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Abstract: The development of intelligent algorithms for controlling autonom-
ous mobile robots in real-time activities has increased dramatically in recent
years. However, conventional intelligent algorithms currently fail to accurately
predict unexpected obstacles involved in tour paths and thereby suffer from
inefficient tour trajectories. The present study addresses these issues by propos-
ing a potential field integrated pruned adaptive resonance theory (PPART)
neural network for effectively managing the touring process of autonomous
mobile robots in real-time. The proposed system is implemented using the
AlphaBot platform, and the performance of the system is evaluated accord-
ing to the obstacle prediction accuracy, path detection accuracy, time-lapse,
tour length, and the overall accuracy of the system. The proposed system
provide a very high obstacle prediction accuracy of 99.61%. Accordingly, the
proposed tour planning design effectively predicts unexpected obstacles in the
environment and thereby increases the overall efficiency of tour navigation.

Keywords: Autonomous mobile robots; path exploration; navigation; tour
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1 Introduction

Fixed robotics have been widely applied for many years in numerous settings where envi-
ronmental conditions are known with a very high degree of certainty. However, mobile robots
have the capacity to perform a much wider range of activities, such as explore terrestrial, under-
water, aerial, and outer space environments, transport cargo, complete complex tasks, perform
surgery, assist in warehouse distribution centers, support security, act as a personal assistants,
aid in space and ocean exploration, and provide guidance for navigation [1–4]. Mobile robots
that implement well-defined tasks in highly controlled environments rely upon preprogrammed
or externally communicated instructions and guidance rules for moving about the environment,
and generally implement only simplistic obstacle avoidance algorithms. In contrast, the goal of
autonomous mobile robots is to implement tasks within uncontrolled environments without any
external direction. Accordingly, autonomous mobile robots must maneuver around obstacles, in
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addition to addressing all other issues that guided mobile robots encounter [5]. These features are
achieved by mobile robots using several technologies, such as various sensors, wireless commu-
nication, integrated safety, fleet simulation software, supervisory software, and fleet management
software [6]. The first electronic autonomous mobile robots were Elmer and Elsie, which were
created by Dr. William Grey Walter in 1948 in Bristol, England [7]. This and subsequent develop-
ments in autonomous mobile robot design relied upon conventional obstacle avoidance algorithms.
However, efficient autonomous operation requires predictive capabilities based upon feedback from
the environment, which cannot be obtained via conventional algorithms. The first autonomous
mobile robot to be controlled with the help of artificial intelligence was introduced in 1970 [8].

More recent efforts to improve the predictive capabilities of autonomous mobile robots
have been based upon the development of increasingly sophisticated artificial neural networks
(ANNs) [9]. For example, Tai et al. [10] implemented an ANN by integrating a convolutional
neural network(CNN)with the respective decision-making process to facilitate effective robot
exploration based on visual cues. The autonomous mobile robot system was trained using anno-
tated visual information related to the exploration task, and its efficiency was evaluated in a
real-time application. Similarly, Thomas et al. [11] applied a CNN in the FumeBot home mon-
itoring robot system. Obstacles in the home environment were effectively identified from image
data during the training process. Bing et al. [12] developed effective autonomous mobile robot
control for exploration applications using a spiking neural network (SNN)in conjunction with
various robot characteristics, such as energy, speed, and computational capabilities, during network
training. The efficiency of the system was evaluated via simulations. Patnaik et al. [13] developed
autonomous mobile robot control using an evolving sensory data-based network approach. Four
different learning models were applied during network training to predict both obstacles and
targets in the surrounding environment based on their sizes and shapes.

The present work addresses these issues by proposing a potential field integrated pruned
adaptive resonance theory (PPART) neural network for effectively managing the touring process
of autonomous mobile robots in real-time based on a very high accuracy for predicting unex-
pected obstacles in the environment. The excellent obstacle prediction accuracy then facilitates
the development of highly efficient robot trajectories in real time. Specifically, the potential field
method is employed to conduct path exploration according to a given destination and the presence
of obstacles in the path exploration space based on the Laplace equation and an energy field
representation of the path exploration space, including the destination and obstacles within that
space. The adaptive resonance theory (ART) neural network is then employed in conjunction with
the determined obstacles to obtain the optimal navigation path that avoids all obstacles and is
the shortest possible path to achieve operational objectives. Here, the optimal navigation pathways
are identified by fuzzy and ART neural networks based on building maps that consist of several
geometric primitives. The remainder of this manuscript is organized as follows. Section 2 presents
the PPART neural network in detail. The obstacle prediction and path detection performance,
and the tour efficiency obtained by the network are evaluated in Section 3. Finally, Section 4
concludes the manuscript.

2 Potential Field Integrated Pruned Adaptive Resonance Theory Neural Network

2.1 Assumptions and Notations
The following assumptions and notations are applied to identify the obstacles, ideal travel

paths, and navigation process of an autonomous mobile robot [14].
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• The tour planning working environment with in which the mobile robot is placed is defined
as WE, and the boundary of the environment is denoted as the tour environment boundary
(TEB).

• A specific area to be analyzed and accessed by the robot in WE is denoted as WEa, which
is approximately a circle with a radius defined as ra.

• The WE and TEB contain both unknown and known stationary obstacles with unknown
positions and shapes.

• The shape of the mobile robot is approximately a circle with a radius defined as Rrobot.
• The mobile robot path configuration space in WE is defined as SP, and the free space is
defined as SPfree.

• The robot sensing data captured with in WEa is defined as RSsensing, and the specific area
radius is defined as ra.

2.2 Mobile Robot Path Identification Process Based on the Potential Field
The path exploration problem and any obstacles within the defined environment WEmust

be identified [15]. Initially, the obstacles are identified through RSsensing are, and the points are
connected to facilitate path exploration in WE. The primary objective of the path identification
process is to minimize the path length by analyzing all of the obstacles present in WE. To this
end, we first define the respective observation points of the mobile robot as pii (i= 1, 2, . . . ,N),
where N is the total number of observation points. The defined observation points must satisfy
the following equation:

∀pis ∈WEa, ∃ i ∈ {1, 2, . . . ,N}, ‖pis− pii‖ ≤ ri (1)

Once the observation points related to the path exploration process are detected, the detected
robot path must adhere to the mapping relation pi(t) : [0, 1] → WEa. Therefore, the following
condition must also be satisfied:

pi(0)=Pi(1)= piτ1 , (2)

pi
(
i− 1
N

)
= piτi (i= 2, 3 . . . ,N), (3)

where τi is defined as the path navigation of all observation points pii . . . During exploration, the
path initiates from p(0) and traverses to the initial point p(1). The tour planning process and the
kinematic robot model are illustrated in Fig. 1. The motion of the mobile robot in the defined
system is constrained in WE using the following dynamic non-holonomic constraints in the x, y,
and z translational directions and in the rotational direction [16]:

ẋ= z.cos(ϕ) (4)

z= (ZR+ZL)

2
(5)

ẏ=m. sin(ϕ), (6)

m= (ZR−ZL)

L
(7)
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where z is the translational velocity of the robot, the angular robot orientation is represented as
ϕ, ZR represents the translational velocity of the right wheel, ZL denotes the translational velocity
of the left wheel, m denotes the robot’s rotational velocity, and L is the distance between the right
and left wheels [17].

Figure 1: (a) Sample mobile robot and (b) Kinematic robot model

During the analysis process, WE is split into grids within which the obstacles and destination
are represented, and the obstacles and destination are respectively assigned repulsive and attractive
potentials according to an artificial potential field [18]. This converts robot path exploration into
an energy minimization problem [19]. A representative potential field within a divided working
space is illustrated in Fig. 2, where the green color represents the attractive potential of the
destination and the brown color represents the repulsive potential of the obstacles. The potentials
presented in Fig. 2 are defined in the following discussion.

Figure 2: Working environment representation using potential field
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The attractive potential of the destination is defined as follows:

Pg = c
√
|x−xgoal|2+ |y− ygoal|2 (8)

PHA = 1
δ+∑s

i=1(gi+ |gi|)
where x and y are the robot coordinates in two-dimensional (2D) space, xgoal and ygoal are the
2D coordinates of the destination, and c is a constant. Then, the potentials of obstacles in WE
are defined as follows:

pi, j = pmax
1+ g

(9)

where pmax is the maximum potential ofWE, and g is derived as follows.

g(x, y)=
(
x0 − l

2
−x

)
+

∣∣∣∣x0− l
2
−x

∣∣∣∣+
(
x−x0 − l

2
+ 1

)
+

∣∣∣∣x−x0 − l
2
+ 1

∣∣∣∣+
(
y0− l

2
− y

)

+
∣∣∣∣y0− l

2
− y

∣∣∣∣+
(
y− y0− l

2
+ 1

)
+

∣∣∣∣y− y0− l
2
+ 1

∣∣∣∣ . (10)

Here, xo and yo are the 2D coordinates of the obstacle, and l is the obstacle length. In
addition, robot path exploration is maintained within WE by applying a repulsive potential to the
TEB as follows:

PHA = 1
δ+∑s

i=1(gi+ |gi|)
(11)

Here, δ is a constant, gi is a linear boundary convex region function, and the boundary face
segments are represented as s. Finally, the total potential acting on the robot at (x, y) is computed
as the sum of the attractive and repulsive potentials:

Utotal =Pg+Po+PHA (12)

The successful identification of WE, RSsensing, and ∀pis ∈WEa, � i ∈ {1, 2, . . . ,N}, ‖pis−pii‖ ≤
ri are used to define the obstacle-related information in WE. These observation points are ana-
lyzed by the kinematic constraints of the mobile robot, such as ẍ and ÿ The positions of all
obstacles in WE are then predicted based on an effective examination of the values of Po.

The output of this process generates vector information I = [I1I2 . . .IM ]T of length M, where
each element lies in a range (0, 1), which, along with the geometric primitives and corresponding
parameters, is represented as velocity, position, and acceleration into the ART neural network.

2.3 Mobile Robot Navigation Using an ART Neural Network
The proposed ART neural network architecture and corresponding processing are illustrated

in Fig. 3. The network consists of an input layer denoted as F0. that receives vector inputs
I = [I1I2 . . .IM ]T. The incoming inputs are received as y1 = [y11y12 . . .y1M ]T by the following
layer F1 in the bottom-up process, which are then transmitted to the following layer F2 as y2 =
[y21y22 . . .y2N ]T of length N in the top-down inputs, where the inputs I are processed. After
initializing the input vectors and respective processing layers, the particular weight values of the
network nodes are denoted as wj = {wj1, wj2,. . ., wjM}.
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Figure 3: ART network structure

The specific navigation choice function is defined as follows:

Tj(I)=
|I ∧wj|

(α+ |wj|) . (13)

Here, ∧ represents the fuzzy operator defined as

(p∧ q)i =min(pi, qi) (14)

where pi and qi denote M-dimensional vectors. In addition, α is the scalar value, and the
Manhattan norm is applied, which is estimated as follows:

|p| =
M∑
i=1

|pi| (15)

Furthermore, a matching process is performed for every incoming input, where upon the exact
navigation path is identified successfully. Otherwise, network training is continued by updating the
weight values as follows:

wnewJ = β(I ∧woldJ )+ (1−β)woldJ (16)

Here, the ART network uses the learning parameter β is 1 and vigilance parameter ρ to
implement a very fast network training process. The value of β lies in the range (0, 1), and a
constant value of ρ is employed.

The complete training process is illustrated in Fig. 4. Here, category pruning, direct category
updating, and direct category creation are applied to further refine the ART network output.

In the category pruning process, a fuzzy ART rectangular map is identified for every obstacle
present in WE. The pruning process removes obstacles related to the rectangular map from the
touring environment, and the related categories are also eliminated from the list. The weight values
of the removed obstacles are written in the form of wj = (uj, vcj ), where uj and vcj are the vertices
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of the corresponding rectangular map. Finally, the respective weight values are changed in both
layers F1 and F2. For layer F1, these are computed as follows.⎧⎪⎨
⎪⎩
y1j := y1N

y2j := y2N

wij :=wNi

, i= 1, 2, . . . ,M. (17)

For layer F2, the weight values are computed as follows.{
N :=N− 1

wN−1 = . . .=wNM = 1
(18)

This process is repeated for all removed obstacles in the touring environment.

Figure 4: Pruned ART network learning process

Then, direct category updating is applied to the ART network to resize the rectangular map
categories. In addition, the corresponding weight values are also updated as wj = (uj, vcj ) according

to the new vertices of the rectangular maps. This process is repeated whenever the size of a
rectangle map decreases or one map divides into two or more maps.

Finally, direct category creation is applied whenever the incoming input is not matched with
the trained features. Moreover, categories are created only when obstacles are present in the
environment. A new rectangular map is created with the respective weight values defined above,
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and a new category is created (Eq. (19)). Afterward, the category value is increased continuously
to meet the corresponding tour path.{
N =N+ 1

wN1 = . . .=wNM = 0
(19)

According to the above discussion, each incoming input feature is processed by a pruned ART
network that completely recognizes the obstacles present in the environment. Then, the effective
navigation path is detected from source to destination by eliminating unwanted categories from
the list. This process is repeated, and the mobile robot efficiently moves in the tour environment
until reaching the destination.

3 Experimental Analysis

The proposed PPART approach was developed using the AlphaBot robotic development
platform. The development platform is compatible with Ardunio and Raspberry Pi, and includes
several components, such as a mobile chassis and a main control board for providing motion
within a test environment boundary. The effective utilization of the components and compatibility
helps to predict the obstacles, line tracking, infrared remote control, Bluetooth, ZigBee process,
and video monitoring. The mobile robot path exploration and navigation process performance
provided by the PPART neural network is evaluated according to its obstacle prediction accuracy,
path detection accuracy, error rate, and overall system accuracy based on different evaluation
metrics. The accuracy of obstacle prediction was compared with those obtained using three
existing machine learning techniques, including ANN-,CNN-, and SNN-based methods.

Tab. 1 lists the average obstacle prediction accuracy obtained by the four methods considered
based on 250 touring attempts. The results in the table demonstrate that the obstacle prediction
accuracy of the PPART approach effectively predicts the artificial potential regions in WE. This
prediction process is facilitated by the continuous collection of observation points in WE. The
results in Tab. 1 are graphically presented in Fig. 5 for a more intuitive appraisal of the obstacle
prediction accuracy of the proposed approach.

Table 1: Obstacles prediction accuracy on navigation attempts

Methods Number of touring navigation attempts

50 75 100 125 150 175 200 225 250

ANN 95.11 95.53 95.04 97.13 95.59 96.02 96.07 96.22 96.27
CNN 97.32 95.59 97.09 97.32 96.87 98.02 96.99 97.96 97.09
SNN 97.9 98.36 97.383 97.993 98.443 97.823 98.013 98.253 98.023
PPART 98.21 98.48 98.92 98.23 98.7 98.92 98.78 98.82 98.97
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Figure 5: Obstacles detection accuracy on the number of navigation attempts

In addition, the efficiency of the obstacle detection process was analyzed, the results of
which are listed in Tab. 2. The results in the table clearly demonstrate that the proposed PPART
approach efficiently predicts the obstacles present in WE. The results in Tab. 2 are graphically
presented in Fig. 6.

Table 2: Obstacles prediction accuracy on various time interval

Methods Time (s)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

ANN 96.34 96.76 96.27 98.36 96.82 97.25 97.3 97.45 97.5
CNN 98.55 96.82 98.32 98.55 98.1 98.56 98.22 98.34 98.32
SNN 98.78 98.92 98.613 98.63 98.73 98.83 98.43 98.83 98.53
PPART 99.44 99.31 99.15 99.36 99.63 99.15 99.01 99.35 99.32

Figs. 5 and 6 illustrate the accuracy and efficiency of obstacle identification. The computation
of Pg based on Eq. (8) and PHA based on Eq. (11) reduce the occurrence of mobile robot
navigation outside of the TEB. Meanwhile, the computation of Po based on Eq. (9) maximizes
the obstacle detection process. Following the computation of the repulsive potential values, the
obstacles are effectively predicted in the different time intervals.

The path navigation accuracy values are listed in Tab. 3. From the table we can under-
stand that the proposed PART approach offers better prediction accuracy in different navigation
attempts. The results in Tab. 3 are graphically presented in Fig. 7.
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Figure 6: Obstacles detection accuracy based on the time interval

Table 3: Path prediction accuracy on navigation attempts

Methods Number of touring navigation attempts

50 75 100 125 150 175 200 225 250

ANN 97.43 97.85 97.36 99.45 97.91 98.34 98.39 98.54 98.59
CNN 98.343 96.613 98.113 98.343 97.893 99.043 98.013 98.983 98.113
SNN 98.923 99.383 98.406 99.016 99.466 98.846 99.036 99.276 99.046
PPART 99.233 99.503 99.43 99.253 99.723 99.43 99.53 99.843 99.23
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Figure 7: Navigation path accuracy

The efficiency of the navigation path identification process was analyzed. The results, listed in
Tab. 4, show that the proposed PART approach offers better prediction accuracy at various time
intervals. The results in Tab. 4 are graphically presented in Fig. 8.

Table 4: Navigation path prediction accuracy on the various time interval

Methods Time (s)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

ANN 96.68 97.1 96.61 98.7 97.16 97.59 97.64 97.79 97.84
CNN 98.89 97.16 98.66 98.89 98.44 98.9 98.56 98.68 98.66
SNN 99.12 99.26 98.953 98.97 99.07 99.17 98.77 99.17 98.87
PPART 99.78 99.65 99.49 99.7 99.97 99.49 99.35 99.69 99.66

The error rates of the three different classifiers considered in comparison with that of the
PPART approach are illustrated in Fig. 9. The overall accuracy obtained by the four classifiers
is illustrated in Fig. 10. This figure demonstrates that the PPART approach provides an overall
accuracy of up to 99.61%.
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Figure 8: Navigation path prediction accuracy based on time interval

Figure 9: Error rate
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Figure 10: Accuracy

4 Conclusion

The present work addressed the generally inefficient tour trajectories obtained by conventional
intelligent algorithms due to the poor prediction of unexpected obstacles in the environment
by proposing the PPART neural network. The potential field method was employed to conduct
path exploration according to a given destination and the presence of obstacles in the path
exploration space based on an energy field representation of the path exploration space. An ART
neural network was then employed in conjunction with the determined obstacles to obtain the
optimal navigation path that avoids all obstacles and is the shortest possible path to achieve
operational objectives. The proposed system was implemented using the AlphaBot platform, and
the performance of the system was evaluated according to the obstacle prediction accuracy, path
detection accuracy, and the overall accuracy of the system. These results demonstrated that the
proposed system provides a very high obstacle prediction accuracy of 99.61%. Accordingly, the
proposed tour planning design effectively predicts unexpected obstacles in the environment, and
thereby increases the overall efficiency of tour navigation. In future work, we will seek to improve
the efficiency of the mobile robot navigation process by applying optimized techniques.
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