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Abstract: In the current era, automatic surveillance has become an active
research problem due to its vast real-world applications, particularly for main-
taining law and order. A continuous manual monitoring of human activities is
a tedious task. The use of cameras and automatic detection of unusual surveil-
lance activity has been growing exponentially over the last few years. Various
computer vision techniques have been applied for observation and surveillance
of real-world activities. This research study focuses on detecting and recogniz-
ing unusual activities in an academic situation such as examination halls, which
may help the invigilators observe and restrict the students from cheating or
using unfair means. To the best of our knowledge, this is the first research work
in this area that develops a dataset for unusual activities in the examination
and proposes a deep learning model to detect those unusual activities. The
proposed model has been named Automatic Unusual Activity Recognition
(AUAR), which employs motion-based frame extraction approaches to extract
key-frames and then applies advanced deep learning Convolutional Neural
Network algorithm with diverse configurations. The evaluation using standard
performance measures confirm that the AUAR model outperforms the already
proposed approaches for unusual activity recognition. Apart from evaluating
the proposed model on the examination dataset, we also apply AUAR on
Violent and Movies datasets, widely used in the relevant literature to detect
suspicious activities. The results reveal that AUAR performs well on various
data sets compared to existing state-of-the-art models.

Keywords: Deep learning; unusual activities; examination; CNN; surveillance;
human activity recognition

1 Introduction

Traditional surveillance requires manual observation to identify unusual activities, which is
tedious and prone to error activity. The use of cameras for surveillance is growing exponentially.
Surveillance cameras capture a huge volume of video data. Observation of human behavior and
categorizing actions is very subjective in different situations. Based on this reason, observational
activity can be classified into a normal or abnormal/unusual activity. Regular activities can be
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categorized as the usual or daily activities performed by humans, such as hand waving, eating, sit-
ting, standing, walking, etc. Unusual activities are different from normal routine activities and vary
in specific situations, known as suspicious activities. A lot of work has been done for the detection
of suspicious activities in different situations such as observing an abandoned object, theft, health
monitoring of patients at the hospital and home (i.e., Fall) [1], road accidents [2], traffic rules
violation [3], driver drowsiness [4,5] etc. Nowadays, terrorist activities [6] are happening in crowded
and sensitive places such as religious places like mosques, churches, educational institutes, airports,
bus stations, government buildings, and shopping malls. The terrorists target such places, hence
detecting any suspicious activities or any orphan suitcase around such places has gained utmost
importance in the current era, which can be automatically classified as a suspicious activity.

Human activity detection is an important research area in image processing and video analysis
[7]. Human activity recognition from still images or video sequences is a challenging task due
to various reasons such as deformation, viewpoint variation, illumination changes, background
clutter, partial occlusion, and scale variation. Vision-based activity detection systems generally
consist of stages such as video/image preprocessing, key-frame extraction, feature extraction,
classification, and activity detection.

In particular, the traditional methods of invigilation during the examination to detect unfair
means require manual observation of students. An invigilator cannot monitor all the students and
may lose attention over time, allowing pupils to engage in cheating activities [8]. Thus, there is
a need for automated and intelligent video-based suspicious activity detection systems that may
help analyses, detect and minimize unwanted acts resulting in unfair means. However, less work
is done for the automatic detection of suspicious/ unusual activities for invigilation during an
academic examination that is limited to a few activities and uses handcrafted features and hard-
coded algorithms for detection [9].

Deep learning-based Human activity recognition (HAR) is an active research area that plays
a vital role in monitoring people’s daily life behavior and recognizing activities in a crowded scene
and the critical regions through video surveillance. The significant benefit of deep learning is its
ability to perform automatic feature extraction and learning compared to conventional vision-
based methods. Deep learning models’ strength makes it possible to perform automatic high-level
feature extraction, and representation learning thus achieves high performance in many areas.
Deep learning based on Convolutional Neural Networks (CNNs) has been widely adopted for the
video-based human physical activity recognition task. This research automatically analyses and
detects cheating activities during examination through videos using deep learning techniques.

This research presents a deep learning-based model name Automated Unusual Activity
Recognition (AUAR) to detect unusual activities, including cheating and malpractice during the
examination. The proposed system extracts key-frames based on human motion from a video
sequence/stream; deep learning model 2D and 3D CNN used for classification task to detect
suspicious activities. Furthermore, we have also created a data set for unusual activity recognition
during the examination. Thus, the main research contributions of this paper are as follows:

e The dataset has been created for the examination of unusual activity detection systems.
For the data set processing, data labelling has been carried out by expert annotators. The
dataset is freely available for research purposes.

e We propose to utilize a motion-based Key-frame extraction method to extract only salient
frames from a video sequence.

e We proposed to utilize 2D and 3D CNN architectures to detect suspicious activities.
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e The research work evaluation using standard evaluation measures prove that the proposed
model AUAR outperforms the existing approaches.

The rest of the paper is organized as follows: Section 2 reviews the related work. Section
3 explains the proposed suspicious activity detection system. Section 4 discusses the empirically-
based results, and Section 5 provides the conclusion and future work.

2 Related Work

Unusual human activity detection is an important research area in the field of image pro-
cessing and video analysis. Tracking and understanding objects’ behavior through videos has been
a research focus for an extended period due to its essential role in human-computer interaction
and surveillance. Various algorithms and approaches have been used to detect suspicious objects
in public and crowded places in the last decade. Many researchers have been explored the activity
recognition problem in different domain. There are two primary activity recognition approaches
discussed so far: vision-based [10] and sensor-based activity recognition.

The advancement of image representation approaches and classification methods in vision-
based activity recognition literature follows the research trajectory of local, global, and depth-
based activity representation methods. Other approaches that being discussed in the literature
for human activity detection can be categorized as video-based [11], fuzzy-based [12], trajectory-
based [13], hierarchically based [14], data mining based, and color histogram-based suspicious
movement detection and tracking [15]. The unusual activity detection process is typically com-
posed of four steps, scene segmentation, feature extraction, monitoring, and human behaviour
detection from the video streams.

The vision-based activity recognition literature follows the research trajectory of local, global
and depth-based activity representation approaches. Wang et al. worked on patient condition
recognition, elder people caring and human fall detection (in hospitals and at homes) for their
assistance using surveillance video based on PCANet. Babiker et al. [15] present a human activity
recognition system based on feature extraction analysis methods. The author uses two types of
feature extraction approaches, the Harris corner detector and blob analysis features. A multi-layer
perceptron feeds forward neural network used as a classifier for human activity recognition on
KTH and Weizmann datasets. A.K. [16] using the frame deviation method is used to extract key-
frames. For feature classification, a Random Forest algorithm is used. Wiliam et al. [17] proposed
a contextual information based automatic suspicious behavior detection system. An inference
algorithm use for decision making by combining information about the context and learned system
knowledge as behavior is suspicious or not. The proposed approach is tested on the CAVIAR
dataset and Z-Block dataset. Roy and Om [18] work on suspicious and violent activity detection
using the HOG feature extractor and SVM classifier. The trained SVM classifier classifies activities
as violent and non-violent, such as kicking, punching and fighting. Other main approaches that
are discussed recently for human activity detection are Fuzzy based [19] Trajectory-based [20],
Hierarchical based [21].

There are very few articles in the literature that address detecting suspicious activity during
examination through video datasets to facilitate invigilators efficient conduction of exams. The
authors in [22] provide a framework to monitor student activities during examination by detecting
face region using Haar features, detecting hand contact and hand signalling as cheating activi-
ties, and raising an alert. Works on the detection of suspicious activity during academic offline
examination. This work is divided into three modules; impersonation checks using a PCA-based
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face recognition method, detecting such facial malpractices in which students get involved in a
conversation with another, and identifying illegal materials or gadgets.

The recent years have shown significant development in the field of deep learning. Deep
learning achieves excellent performance and recognition accuracy in various areas such as pattern
recognition, image/object recognition, natural language processing, speech recognition, etc. A
potential advantage of deep learning models over vision-based methods is their ability to perform
automatic feature extraction and learn by examples using machine learning. The computer vision-
based methods involve handcrafted low-level features (e.g., colour, edges, corners, contrast) for
classification. In contrast, deep learning correlated to A.l. often abstract high level (e.g., Shapes,
contours, depth information) feature from a low level, thus achieving high accuracy for classifi-
cation tasks. The recent advancement in deep learning makes it possible to recognize an activity
through video surveillance. Hassan et al. [23] proposed a smartphone-based HAR approach with
inertial sensors. The authors use triaxial accelerometers and gyroscope sensors for efficient feature
extraction, and Deep Belief Network (DBN) is used for the classification task to recognize the
physical activity of humans. The experiments were performed on ANN, SVM and DBN classifiers
and showed 89.06%, 94.12% and 95.85% accuracy. Sabokrou et al. [24] propose a detection
and localization of anomaly in crowded scenes in video datasets. Authors use cubic patch-based
methods and use a cascade of classifiers. These classifiers are divided into two steps, a deep 3D
stack auto-encoder for identifying normal cubic patches and then using a complex deeper 3D
CNN. The authors compare the proposed method’s performance with other researchers’ work on
UCSD and UMN benchmark datasets. Limin Wang et al. [25] in this paper, the author has used
the Temporal Segment Network for action recognition from videos on limited training data. This
approach was tested on the HMDBS51 and UCF101 dataset and had obtained 69.4% and 94.2%
performance gain. Ramachandran et al. present a framework for unusual human activity detection,
tracking and features extraction using CNN. The extracted features are then fed into Multi-
class Support Vector Machine (MSVM) for classification and detection of suspicious activities.
The experiments were performed on a standard dataset and achieved 95% accuracy. Jalal et al.
proposed a method to recognize human interaction in an outdoor environment using a Multi-
feature algorithm with CNN. The proposed method is evaluated on the BIT-Interaction dataset
and recognize eight complex activities. The experimental results show 84.63% recognition accuracy.

Computer vision and Deep learning base HAR is an active research area that plays an
essential role in monitoring people’s daily life behavior and recognizing activities in a crowded
scene and the critical regions through video surveillance [26]. However, less work is done to detect
suspicious activities during an examination that is limited up to a few activities and uses hard-
coded algorithms for detection. This domain’s previous work only involves computer vision-based,
handcrafted features and hard-coded algorithms for detecting each category of unusual activity.
There is no machine learning involved in classification and detection [27]. Senthilkumar et al. [2§]
work was to establish a system for evaluating and identifying suspicious behavior in a classroom
setting. The system structure consists of three parts to control the student’s actions during the
study exam. First, the student’s face region is identified; secondly, the student’s hand contact
detection and thirdly, the student’s hand signal. Tab. | show the already existing techniques related
to Unusual Activity detection.
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Table 1: Unusual activity detection techniques
Reference Domain Technique Activities Dataset Accuracy/Results
Senthilkumar Computer Viola-Jones Cheating activities Self-Created Positive
and Narmatha Vision Algorithm, the during the exam Dataset Predictive
(2016) [28] grid for motion Value 98.7%,
and Convex 73%78.9%
hull
Chen Wang Computer spatio- Anomaly Detection UCSD AUC Score
et al. Vision temporal 0.7477
(2017) [29] sparse
Labiba Gillani Deep -H20 Activity recognition and CASAS 90% Accuracy
et al. [30] Learning Aunocoder Anomaly detection
-Probabilistic
neural network
Malik Ali Deep Yolo Patient Monitoring by Created own 96.8%.
etal. [31] Learning Abnormal Human dataset Accuracy
Activity Recognition
Nadeem Igbal Machine HOG-SVM Abnormal Activity Created own 98.02%
et al. Learning Recognition dataset Accuracy
(2019) [32]
Babiker et al. Deep Multi-layer Running, boxing, KTH and For three
(2017) [33] learning perceptron bending etc Weizmann scenarios 98.9,
feeds forward datasets. 93 and 90%
N.N.
Devi et al. Computer PCA, Region Impersonate checking, Created own
(2017) [34] Vision of Interest facial malpractice, dataset
(ROI) cheating material
Sabokrou etal.  Deep 3D Crowd anomaly UCSD and Frame-level,
(2017) [35] learning Convolutional detection and UMN dataset 9.1%,
Neural localization pixel-level,
Networks 15.8%, AUC
99.6% and
EER 2.5
Hassan et al. Deep Deep Belief Human physical A standard Overall
(2018) [36] learning Network activities dataset from accuracy 90.85
(DBN) UCI %
Jalal et al. Deep Multi features Eight different human BIT- Recognition
(2019) [37] Learning with CNN interactions like boxing, Interaction Accuracy is
fight, kick, push and dataset 84.63%

bow etc

3 Proposed Research Methodology

The proposed method uses deep learning to classify key-frames of a video sequence in normal
and unusual activities. Fig. | shows a comprehensive framework of the proposed system showing
the steps of the proposed research method.

3.1 Datasets

In this research, three datasets have been used for empirical analysis. First is the own created
dataset, Examination Unusual Activity (EUA) and two more standard published dataset, Violent
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flow (“Crowd Violence\Non-violence Database.” https://www.openu.ac.il/home/hassner/data/violent
flows/) and Movies (Movie and Hockey datasets. “https://figshare.com/articles/figure/_Movie_an
d_Hockey_datasets_/1375015).
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Figure 1: The framework diagram of the proposed research approach

3.1.1 EUA Dataset

There is no standard dataset available in the domain of academic examination invigilation for
suspicious activities detection. To address this issue, we have developed our dataset to evaluate the
proposed AUAR System. This system is proposed for Unusual Activity recognition in Academic
settings. EUA Dataset has been created to classify the activities into normal and abnormal. The
suspicious activity of cheating has been detected using three activities: head movement, object
passing, and signalling.

For dataset preparation, the videos are captured with the help of university students study-
ing in the Computer Science & Information Technology Department, University of Sargodha,
Pakistan. The DSLR camera used for the acquired video with the 20.1 megapixels resolution,
the number frames per second, is 29, and the frames’ size is 1440 x 1080. All video clips are
preprocessed and saved in mp4 format. Each category has 100+ video clips, and the dataset
contains a total of 510 videos.

There is vast variability in the dataset as multiple students conduct activities and multiple
camera perspectives document these activities. At a fixed point with a static context, events
are captured. The next measure for the preparation of the dataset is the validation of this
dataset. Some quality metrics define quality, variance, lightness, hue, saturation, and quantity
for this dataset. Fig. 2 shows a few glimpses of the frames/image for these three activities of
the EUA dataset. The frequency of different categories of activities in the prepared dataset has
been presented in Tab. 2. The table shows that the data set comprises of 550 videos, with three
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categories of unusual activities and one category of usual activity videos. Whereas Tab. 3 presents

the characteristics of the DSLR camera used for recording these videos.

Figure 2: Sample frames from EUA dataset

Table 2: Statistics of the EUA dataset

Activities Class labels No. of videos
Head movement 0 160
Object passing 1 120
Signalling 2 125
Normal 3 145

Table 3: Characteristics of DSLR camera

Camera characteristics

Resolution
Frame rate
Color space
Video format

1440 x 1080
29fps
RBG
MP4

3.1.2 Violent and Movies Dataset

Two other benchmark datasets named as movie dataset and violent-flow dataset have also
been used in this research. These datasets have been included in this research because these
datasets have been widely used in similar articles addressing the unusual activity recognition
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problem.Between two (or a few) people, the Hockey data set was used to evaluate methods for
classifying videos as violent or non-violent. The collection includes 1,000 clips divided into five
parts, each with 100 violent and non-violent scenes. The dataset of Violent Flows consists of
246 real-life video in which both violent and non-violent scenes are included. The purpose and
motivation for including these datasets in this research are to evaluate the proposed model’s
effectiveness on a variety of datasets to gauge its general applicability.

3.2 Video Preprocessing

After the video capturing process, long-duration videos are converted into short clips of three-
second duration each. According to classes of unusual activities, we convert every video into .mp4
format. For video preprocessing, the Gaussian filter is used for noise removal, and histogram
equalization is performed on frames of video. After preprocessing, extracted frames are resized
into 128 x 128.

3.3 Key Frame Extraction

For the detection of unusual activity from a video sequence, there is a need to extract
key-frames that consist of an unusual series of actions. In this dataset, each video consists of
a sequence of frames at the rate of 30 fps (http://www.imctv.com/pdf/ipcamera/IP_Surveillanc
e_Design_Guide.pdf.). The frames are very similar to each other, so information in a video
sequence is highly redundant, so only a few frames are required that contain meaningful informa-
tion. These frames are usually called key-frames. Several techniques exist for key-frame extraction,
such as colour histogram, histogram difference, frame difference, correlation, entropy difference,
etc. In this research work, we apply the motion-based key frame extraction method.

For key-frames extraction, first, downsampling of all the videos is carried out by selecting
a skipping factor equal to three for consecutive frames. The skipping factor helps to eliminate
redundant frames. We applied a motion-based key frame extraction method [38]. In this method,
we take the pixel-wise absolute difference between two consecutive frames.

Threshold value T is calculated by using 7= (mean of absolute difference 4+ standard
deviation of absolute difference)

(absdiff); = absdiff (Cfit1, Pfi) (1)

Where Pf; represents the previous frame and Cf;1| as a current frame in the above equation.
Then, we compute the average difference of the matrix obtained in Eq. (1).

Avgayy = Avg ((absdiff);) )

If the Avggyr exceeds a pre-defined Threshold (7'), then the current frame is selected as a
key-frame or skipped otherwise.

Avggier > T key frame

Avgaifr < T Not a key frame (3)

KFi:if{

We update the frames as prev_frame = curr_frame and repeat the whole process. Our key-
frame extraction algorithm extracts 11,500 frames for fame level classification, and a sequence
of 20 structures out of 550 video clips for video level classification is obtained. Some sample
key-frames extracted for four classes of the EUA dataset are shown in Fig. 3.
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Figure 3: Key-frames (a) head_move (b) signal (c) object_pass (d) normal

3.4 CNN Architecture

The Convolution Neural Network (CNN) is one of the most widely used architectures among
the deep learning architectures for events or activity recognition and automatic feature extraction.
This research examines the CNN model on two different architectures: 2D- CNN for Frame level
and 3D-CNN for video level detection. The main difference between these two architectures is that
the 2D model learns only spatial information using a single frame as input. In contrast, the 3D
model learns both space and time information from a video sequence by using the sequence/stack
of frames as input.

3.4.1 Features Extraction Using CNN

CNN uses 3 x 3 filters for automatic feature extraction. CNN model trains based on these
self-learned features. The output after applying filters is known as a feature map. The first few
layers of the network may detect simple features like lines, circles, edges. The network combines
these findings in each layer and continually learns more complex concepts as we go deeper and
deeper into the network’s layers.

3.4.2 2D-CNN Architecture

The proposed 2D model learns only spatial information by using a single frame as input. In
the CNN model, convolutional layers perform feature extraction. The number of convolutional
layers depends on the complexity of the problem. As we increase the training samples, we need
more convolutional layers to capture the feature map by applying kernels of varying sizes. The
pooling layer aims to reduce the feature map’s size and the number of parameters extracted
through convolutional layers. Also, ignoring minor details such as translational, rotational invari-
ance and focusing on the bigger picture (maximum activation). The researchers previously used
many techniques to perform pooling operation such as Max pooling, Global average pooling,
stochastic pooling [39], etc. The performance analysis shows that Max pooling performs better
and extensively used in research than other techniques. A fully connected layer connects every
neuron from the Max-pooled layer to every four output neurons. In this research study, the
number of convolutional and pooling layers is selected based on training data experiments. We
have performed different experiments to compare several different approaches to convolutional
and pooling layers and choose the best approach. The proposed 2D-CNN model configuration is
as described in Tab. 4.

The 2D-CNN architecture consists of five Convolution layers, the input layer has the shape
(128,128,3), and kernel size 3 x 3 with pooling layers of kernel 2 x 2 batch normalization
layer is also added after each Convolution layer for normalizing input data, and Relu activation
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function is used. All the neurons in the ReLu function do not activate at the same time. After
convolutional layers, a flattened layer is added, then add two fully connected dense layers followed
by a dropout of 0.5 followed by a softmax output layer consist of four (as equal to a number
of classes) neurons. The data is split into three parts after model construction: 70% training,
15% validation, and 15% test set. A training dataset is a set of samples used during the learning
process. In comparison, the validation dataset is a set of examples used for parameter selection
and independent from training. For the performance evaluation, a Test set is used.

Table 4: Convolutional model configuration

Layers Convl Pool 1 Conv2 Pool 2 Conv3 Pool 3 Conv4 Pool 4 Conv5 Pool 5 FC1 FC2

Kernel I3 x32x%x23x32x23x32x23x32x23x%x32x2 -~ -
Stride Il x1 I x1 1x11x11x1T1Tx11x1T1x11x1T1x1 - -
Neurons/ 32 32 64 64 128 512 512
Channel

The deep learning models require a large amount of data for training. Suppose there is not
enough dataset available for training on the CNN model that affects the model’s performance
and accuracy. Hence, the solution to this research problem is Data Augmentation. The data
augmentation is increasing the dataset by using different methods to help deep learning models
learn diversity in the dataset, prevent overfitting and produce better results. The data augmentation
process includes the following parameters, e.g., horizontal or vertical flip, width shift, rescale and
rotation range. Then we generate batches of data for training up to 50 epochs with batch size 20
to fit in RAM and process easily.

3.4.3 3D-CNN Architecture

We moved from 2D-CNN a frame-level classification model to the 3D-CNN classification
model for video action recognition. 2D-CNN achieve tremendous success in the image recognition
domain. Increased complexity and dimensionality of 3D-CNNs has limited the work on video
analysis and recognition [40]. The flow diagram of the proposed 3D-CNN architecture is presented
in Fig. 4.

The proposed 3D-CNN model takes an input sequence of 20 frames having (20,128,128,3)
dimensions the sequence of 20 frames input to 3D-CNN architecture for training. The network
consists of 4 Conv3D and MaxPooling3D layers followed by one fully connected layer with a
0.5% dropout and dense SoftMax output layer. The configuration details of the 3D-CNN model
are described in Tab. 4.

In the proposed model, 3D Convolution and pooling layers are used to preserve the space
and time information to learn special and temporal features from a video sequence to learn
representations better. The 3D-CNN model layers were selected after extensive experiments by
increasing/decreasing layers in the model and fine-tune hyperparameters of the model; thus, the
configurations are optimized that give the best results in terms of accuracy and loss.

After configuring model layers, the model is compiled with the cost/loss function “categori-
cal_crossentropy” and the optimization function “RMSprop” with a learning rate of 0.001. The
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input videos are split into 80% training and 20% test videos dataset. The model is fit on training
and validation dataset splits for 30 epochs.

Capture Videos

-

Framea pre-processing

Training
split

=Color convearsion
= Gaussian Blur
= |mage Resizing

Key-Frames
axtraction

3D-CNN Model
Construction

L@ s

Output
Frame sequence

Testing/Predict
ions

Training
C3DNN Model

Figure 4: Flow diagram of 3D CNN

4 Experimental Results and Discussion

In this section, we evaluate the performance of our proposed system on the EUA dataset.
The standard dataset for AUAR during Examination does not exist. In earlier studies, the authors
have created their video dataset (containing only a few videos) to evaluate the proposed method.
The experiments are performed on Google Colab a free web-based cloud service that provides
Tesla K80 GPU with 12 GB RAM and TPU to train and process deep learning models.

The proposed research work is divided into two implementation domains: the first one covers
2D-CNN, while the second domain implements 3D-CNN. We performed the experiments on
two different dataset settings: spatial domain (frames/image level) and space-time (sequence of
frames/video) level activity detection. In this research, we evaluated the performance of deep
learning approaches based on AUROC (Area Under the Receiver Operating Characteristics)

4.1 Evaluation of CNN Architectures

The 2D-CNN model uses the AUAR dataset consists of 1725 testing frames of 4 classes.
While the 3D-CNN model takes 110 test videos having a sequence of 20 frames per video clip. We
load the trained model; evaluate the performance of the CNN models on test split, and see how
well our model learns to generalize actions. The model takes the test split as input and predicts
the class label for each frame according to conventional and non-conventional activities compared
to ground truth labels. The experimental results of the 2D-CNN model on the test dataset show
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77%, and 3D-CNN models show 73% accuracy. In Fig. 5 2D-CNN shows 0.94, and in Fig. 6
3D-CNN shows 0.91 micro and macro average ROC curve. The ROC shows the probability curve
for each action class according to probability scores calculated by the model. AUC for each class,
as shown in the figure representing how the model learns to distinguish between each category of
unusual activities.

ROC curve for object_pass,Signal,Head_move,Normal class

M
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-
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Figure 5: ROC for 2D-CNN

ROC curve for object_pass,Signal,Head_move,Normal class
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Figure 6: ROC for 3D-CNN

4.2 Comparison of Deep Learning Models

In Tabs. 5 and 6, we summarise the results of deep learning CNN models based on the
performance evaluation matrix of AUROC and Classification Report for four EUA dataset classes.
Tab. 6 presents a comparative analysis based on the classification report for three unusual activities
and one normal class, and the overall accuracy of the proposed system using test datasets.
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Table 5: Comparison of CNN models based on AUROC

Evaluation measure AUROC (Area Under the Receiver Operating Characteristics)
Classes Frame level detection results Video level detection results
2D-CNN 3D-CNN

Head move 98% 98%

Object passing 91% 89%

Signals 91% 79%

Normal 93% 95%

Micro average ROC 94% 91%

Table 6: Comparison of CNN models based on classification report

Classes 2D-CNN 3D-CNN

Precision Recall F-score Precision Recall F-score
Head move 85 89 87 75 79 77
Object passing 70 70 70 79 66 72
Signals 69 70 69 77 75 76
Normal 81 75 78 65 75 70
Overall accuracy 77% 73%

4.3 Comparative Analysis of the Proposed Model with Standard Dataset

The proposed method is evaluated on Movie and Violent flow datasets to analyze the CNN
model’s performance on these two standard datasets considered benchmarks in the relevant
studies. The videos are preprocessed, and key-frames are extracted for normal and unusual
behavior and input to CNN architecture. The proposed model performance was evaluated with a
standard dataset based on classification accuracy with another state-of-the-art technique. Tab. 7
shows that the proposed method AUAR can better classify unusual behaviours compared to
existing techniques.

Table 7: Comparison of classification results on standard datasets

Classifier Violent flow dataset Movie dataset
Improved fisher vectors [26] 96.4% 99%
ConvLSTM [41] 94.57% 100%
2D-CNN [42] - 99%
Substantial derivative [43] 85.43% 96.89%

Proposed method 97.34% 100%
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5 Conclusion

This article presents a novel deep learning-based unusual activity detection model in the
examination hall. The proposed deep learning model is based on CNN. It outperforms existing
models used for unusual activity recognition that uses computer vision and hardcoded algorithms
to detect unusual activities during the examination. Apart from proposing the model, we have
also developed a video dataset for unusual examination hall activities. The performance of the
proposed research work is evaluated on a frame-level consisting of 11500 Key-frames, and the
video level consists of 550 video clips of 4 different classes. We have used AUROC as an
evaluation matrix. The detection results of deep learning models show excellent performance on
our developed dataset. The accuracy of deep learning models for frame-level is higher than the
video level due to limited video dataset and GPU resources. The proposed CNN models show an
optimized accuracy on our unusual activity dataset regardless of dataset complexity and resource
limitations. Apart from this examination dataset, we evaluated the proposed model on two other
widely-used datasets, including the Violent-flow dataset and Movie dataset for unusual activity
recognition. The proposed model outperformed existing models for all three datasets.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References

[1] 1. Elouni, H. Ellouzi, H. Ltifi and M. ben Ayed, “Intelligent health monitoring system modeling based
on machine learning and agent technology,” Multiagent and Grid Systems, vol. 16, no. 2, pp. 207-226,
2020.

[2] B. Fernandes, M. Alam, V. Gomes, J. Ferreira and A. Oliveira, “Automatic accident detection with
multi-modal alert system implementation for ITS,” Vehicular Communications, vol. 3, no. 1, pp. 1-11,
2016.

[3] S. Asadianfam, M. Shamsi and A. Rasouli Kenari, “Big data platform of traffic violation detection
system: Identifying the risky behaviors of vehicle drivers,” Multimedia Tools and Applications, vol. 79,
no. 33-34, pp. 24645-24684, 2020.

[4] M. Ramzan, H. U. Khan, S. M. Awan, A. Ismail, M. llyas et al, “A survey on state-of-the-art
drowsiness detection techniques,” IEEE Access, vol. 7, no. 1, pp. 61904-61919, 2019.

[5] M. Ramzan, S. M. Awan, H. Aldabbas, A. Abid, M. Farhan et al, “Internet of medical things for
smart D3S to enable road safety,” International Journal of Distributed Sensor Networks, vol. 15, no. 8,
pp. 1- 10, 2019.

[6] M. 1. Uddin, N. Zadda, F. Aziz, Y. Saeed, A. Zeb et al., “Prediction of future terrorist activities using
deep neural networks,” Complexity, vol. 2020, no. 1, pp. 1- 16, 2020.

[7] M. Ramzan, A. Abid, H. U. Khan, S. M. Awan, A. Ismail et al, “A review on state-of-the-art violence
detection techniques,” IEEE Access, vol. 7, no. 1, pp. 107560-107575, 2019.

[8] A. Arinaldi and M. I. Fanany, “Cheating video description based on sequences of gestures,” in 5th Int.
Conf. on Information and Communication Technology, ICoIC7, Melaka, Malaysia, pp. 1-8, 2017.

[9] A. Sargano, P. Angelov and Z. Habib, “A comprehensive review on handcrafted and learning-based
action representation approaches for human activity recognition,” Applied Sciences, vol. 7, pp. 110,
2017.

[10] M. Babiker, O. O. Khalifa, K. K. Htike, A. Hassan and M. Zaharadeen, “Harris corner detector and
blob analysis featuers in human activty recognetion,” in 2017 IEEE Int. Conf. on Smart Instrumentation,
Measurement and Applications, ICSIM A,Putrajaya, Malaysia, pp. 1-5, 2018.



CMC, 2022, vol.70, no.1 1843

[11]

[12]

[20]

[21]

[22]

S. R. Ke, H. L. U. Thue, Y. J. Lee, J. N. Hwang, J. H. Yoo et al, “A review on video-based human
activity recognition,” Neurocomputing, vol. 2, no. 2, pp. 1-23, 2013.

S. Abdelhedi, A. Wali and A. M. Alimi, “Fuzzy logic based human activity recognition in video
surveillance applications,” Advances in Intelligent Systems and Computing, vol. 427, no. 1, pp. 227-235,
2016.

H. A. Abdul-Azim and E. E. Hemayed, “Human action recognition using trajectory-based representa-
tion,” Egyptian Informatics Journal, vol. 16, no. 2, pp. 187-198, 2015.

M. Fazli, K. Kowsari, E. Gharavi, L. Barnes and A. Doryab, “Hierarchical human activity recognition
using neural networks,” Neural Network, vol. 2, no. 7, pp. 1-13, 2020.

S. Kamal, A. Jalal and D. Kim, “Depth images-based human detection, tracking and activity
recognition using spatiotemporal features and modified HMM,” Journal of Electrical Engineering and
Technology, vol. 11, no. 6, pp. 1857-1862, 2016.

Q. Lei, J-X. Du, H.-B. Zhang, S. Ye and D.-S. Chen, “A survey of vision-based human action
evaluation methods,” Sensors, vol. 19, no. 19, pp. 4129, 2019.

A. Wiliem, V. Madasu, W. Boles and P. Yarlagadda, “A suspicious behaviour detection using a context
space model for smart surveillance systems,” Computer Vision and Image Understanding, vol. 116, no. 2,
pp- 194-209, 2012.

P. K. Roy and H. Om, “Suspicious and violent activity detection of humans using HOG features and
SVM classifier in surveillance videos,” in Advances in Soft Computing and Machine Learning in Image
Processing, Berlin, Germany: Springer Verlag, vol. 730, no. 1, pp. 277-294, 2018.

S. Abdelhedi, A. Wali and A. M. Alimi, “Fuzzy logic based human activity recognition in video
surveillance applications,” Advances in Intelligent Systems and Computing, vol. 427, no. 1, pp. 227-235,
2016.

B. Boufama, P. Habashi and I. S. Ahmad, “Trajectory-based human activity recognition from videos,”
in Int. Conf. on Advanced Technologies for Signal and Image Processing, Fez, Morocco, pp. 1-5, 2017.
M. Fazli, E. Gharavi k. Kowsari, L. Barnes and A. Doryab, “HHAR-net: Hierarchical human activity
recognition using neural networks,” in Intelligent Human Computer Interaction: 12th Int. Conf., IHCI,
Daegu, South Korea, pp. 1-6, 2020.

Z. Li, Z. Zhu and T. Yang, “A multi-index examination cheating detection method based on neural
network,” in Proceedings—Int. Conf. on Tools with Artificial Intelligence, ICTAI, NY, USA, pp. 575-581,
2019.

M. M. Hassan, M. Z. Uddin, A. Mohamed and A. Almogren, “A robust human activity recognition
system using smartphone sensors and deep learning,” Future Generation Computer Systems, vol. 81, no.
1, pp. 307-313, 2018.

M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed and R. Klette, “Deep-anomaly: Fully convolutional
neural network for fast anomaly detection in crowded scenes,” Computer Vision and Image Understanding,
vol. 172, no. 1, pp. 88-97, 2018.

Y. Fang, R. Zhang, Q. F. Wang and K. Huang, “Action recognition in videos with temporal segments
fusions,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 1, no. 1, pp. 244-253, 2020.

D. R. Beddiar, B. Nini, M. Sabokrou and A. Hadid, “Vision-based human activity recognition: A
survey,” Multimedia Tools and Applications, vol. 79, no. 41-42, pp. 30509-30555, 2020.

D. T. Nguyen, T. D. Pham, N. R. Baek and K. R. Park, “Combining deep and handcrafted image
features for presentation attack detection in face recognition systems using visible-light camera sensors,”
Sensors, vol. 18, no. 3, pp. 699, 2018.

T. Senthilkumar and G. Narmatha, “Suspicious human activity detection in classroom examination,” in
Computational Intelligence, Cyber Security and Computational Models. Singapore: Springer, pp. 99-108,
2015.

C. Wang, H. Yao and X. Sun, “Anomaly detection based on spatio-temporal sparse representation and
visual attention analysis,” Multimedia Tools and Applications, vol. 76, no. 5, pp. 6263-6279, 2017.



1844

(30]
(31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

(39]
(40]
(41]

(42]

[43]

CMC, 2022, vol.70, no.1

L. G. Fahad and S. F. Tahir, “Activity recognition and anomaly detection in smart homes,” Neurocom-
puting, vol. 423, no. 1, pp. 362-372, 2021.

M. A. Gul, M. H. Yousaf, S. Nawaz, Z. Ur Rehman and H. Kim, “Patient monitoring by abnormal
human activity recognition based on CNN architecture,” Electronics, vol. 9, no. 12, pp. 1993, 2020.
N. Igbal, M. M. Saad Missen, N. Salamat and V. B. S. Prasath, “On video based human abnor-
mal activity detection with histogram of oriented gradients,” in Handbook of Multimedia Information
Security: Techniques and Applications. Cham: Springer, pp. 431-448, 2019.

M. Babiker, O. O. Khalifa, K. K. Htike, A. Hassan and M. Zaharadeen, “Harris corner detector and
blob analysis featuers in human activty recognetion,” in 2017 IEEE Int. Conf. on Smart Instrumentation,
Measurement and Applications, ICSIMA 2017, Sakaka, SA, pp. 1-5, 2018.

G. Devi, G. Suvarna and S. Chandini, “Automated video surveillance system for detection of suspi-
cious activities during academic offline examination,” International Journal of Computer and Information
Engineering, vol. 11, no. 12, pp. 1265-1271, 2017.

M. Sabokrou, M. Fayyaz, M. Fathy and R. Klette, “Deep-cascade: Cascading 3D deep neural networks
for fast anomaly detection and localization in crowded scenes,” IEEE Transactions on Image Processing,
vol. 26, no. 4, pp. 1992-2004, 2017.

M. M. Hassan, S. Huda, M. Z. Uddin, A. Almogren and M. Alrubaian, “Human activity recognition
from body sensor data using deep learning,” Journal of Medical Systems, vol. 42, no. 6, pp. 1-8, 2018.
A. Jalal, M. Maria and A. S. Hasan, “Multi-features descriptors for human activity tracking and recog-
nition in Indoor-outdoor environments,” in 16th Int. Bhurban Conf. on Applied Sciences and Technology,
Islamabad, Pakistan, IEEE, pp. 371-376, 2019.

M. Huang, H. Shu and J. Jiang, “An algorithm of key-frame extraction based on adaptive threshold
detection of multi-features,” in Proceedings of the International Symp. on Test and Measurement, China,
Hong Kong, pp. 149-152, 2009.

M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep convolutional neural
networks,” in Ist Int. Con. on Learning Representations, Scottsdale, United States, pp. 1-5, 2013.

S. Ji, W. Xu, M. Yang and K. Yu, “3D Convolutional neural networks for human action recognition,”
IEEFE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, 2013.

M. Majd and R. Safabakhsh, “Correlational convolutional LSTM for human action recognition,”
Neurocomputing, vol. 396, no. 1, pp. 224-229, 2020.

V. D. Hoang, D. H. Hoang and C. le Hieu, “Action recognition based on sequential 2D-CNN for
surveillance systems,” in Proceedings: IECON, 2018—44th Annual Conf. of the IEEE Industrial Electronics
Society, Washington, DC, USA, pp. 3225-3230, 2018.

S. Mohammadi, H. Kiani, A. Perina and V. Murino, “Violence detection in crowded scenes using
substantial derivative,” in 2015 12th IEEE Int. Conf. on Advanced Video and Signal Based Surveillance,
Karlsruhe, Germany, pp. 1-6, 2015.



