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Abstract: Stock market trends forecast is one of the most current topics and
a significant research challenge due to its dynamic and unstable nature. The
stock data is usually non-stationary, and attributes are non-correlative to each
other. Several traditional Stock Technical Indicators (STIs) may incorrectly
predict the stockmarket trends. To study the stockmarket characteristics using
STIs and make efficient trading decisions, a robust model is built. This paper
aims to build up an Evolutionary Deep Learning Model (EDLM) to identify
stock trends’ prices by using STIs. The proposed model has implemented the
Deep Learning (DL) model to establish the concept of Correlation-Tensor.
The analysis of the dataset of three most popular banking organizations
obtained from the live stock market based on the National Stock exchange
(NSE) – India, a Long Short Term Memory (LSTM) is used. The datasets
encompassed the trading days from the 17th of Nov 2008 to the 15th of Nov
2018. This work also conducted exhaustive experiments to study the correla-
tion of various STIs with stock price trends. The model built with an EDLM
has shown significant improvements over two benchmark ML models and a
deep learning one. The proposed model aids investors in making profitable
investment decisions as it presents trend-based forecasting and has achieved a
prediction accuracy of 63.59%, 56.25%, and 57.95%on the datasets of HDFC,
Yes Bank, and SBI, respectively. Results indicate that the proposed EDLA
with a combination of STIs can often provide improved results than the other
state-of-the-art algorithms.
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1 Introduction

The country’s stock market offers excellent investors opportunities by buying a stock and
becoming a stockholder to earn from long-term benefits or trading on the stock. The stock market
is dynamic and volatile [1]. The launch of the business and other unexpected national, global, and
social changes instantly negatively or positively affects stock prices. Therefore, it is not possible
to reliably foresee stock prices and their directions; instead, stock traders only predict significant
developments in the future. Investors generally decide to buy or sell the stock based on the
company’s past and present performance. The parameters for studying the company’s performance
include typically numerical data and essential news.

The stock trends prediction methods are categorized into two groups, i.e., as per the number
of information sources: single and dual source methods [2]. In available information sources
methods, the semantic or numerical information is hauled out from current news and public
reviews, whereas in particular source information methods, both are utilized. Nevertheless, over
the last few years, 5Vs: Volume, Variety, Velocity, Veracity, and Value of happenings and reviews
have overwhelmed the investor’s ability to analyze these meticulously [3,4]. Therefore, automated
systems are of utmost importance for studying stock prices based on past price data and STIs.

Different classifications approach for predicting stock prices is discussed in [5–8]. The role of
stock price prediction is categorized in other classifications as Fundamental Analysis, Technical
Analysis, and Time Series Forecasting [9]. Time series analytical research involves linear models
like Auto-Regressive Integrated Moving Average (ARIMA) [10] and Nonlinear models like Artifi-
cial Neural Network (ANN) [11] and Deep Learning [12]. The existing forecasting methods make
use of both linear and nonlinear algorithms [13].

Many recent researches on predicting stocks employs Machine Learning (ML) algorithms
[14,15]. The researchers commonly use Artificial Neural Network (ANN) [16] and Support Vector
Machine (SVM) [17] for analysis and prediction of time series data. These methods mostly utilize
historical prices and STIs from price data. The research community has taken a great deal of
interest in discovering successful STIs, news, and algorithms.

DNN prediction techniques are widely valued, and authors used experimental data to deter-
mine the properties of deep learning techniques [13,18]. This work proposes an approach that
is capable of finding unseen relationships in the data. Specifically, this work involves (1) the
Study of popular Deep Learning architectures and STIs. (2) Identification of STIs that are
positively correlated to close price. (3) Propose and build a Deep Learning based model for stock
market forecasting using technical indicators. (4) Demonstrate and gauge the performance of the
suggested model concerning popular ML classifiers. (5) Present an efficient approach that helps
the investor’s view on sustainable investment.

The rest of this paper is structured accordingly. Section II presents the technical background
and related work. In section III, we introduce the proposed deep learning architecture foreclosing
price and stock trends prediction. For evaluation, section IV presents an experimental setup,
methodology, and analysis. Section V will cover the conclusion of the paper with future remarks.

2 Related Terminologies

2.1 Stock Technical Indicators (STIs)
These are statistical estimates based on the price, volume, or value of a share. They are

not dependent on a business’s details, like profit, margin, revenue, or earnings. Technical analysts
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consider that price patterns can be recognized from historical figures and are generally based
on trends. Analysts derive indicators by analyzing historical data to predict future price move-
ments [19]. The active stock traders commonly use STIs to study short-term price movements, and
long-term investors use STIs to recognize buy or sell periods. STIs can be combined with trading
systems and beneficial while forecasting stocks’ future prices [20].

The technical indicators have two basic types: overlays and oscillators; the Overlays use the
same scale as prices. Examples include Simple Moving Average (SMA) and Bollinger Bands [21].
The Oscillators oscillate between a local minimum and maximum and are plotted above or below
a price chart. MACD or RSI is a typical example. For removing the noise from stock data that
occurs due to price variations, this work utilizes SMA to smooth out prices. It is also called a
lagging or trend-following indicator as it is calculated from past prices.

In the above Tab. 1, Ct is the current price of the day under consideration, Hp and Lp are
the highest and lowest prices in the last p days, respectively, AL and AG are average loss and
average gain.

Table 1: STIs

STIs Formula

Relative Strength Index
(RSI)

RSI = 100−
[(

100
1+
(
AG
AL

)
)]

Moving Average (MA)
of n days

1
n

n∑
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Ci

Stochastic Oscillator
(%K)
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[
Ct−Lp
Hp−Lp

]
∗ 100

William (%R) %K =
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]
∗ 100

Exponential Moving
Average (EMA)

EMAt =Ct
(

2
T+1

)
+ EMAt−1

(
1− 2

T+1

)
Moving Average
Convergence Divergence
(MACD):
most common is 12/26
MACD

MACD = [(12− day EMA) −−(26− day EMA)]

2.2 Deep Learning Architectures
The Neural Network (NN) shows how complex non-linear systems are treated and thus

proved successful in stock market prediction [22]. In NN, the output is based on input X and
their weighted sum (Z=WTX+ b). Below, Fig. 1 shows a simple Neural Network, Z, and
b represents linear equation and bias, respectively. Based on the value of Z, the step function
predicts the output, which is either binary or multiclass. Such an outcome is known as the discrete
output.
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Figure 1: Perceptron network

The feature information is activated by each neuron’s functions and propagated through layers,
finally to the desired output. The network is called Deep Neural Network (DNN) if there are
multiple hidden layers between the input and output layers [23,24]. These hidden layers might alter
the weighted sum of inputs’ linearity to make the outputs linearly separable. It can be said that
we can map information to the production by approximating any function if the neurons are not
limited. The prediction model for stocks is exceptionally intricate, and NN helps to attain higher
accuracy. The output function in each neuron is called the activation function, and to increase
the probability space, we can say it as a continuous output function rather than discrete [25]. The
most common activation function is the sigmoid function, which is smooth. The simple sigmoid
function σ is:

σ(x)= 1
1+ e−x (1)

The deep learning technique operates a collection of computational layers intended to acquire
patterns from input data. At each layer, some specific information is extracted, and the output
of a particular layer is input to the next layer. It’s called deep because the adding of additional
levels typically leads to results. The two most popular NN architectures for stock prices based on
the previous prices are the Convolutional Neural Network [26,27] and Recurrent Neural Networks
(CNNs and RNNs) [28].

The nonlinear function in CNNs makes weight adjustment a challenging task, and two
standard activation functions used are sigmoid function and Rectified Linear Unit (ReLU) [29],
which are shown in Figs. 2 and 3, respectively. The sigmoid trims the input into an interval
of 0 and 1. On the other hand, ReLU cuts negative values to 0 while keeping favorable costs
unchanged.

Figure 2: Sigmoid
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Figure 3: ReLU

The most common technique used to build DL architectures is deep RNN. To learn the
network weights, the node in the hidden layers uses the data from preceding processing steps in
addition to current input data. The following equation can best explain the RNN neural network

Mt = tanh(W [STMt−1 , Et]+ b) (2)

where Et is Event vector, STM t−1 is the short term memory (STM) vector coming from previous
time (t-1), tanh is sigmoid activation function, W is the linear function in matrix form, b is bias
and Mt is new memory as output at time t. The output is the prediction and the memory that
we carry to the next node.

3 Literature Review

Souza et al. [30] investigated the performance of technical analyses applied for capital markets
in the BRICS Member States. They also looked for evidence that technical studies and simple
analyses could complement each other in specific markets. They created a full spectrum of assets
exchanged in each BRICS member’s needs to carry out these investigations. The findings of
previous inquiries have been updated with new data and the inclusion of South Africa to the
BRICS. Action classes exceeded the average portfolio in each country and exceeded the returns
produced by a purchase and maintenance strategy. The sample portfolio was high in Russia and
India.

A revolutionary approach to neural networks to improve stock market predictions is Pang
et al. [31]. Data from live stock markets on real-time and off-line monitoring, visualization, and
analysis of results were collected for digital internet for stock analysis. They clarified the “stock
vector theory,” based on the production in a word vector research. It is not a single index or
an available inventory index, but historical information for several inventories. An embedded and
long-term network memory (LSTM) is given by an automated encoder to forecast the stock mar-
ket [32]. The test results show that the LSTM is more robust with a built-in layer. In particular, for
the Shanghai A-share composite index, two models have achieved an accuracy of 57.2 and 56.9
percent, respectively. In comparison, for individual stocks, it amounts to 52.4 and 52.5 percent.

Chen et al. [33] developed a new technical analysis method that helps investors improve their
quality and profitability decision-making. This methodology includes:

(1) The design of a stock market forecasting methodology based on technical analysis.
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(2) The development of techniques relating to stock market forecasting based on technical
analysis.

(3) The presentation and evaluation of the technically developed stock market forecasting
analysis process.

Chatzis et al. [34] included a predictive process of probability in multiple timeframes of a
stock crash. The approach developed brings together many machine-learned algorithms covering
various economies with daily stock data, bond data, and currency details from 39 countries.
They employed different machine learning classification and regression methods. In this literature,
deep learning and boosting techniques are seen to forecast events in bond crises. The data
contain information on the principal financial transmission networks, returns, and uncertainty, as
independent variables.

Lee et al. [35] build prediction models on stock returns, which can jointly take into account
international markets through deep multimodal education. (1) Visualization of knowledge trans-
mission between South Korea and the U.S. stock exchange through dispersion plots; (2) Integra-
tion of knowledge into market prediction models using multimodal deep learning; (3) They have
shown that early and medium-sized fusion systems offer substantial performance improvements
as compared to late fusion; The work also stated that along with an international stock market,
the prediction accuracy could be enhanced and deep neural networks are extremely successful for
these tasks.

Maqsood et al. [36] used Twitter for each case to calculate sentiment analysis. The dataset
comprises 11.42 million tweets used to analyze the situation. Usage of linear regression, vector
regression, and deep learning helps to predict inventories. The efficiency of the computer will be
calculated by the Root Mean Square Error (RMSE). The results show that the feeling of these
activities improves performance.

Hiransha et al. [26] demonstrated the performance of four DL architectures: RNN, CNN,
MLP, and LSTM for predicting a day-wise stock price of Banking, IT, and Automobile sectors
from NSE. It has been shown that when training on NSE results, CNN worked considerably
better, as well as being able to estimate NYSE. The authors compared the linear and nonlinear
models. For comparison, the ARIMA model is chosen, which is also a linear model.

Pyo et al. [37] forecasted the patterns of the Korea Composite Stock Price Index 200 (KOSPI
200) with non-parametric models of machine learning. Furthermore, this analysis explores divisive
topics and checks theories. Thus, our findings are incompatible with those of the previous study,
which are commonly seen as performing highly predictable. Google Trends also proved that the
KOSPI 200 index prices for our frameworks are not forecasted. The ensemble methods have not
improved the precision of the predicted. Babu et al. [38] suggested a linear hybrid model with
predictive accuracy while retaining trend data. The coherence of the proposed model is often
clarified in a logical reasoning analysis.

Agrawal et al. [39] implemented the LSTM and adaptive stock technology indicators (STI’s)
for the prediction of patterns and prices of the stocks. Correlation tensor is used with STIs for
optimizing the deep learning task. The mean prediction accuracy of 59.25 percent over the number
of stocks that are much superior to benchmark approaches is achieved via the proposed model.

Yoshihara [40] states that most attempts were made to use numerical information, partly
because of the complexity of processing natural language text and making sense of its temporal
properties. This study explicitly proposes a market trend prediction approach based on a recurring
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deep neural network that models previous events’ time effects. On the real-world data for ten
Nikkei firms, the validity of the proposed method is seen.

Zhang et al. [41] made statistics on daily returns in history to show the relationship between
hidden States and the trend in a price change. CSI 300 and S&P 500 index studies show that
high-order HMM is better suited to detect a stock price pattern than the first-order one. The
high-order HMM is more reliable and less likely than the first-order model to predict the index’s
price trend.

Agrawal et al. [42] have used the Stock Technical Indicators (STIs) to predict stock prices
and the market trends that help to buy or sell the decision over a short and long period. In this
work, two models are implemented; one is for predicting the stock price and the other for storing
the decision made on the day during the buying and the selling of the stocks. They integrated the
long short-term memory (LSTM) with the correlated STIs to optimize the model.

4 Proposed Methodology

4.1 Correlation-Tensor
ML model characterizes the data either as numerical or categorical features and can be

converted to numbers for specific algorithms. The method is associated with two primary
drawbacks:

(i) The word vector often acquires memory equal to the memory of the dictionary. These
large vectors and dictionaries make computation difficult.

(ii) The semantic analysis and processing are cumbersome with such representation.

The neurons in DNN get activated and perform multiplication and addition operations on
input variables with suitable weights. The correlation tensors are input to the model. These tensors
contain rich information in STIs and enable rapid and easy calculations by the DNN model. In
addition, category ranges of time-series data are fed into the model instead of providing it directly.
The low dimension space is sufficient to represent the Tensors.

After deriving correlation vectors using STIs, the concept of tensor representation for higher
dimensional stock trend forecasts is implemented. The connection between the quantitative fea-
tures comes from the Pearson coefficient of correlation. This is the most appropriate method as
the correct number value of the degree to which a linear relationship is obtained between two
variables X and Y. The Embedded correlation-tensor layer in LSTM is a fundamental idea of the
proposed model: EDLA [43].

4.2 EDLA - Evolutionary Deep Learning Approach Using Correlation Tensor for Stock Trends
Prediction
The RNN is susceptible to the problem of disappearing gradients, particularly in duration or

long-range prediction problems. Many variants of RNN have been evolved to solve of vanishing
gradient problem, and one such is LSTM proposed by Hochreiter and Schmidhuber [44]. LSTM
is adaptive to resolve such issues; therefore, LSTMs can be said as a ‘go-to’ network for RNN.
The RNNs have a hard time storing long time memory. The actual LSTM therefore has been
developed to expand the RNN memory status to allow for more input sequences. RNN is only
fitted with a regular tanh layer, and the LSTM is four layers as shown in Fig. 4.



294 CMC, 2022, vol.70, no.1

Figure 4: Network diagram

4.2.1 EDLA – LSTM Algorithm
The network diagram ‘s introductory module is LSTM. Four transformation stages, as shown

in Fig. 5, are part of the LSTM node architecture.

Forget Phase

Learn Phase

Memory Phase

Use Phase

Event

Figure 5: Architecture of EDLA node

4.2.2 Building EDLA Framework
The framework proposed is depicted in Fig. 6.

It comprises of IV phases, namely:

• Capture Phase: In this phase, the data of stock to be analyzed is captured through APIs.
We extracted the available data at NSE. First, a long term and short term trend analysis
is applied using a simple graph method. It is observed that stock prices generally follow
non-stationary patterns over a long time. Extraction of Open, High, Low, Close (OHLC)
prices from the dataset is also done in this phase. The input features for phase 3 is formed
by deriving a correlation between STIs and Close Price in phase 2.

• Correlation Phase: In this phase, STIs are calculated to learn the correlation with the close
price. The correlation tensor derived in this phase decides the next phase. The phase extracts
the highly correlated features. The 3, 10, and 30 days MAs performed considerably better
in this work.

• Evolutionary Deep Learning Approach (EDLA) Application Phase: The LSTM is keeping
track of both memories, i.e., long and short term memory that comes in and out of cells.
Figs. 4–6 illustrates the EDLA concept. At every stage, with time t the long and short term
memory gets merged, and we get new long and short term memory along with prediction.
The proposed EDLA approach utilizes the version of LSTM.

Fig. 7 shows the event diagram of the EDLA Application phase. The correlation tensor is trans-
ferred to the LSTM layers, and the trends are iteratively calculated. LSTM input has an effect
on the previous layer and also the current layer. Thus, LSTMs take the characteristics of time
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series. For trend prediction, the logistic function is used, and the activation function is employed
for price prediction.

1. 

Capture Stock 
Price (Data)

Derive Trend 
Analysis over 

Long and Short 
term

Extract Open, 
High, Low and 

Close Price

2. 

Calculate 
Technical 
Indicators
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Indicators and 

Close Price

Extract features 
with highest 
correlation

3. 

Input highly 
correlated feature 

tensor to train 
EDLA. 

Apply EDLA and 
Optimize.

4. 

Evaluate the 
Model

Present the 
Strategic Trend 

Analysis & 
Forecast

Figure 6: Proposed EDLA framework for stock trends forecasting

Figure 7: Event diagram of LSTM prediction
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4.3 Evaluation Phase
With two class price ups (1) and price downs (0), the stock trend forecast is listed at the end

of the day. The price-up indicator determines the buy share signal and the price-down shows the
stake sale. The model also demonstrates competitive stock price patterns.

5 Experimentation and Results

5.1 Dataset Description
The implementation is performed on the NSE datasets of 3 Banks, accessed through the NSE

website. The banks belong to either the nationalized, private, or public sector. The trading data of
2 years, i.e., from 16th of Nov 2016 to 15th of Nov 2018, are considered. The dataset comprises
of all numerical values except timestamp.

5.2 Experiment Environment Setup
For the experimental purpose, the computer with Intel Core i3 (2.0 GHz.) running 64 – bit

operating system Microsoft - Windows – 10 on 8 GB RAM is used. In this work, we have used
Anaconda tool and Python programming language for the implementation of the work. We have
used the libraries such as pandas, matplotlib, scikit-learn, Keras, tensor-flow etc.

5.3 Experiment
We conducted several experiments, and performance evaluation is done against state-of-the-

art methods. Performance analysis is done on three datasets of financial organizations, and
Fig. 8 depicts the complete methodology of the proposed EDLA. The Tab. 2 has represented
the EDLA–LSTM Algorithm with their inputs and notations. First, simple graphs are drawn to
observe short and long term trends. The primary outputs are obtained in Steps 2, 5, 6, 10, 11
and 12. Several experiments have been conducted to study the correlation between close price and
STIs. We have determined MAs as major technical indicators for stock trends prediction.

5.4 Model Results and Performance
The output of experimental Step 2 for all three stocks is shown in Figs. 9–11. It is evident

from the representation that the data is non-stationary over the long term and short term.

This work studies the effects of various indicators; the Moving Averages among them achieved
better correlation. The correlation between MAs and day end price of 3 stocks are shown in
Tab. 3. The output is of Step 6.

The correlation table as shown in Tab. 3 has shown the relation between the closed price and
moving averages based on three different banks such as HDFC, Yes Bank and SBI by considering
three different days computations i.e., 3 day, 10 day and the 30 day moving average.

The model built is assessed based on MSE and prediction accuracy.

Mean Squared Error (MSE): It measures the average of squares of the errors in a set of
predictions.

MAE= 1
n

n∑
k=1

(yk− ŷk)2 (3)

where yk and ŷk are Actual and Predicted outputs, respectively.
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1. Capture Stock Price (Data)

2. Derive Trend Analysis: Long and Short term 

3. Extract Open, High, Low and Close Price

4. Calculate Technical Indicators
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close price 

6. Extract feature with highest correlation
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12. Present the strategic trend analysis and 
forecast

Existing ML

Proposed EDLA

7. Split feature Set (Train and Test)

8. Normalize Data

9. Build Classifiers

10. Optimize 

Figure 8: Flowchart of proposed methodology

Prediction Accuracy: It is the percentage of correct predictions. The prediction accuracy is
calculated on unknown data, and the training size taken is 30 for building classifiers with EDLA.
The accuracy is measured on a variable number of iterations or epochs.

y=
{
1, (yi+1− yi) > 0
0 otherwise

}
(4)

The percentage prediction accuracy attained over 100–500 epochs is presented in Tab. 4.

The highest accuracy achieved through the proposed model is 65.64% on a large number
of epochs i.e., 500. The epochs must be taken to avoid model over-fitting. The overall mean
accuracy attained for the model is 59.25%, comprehensive experiment datasets. The accuracy is
evaluated against two benchmark ML classifiers such as logistic regression (LR) and Support
Vector Machine (SVM). The accuracy comparison is shown by taking three different dataset of
the banks such as HDFC, Yes Bank and SBI and by putting the different values of epoch.

Logistic Regression (LR) and Support Vector Machine (SVM) and one DNN based model:
ELSTM [45]. The performances are tabulated in Tab. 5, and 2D and 3D graph representations are
depicted in Figs. 12 and 13. The MSE comparison of ELSTM, MLP, and EDLA is illustrated in
Fig. 14. The average MSE value across all datasets is selected for comparison.
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Table 2: EDLA–LSTM Algorithm

Inputs Notations

Et, LTMt0& STMt0 Et: Input Event.
Learn Phase: STMt0 : Short TermMemory from the previous time.
1. Input Et and &STMt0
2.Calculate: Wn,Wn,Wf andWu: Linear Activation Functions applied to NN.
Nt ∗ it
where: Nt: Memory output at time t.
Nt = tanh(Wn[STMt0 , Et]+ bn& it: Ignore factor.
it = σ(Wi[STMt0 , Et]+ bi LTMt0 : Long TermMemory from previous time.
Forget Phase:
3. Calculate ft: forget factor.
LTMt0 ∗ ft STMt: New short term output of EDLA node
where: LTMt: New long term output of EDLA node.
ft = σ(Wf [STMt0 , Et]+ bf tanh: ReLU.
Memory Phase: σ : Sigmoid Function.
4. Simply add the output of Forget and
Learn Phase:

Ut & Vt are calculations with Use Phase inputs.

LTMt= [LTMt0 ∗ ft]+ Nt ∗ it bn, bi, bf , bu and bv are bias.
Use Phase:
5. Calculate
Ut = tanh(Wu[LTMt0 ∗ ft]+ bu)
6. Calculate
Vt = σ(Wv[STMt0 , Et]+ bv)
7. Calculate
STMt= Ut ∗Vt
Outputs:
STMt & LTMt

Figure 9: HDFC trend analysis over 2 years
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Figure 10: Yes Bank trend analysis over 2 years

Figure 11: SBI trend analysis over 2 years

Table 3: Close price and MAs correlation

Correlation values

Three day MA Ten-day MA 30 day MA

Close price HDFC 1.00 0.99 0.98
Yes Bank 0.99 0.97 0.93
SBI 0.95 0.88 0.66
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Table 4: Accuracy of EDLA with 3 datasets

Accuracy (%)

LR SVM ELSTM EDLA

HDFC 52.48 51.06 57.2 63.59
YES BANK 50.35 49.64 52.6 56.25
SBI 56.11 55.39 56.8 57.95

Table 5: Comparison LR, SVM, and EDLA

Accuracy (%)

Epochs HDFC YES Bank SBI

100 61.04 56.13 55.59
200 62.58 57.98 58.39
300 64.11 48.77 53.42
400 64.42 58.9 61.49
500 65.64 59.51 60.87

Figure 12: EDLA accuracy (%) comparison across 3 datasets
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Figure 13: Comparison of EDLA

Figure 14: Comparison of MSE

6 Conclusion and Future Work

The paper studied the effects of TA on stock market data. We analyzed whether stock traders
could attain more profits than proposed by the current research work of Pang et al. [31] on the
deep learning-based model and others. The concept of deriving adaptive STIs is demonstrated.
The appropriate STIs are determined supplied as tensors to the EDLA. Finally, we presented a
practical approach that aids investors in making profitable investment decisions and profits. EDLA
offers a decision indicator (BUY (1) or SELL (0)) to the investor.

The proposed Evolutionary Deep Learning Approach (EDLA) is independent of the market
as we can apply the approach on both stocks as well as indices of the stock market. Here potential
indicators are discovered by using deep dynamics of LSTM. This study applies EDLA and two
benchmark ML algorithms for stock trends forecasting using Technical Indicators. The experiment
is done with three prominent stocks from NSE India. The performance evaluation has shown
the superiority of the proposed work. Furthermore, the deep learning model can be enhanced by
applying various optimization techniques and other STIs.

Acknowledgement: We are very thankful to RGPV, Jagran Lakecity University, Taif University
Researchers Supporting Project Number (TURSP-2020/10) and Duy Tan University for their
continuous support and the encouragement.



302 CMC, 2022, vol.70, no.1

Funding Statement: Funding is provided by Taif University Researchers Supporting Project Num-
ber (TURSP-2020/10), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] E. Guresen, G. Kayakutlu and T. U. Daim, “Using artificial neural network models in stock market

index prediction,” Expert Systems with Applications, vol. 38, no. 8, pp. 10389–10397, 2011.
[2] A. Derakhshan and H. Beigy, “Sentiment analysis on stock social media for stock price movement

prediction,” Engineering Applications of Artificial Intelligence, vol. 85, pp. 569–578, 2019.
[3] H. Jasim, H. Hiba, H. S. Ammar, H. Sarah and H. Azizahb, “Big data and five V’S characteristics,”

International Journal of Advances in Electronics and Computer Science, vol. 2, no. 1, pp. 16–23, 2015.
[4] P. Saporito, “The 5 V’s of Big data,” Best’s Review, no. 7, pp. 38, 2013.
[5] J. Patel, S. Shah, P. Thakkar and K. Kotecha, “Predicting stock and stock price index movement using

trend deterministic data preparation and machine learning techniques,” Expert System with Appications,
vol. 42, no. 1, pp. 259–268, 2015.

[6] M. Roondiwala, H. Patel, and S. Varma, “Predicting stock prices using LSTM,” International Journal
of Scientific Research, vol. 6, no. 4, pp. 1754–1756, 2015.

[7] S. Basak, S. Kar, S. Saha, L. Khaidem and S. R. Dey, “Predicting the direction of stock market prices
using tree-based classifiers,” The North American Journal of Economics and Finance, 47, no. C, pp. 552–
567, 2019.

[8] M. Kim and H. Sayama, “Predicting stock market movements using network science: An information
theoretic approach,” Applied Network Science, vol. 2, no. 1, pp. 35, 2017.

[9] J. C. Lee and C. F. Lee, “Time-Series—Analysis, Model, and Forecasting,” in Financial Analysis,
Planning & Forecasting Theory and Application, New York: Springer, pp. 1217–1274, 2016.

[10] A. A. Adebiyi, A. O. Adewumi and C. K. Ayo, “Stock Price Prediction Using the ARIMA Model,”
in Proc. - UKSim-AMSS 16th Int. Conf. on Computer Modelling and Simulation, UKSim 2014, 2014.

[11] P. M. Buscema, G. Massini, M. Breda, W. A. Lodwick, F. Newman et al., “An introduction. in:
Artificial adaptive systems using auto contractive maps,” in studies in systems,” Decision and Control,
vol. 131, pp. 1–9, 2018.

[12] R. Singh and S. Srivastava, “Stock prediction using deep learning,” Multimedia Tools and Applications,
vol. 76, no. 18, pp. 18569–18584, 2017.

[13] M. Gansterer, “Aggregate planning and forecasting in make-to-order production systems,” International
Journal of Production Economics, vol. 170, pp. 521–528, 2015.

[14] D. Lv, S. Yuan, M. Li and Y. Xiang, “An empirical study of machine learning algorithms for stock
daily trading strategy,” Mathematical Problems in Engineering, vol. 2019, pp. 7816154D0–7816154JF,
2019.

[15] J. Patel, S. Shah, P. Thakkar and K. Kotecha, “Predicting stock market index using fusion of machine
learning techniques,” Expert Systems with Applications, vol. 48, no. 4, pp. 2162–2172, 2015.

[16] L. Gatys, A. Ecker and M. Bethge, “A neural algorithm of artistic style,” Journal of Vision, vol. 16,
no. 12, pp. 326, 2016.

[17] L. Nguyen, “Tutorial on support vector machine,” Applied and Computational Mathematics, vol. 6, no.
4, pp. 1–15, 2016.

[18] P. Samira, S. Saad, Y. Yilin, T. Haiman, T. Yudong et al., “A survey on deep learning: Algorithms,
techniques, and applications,” ACM Computing Surveys, vol. 51, no. 5, 2018.

[19] X. Zhang, Y. Zhang, S. Wang, Y. Yao, B. Fang et al., “Improving stock market prediction via
heterogeneous information fusion,” Knowledge-Based System, vol. 143, pp. 236–247, 2018.



CMC, 2022, vol.70, no.1 303

[20] M. Hagenau, M. Liebmann, and D. Neumann, “Automated news reading: Stock price prediction based
on financial news using context-capturing features,” Decision Support Systems, vol. 55, no. 3, pp. 685–
697, 2013.

[21] T. T. L. Chong and W. K. Ng, “Technical analysis and the London stock exchange: Testing the MACD
and RSI rules using the FT30,” Applied Economics Letters, vol. 15, no. 14, pp. 1111–1114, 2008.

[22] A. H. Moghaddam, M. H. Moghaddam and M. Esfandyari, “Stock market index prediction using
artificial neural network,” Journal of Economics, Finance and Administrative Science, vol. 21, no. 41, pp.
89–93, 2016.

[23] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu et al., “A survey of deep neural network architectures and
their applications,” Neurocomputing, vol. 234, no. 19, pp. 11–26, 2017.

[24] Q. Shi Zhang and S. Chun Zhu, “Visual interpretability for deep learning: A survey,” Frontiers of
Information Technology and Electronic Engineering, vol. 19, pp. 27–39, 2018.

[25] G. Klambauer, T. Unterthiner, in A. Mayr and S. Hochreiter, “Self-normalizing neural networks,” in
Proc. of the 31st Int. Conf. on Neural Information Processing Systems, USA, pp. 972–981, 2017.

[26] M. Hiransha, E. A. Gopalakrishnan, V. K. Menon and K. P. Soman, “NSE stock market prediction
using deep-learning models,” in Procedia Computer Science, vol. 132, pp. 1351–1362, 2018.

[27] S. Chen and H. He, “Stock prediction using convolutional neural network,” in IOP Conf. Series:
Materials Science and Engineering, vol. 435, no. 1, pp. 12026, 2018.

[28] C. Du and L. Huang, “Text classification research with attention-based recurrent neural networks,” Int.
J. Comput. Commun. Control, vol. 13, no. 1, pp. 50–61, 2018.

[29] B. Ding, H. Qian and J. Zhou, “Activation functions and their characteristics in deep neural networks,”
2018 in Chinese Control and Decision Conf., Shenysang, China, pp. 1836–1841, 2018.

[30] M. J. S. de Souza, D. G. F. Ramos, M. G. Pena, V. A. Sobreiro and H. Kimura, “Examination of the
profitability of technical analysis based on moving average strategies in BRICS,” Financial Innovation,
vol. 4, no. 1, pp. 3, 2018.

[31] X. Pang, Y. Zhou, P. Wang, W. Lin and V. Chang, “An innovative neural network approach for stock
market prediction,” The Journal of Supercomputing, vol. 76, pp. 2098–2118, 2020.

[32] W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time series using stacked
autoencoders and long-short term memory,” PLoS One, vol. 12, no. 7, pp. e0180944, 2017.

[33] Y. J. Chen, Y. M. Chen, S. T. Tsao and S. F. Hsieh, “A novel technical analysis-based method for stock
market forecasting,” Soft Computing, vol. 22, no. 4, pp. 1295–1312, 2018.

[34] S. P. Chatzis, V. Siakoulis, A. Petropoulos, E. Stavroulakis and N. Vlachogiannakis, “Forecasting
stock market crisis events using deep and statistical machine learning techniques,” Expert Systems with
Applications, vol. 112, pp. 353–371, 2018.

[35] S. I. Lee and S. J. Yoo, “Multimodal deep learning for finance: Integrating and forecasting international
stock markets,” J. Supercomput, vol. 76, pp. 8294–8312, 2019.

[36] H. Maqsood, I. Mehmood, M. Maqsood, M. Yasir and S. Afzalc et al., “A local and global event
sentiment based efficient stock exchange forecasting using deep learning,” International Journal of
Information Management, vol. 50, pp. 432–451, 2020.

[37] S. Pyo, J. Lee, M. Cha and H. Jang, “Predictability of machine learning techniques to forecast the
trends of market index prices: Hypothesis testing for the Korean stock markets,” PLoS One, vol. 12,
no. 11, pp. e0188107, 2017.

[38] C. Narendra Babu and B. Eswara Reddy, “Prediction of selected Indian stock using a partitioning–
interpolation based ARIMA–GARCH model,” Applied Computing and Informatics, vol. 11, no. 2, pp.
130–143, 2015.

[39] M. Agrawal, A. U. Khan and P. K. Shukla, “Stock price prediction using technical indicators: A pre-
dictive model using optimal deep learning,” International Journal of Recent Technology and Engineering,
vol. 8, no. 2, pp. 2297–2305, 2019.

[40] A. Yoshihara, K. Seki and K. Uehara, “Leveraging temporal properties of news events for stock
market prediction,” Artificial Intelligence Research, vol. 5, pp. 103–110, 2015.



304 CMC, 2022, vol.70, no.1

[41] M. Zhang, X. Jiang, Z. Fang, Y. Zeng and K. Xu, “High-order hidden markov model for trend
prediction in financial time series,” Physica A: Statistical Mechanics and Its Applications, vol. 517, pp.
1–12, 2019.

[42] M. Agrawal, A. U. Khan and P. K. Shukla, “Stock indices price prediction based on technical
indicators using deep learning model,” International Journal on Emerging Technologies, vol. 10, no. 2,
pp. 186–194, 2019.

[43] Y. Lv, Y. Duan, W. Kang, Z. Li and F. Y. Wang, “Traffic flow prediction with Big data: A deep learning
approach,” IEEE Intelligent Transportation Systems Society, vol. 16, no. 2, pp. 865–873, 2015.

[44] G. Van Houdt, C. Mosquera and G. Nápoles, “A review on the long short-term memory model,”
Artificial Intelligence Research, vol. 53, pp. 5929–5955, 2020.

[45] X. Yan and J. Zhao, “Application of improved convolution neural network in financial forecasting,” in
IEEE 4th Int. Conf. on Cloud Computing and Big Data Analysis, China, pp. 321–326, 2019.


