed the exciting success of the proposed optical cryptosystem in meritoriously ciphering
the transmitted color medical images. Subsequently, it is highly appreciated for safeguarding
medical image telemedicine services rather than the conventional optical and digital cryptosystems.
In the future work, we plan to test the proposed cryptosystem on 3D medical images with
different modalities. A hybrid cryptosystem of digital and optical encryption algorithms could be
introduced to merge their main advantages for achieving high robustness and security of medical
image communication.
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