
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.019432

Article

Container Introspection: Using External Management Containers to Monitor
Containers in Cloud Computing

Dongyang Zhan1,*, Kai Tan1, Lin Ye1,2, Haining Yu1,3 and Hao Liu4

1School of Cyberspace Science, Harbin Institute of Technology, Harbin, 150001, China
2Temple University, Philadelphia, 19122, USA

3City University of Hong Kong, Kowloon Tong, 518057, Hong Kong
4Qianxin Technology Group Co., Ltd., Beijing, 100000, China

*Corresponding Author: Dongyang Zhan. Email: zhandy@hit.edu.cn
Received: 13 April 2021; Accepted: 06 June 2021

Abstract: Cloud computing plays an important role in today’s Internet envi-
ronment, which meets the requirements of scalability, security and reliability
by using virtualization technologies. Container technology is one of the two
mainstream virtualization solutions. Its lightweight, high deployment effi-
ciency make container technology widely used in large-scale cloud comput-
ing. While container technology has created huge benefits for cloud service
providers and tenants, it cannot meet the requirements of security monitoring
and management from a tenant perspective. Currently, tenants can only run
their security monitors in the target container, but it is not secure because the
attacker is able to detect and compromise the security monitor. In this paper, a
secure external monitoring approach is proposed to monitor target containers
in another management container. The management container is transparent
for target containers, but it can obtain the executing information of target
containers, providing a secure monitoring environment. Security monitors
running inside management containers are secure for the cloud host, since
the management containers are not privileged. We implement the transparent
external management containers by performing the one-way isolation of pro-
cesses and files. For process one-way isolation, we leverage Linux namespace
technology to let management container become the parent of target contain-
ers. Bymounting the file system of target container to that of the management
container, file system one-way isolation is achieved. Compared with the exist-
ing host-basedmonitoring approach, our approach ismore secure and suitable
in the cloud environment.

Keywords: Container introspection; management container; external approach;
one-way isolation

1 Introduction

Cloud computing is one of the most important computing infrastructures, which is necessary
for the development of the Internet of things and big data. There are many popular cloud service

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.019432


3784 CMC, 2021, vol.69, no.3

providers (e.g., Amazon, Microsoft, Google) hosting the applications of lots of developers or
companies. Cloud computing is based on virtualization technology, which can divide huge physical
resources into many small virtual resources. There are two mainstream virtualization technologies,
including virtual machine and container. Each virtual machine has its own operating system
kernel, making it heavyweight and less efficient in deployment. Compared with virtual machines,
containers are lightweight and more efficient in deployment, because they share the operating
system kernel with the host. Therefore, it is more popular.

The widespread development of cloud computing and containers has also brought security
risks. In a cloud computing environment with multi-tenant tenants, tenants need to monitor and
manage their container instances. However, the current host-based or container-based monitoring
methods cannot meet the requirements of security and flexibility in cloud computing. Firstly,
container-based monitors running inside target containers can be detected or subverted by in-
container attackers, since they are running in the same namespace. Although monitors can be
executed in the host to hide themselves, it is not secure in the cloud since host applications are
privileged for all containers. Secondly, redirecting execution information of target containers to
security monitors of cloud tenants is not flexible, because it needs the close cooperation of the
cloud host. It is not practicable for cloud service providers to corporate with each cloud tenant.

In this paper, an external container monitoring architecture is proposed to solve these prob-
lems. In this architecture, monitoring tools of cloud tenants or CSPs are deployed in external
management containers, which can intercept the execution information of target containers but are
transparent to them. The external container provides a secure and flexible monitoring environment
for security tools. Security tools running inside the management containers are transparent and
isolated to target containers. Since the management container is unprivileged, in-container security
tools cannot affect host security. So, cloud tenants can run security tools as they want. After
providing a one-way transparent monitoring environment, CSP needs not to closely cooperate with
different security tools of cloud tenants. Therefore, our architecture is more secure and flexible
compared with existing host-based or container-based security monitoring approaches.

To achieve one-way transparent management containers, process and file one-way isolation
approaches are proposed. For process isolation, we leverage Linux namespace technology to make
management container become the parent of target containers. Since parent namespace has full
privilege over child namespace, security tools running in management container can intercept the
execution information of target containers, and are transparent to them. We do not leverage the
container-in-container solution to achieve one-way isolation, because it needs the parent container
to be privileged. For file isolation, we mount the file system of the target container to that of the
management container. Therefore, security tools can access files of target containers transparently.
After the implementation, we test the effectiveness and performance of our prototype. The exper-
imental results show that our system can make security tools be transparent to target containers
with high performance.

In summary, the contributions of this paper are as follows.

• An external container monitoring approach is proposed to build management containers
over target containers. Security tools running inside management containers are transparent
to target containers, but can intercept the execution information of them.

• A namespace-based process isolation approach is proposed by making the namespace of
the management container to be the parent of target containers and ensuring the access
security of the management container.



CMC, 2021, vol.69, no.3 3785

• For file isolation, a file-system-based file introspection method is used for the management
containers to access the files of target containers outside.

The rest of this paper is organized as follows. Section 2 gives the related work. The system
design is described in Section 3. The design details about process introspection and file system
introspection are given in Section 4 and Section 5 respectively. Section 6 evaluates the effectiveness
and performance of the prototype. Section 7 concludes this paper and discusses the future work.

2 Related Work

At present, container introspection technology is still a new research topic, and this concept is
related with cloud security, virtual machine introspection and container security technologies [1,2].

2.1 Virtual Machine Introspection
The current research direction closest to the container introspection technology is virtual

machine introspection (VMI) [3], which monitors VMs from the hypervisor. The hypervisor has
the highest privilege and can intercept the execution information of target VMS. Under the frame-
work of VMI, the monitoring of the VMs generally includes three steps: execution information
collection, semantic reconstruction, and behavior analysis.

There are two approaches to collect VM information, including static analysis and dynamic
interception. CFMT [4] obtains the contents of the VM disk from the outside and saves the
checksums of all the original file contents in the VM files. Then it compares the checksum of the
existing contents with the original one during each poll to detect whether there the file has been
tampered with. VMWatcher [5] maps the file systems of a VM to the privileged virtual machine
(DOM0), and uses anti-virus software to perform security analysis on these files to protect the
security of the VM.

Compared with static approaches, dynamic approaches can obtain the execution information
in real time. Ether [6] can capture the behavior of virtual machine system calls in real time. The
system modifies the content of a specific register (MSR register) of the target VM. When the VM
executes a system call, it throws an exception, which can trigger an event in the hypervisor. At
this time, Ether can obtain specific information about the system call, such as call number and
parameters. Nitro [7] is similar to Ether, but Ether is designed for the Xen platform and Nitro
works in KVM platform.

The execution information collected in the VMM layer is binary low-level information, but
security analysis needs high-level information. After collection, it needs to be reconstructed into
high-level semantic information. Filesafe [8] reconstructs file system from disk image based on the
layout of Windows FAT32 file system and then maps files and disk blocks. vMon [9] reconstructs
the map between file and disk block for Linux VM. Volatility is an open-source memory analysis
tool, which can reconstruct kernel objects from binary memory snapshot based on the profiles of
layouts of different operating systems. Reference [10] can identify the kernel version by analyzing
the VM kernel automatically.

VMI-based security tools are usually applied for cloud security [11–13], such as Cloud-
VMI [14], SECLOUD [15] and ESI-Cloud [16].

2.2 Container Security
Container security [17] is a hot topic, so there are many works to analyze and protect

container security. Reference [18] compares virtual machines and containers. Compared to virtual



3786 CMC, 2021, vol.69, no.3

machine technology, containers are more light-weight and can reduce the resource consumption,
because containers share the operating system of the host. But it also raises security risks due
to the huge attack surface of the operating system. In addition, the ecosystem of the Docker
containers also contains security challenges, this paper also focuses the security of it.

SCONE [19] leverages Intel SGX technology to protect the Docker containers from external
malicious attacks and the untrusted cloud hosts. To defense against container escalation attacks,
Reference [20] proposes an escape defense method by checking the status of Linux Namespace,
which can detect abnormal processes and prevent users from malicious escaping behaviors. Ref-
erence [21] focuses on strengthening the Docker’s access restriction, and hopes to extend the
dockerfile format so that the Docker image maintainer can provide the SELinux security policies
to enhance the security of the container. SELinux is widely used to enhance the security of certain
service programs, the expansion and adjustment of dockerfile will allow SELinux security policies
to be specified for different images, improving the security of Docker. Reference [22] exploits the
Linux cgroups from containers and proves that cgroups technology is not enough to limit the
resource access of containers in cloud computing.

2.3 Container Introspection Technology
To analyze the security of containers, Reference [23] uses the introspection tool Prometheus

to capture the information including the Docker engine itself and the memory usage of the
container and the host OS. This method analyzes the data difference between the Apache server
running in the container during normal operation and when it is infected by malware, and
concludes that introspection tools can be used as data collection and forensic analysis tools for
the early warning system in the containerized system. Reference [24] proposes a malicious node
identification method.

In summary, there has not been much research on the concept of container introspection
technology. This paper is a preliminary exploration of this concept.

3 Design of Container Introspection

This section describes the design overview of our system. We first give the motivation and
then describe the threat model and assumption. After that, two one-way isolation approaches for
process and file system are proposed.

3.1 Motivation
With the development and wide application of container technology, more and more contain-

ers are deployed in cloud computing. Containers are facing increasing security risks since they are
providing services on the Internet. Therefore, many cloud tenants and cloud service providers need
to manage and monitor their containers. There are several security and flexibility requirements of
container monitoring, which are as follows.

RQ1: Monitoring tools should be secure. Many containers execute processes with root
privilege by default. It is not secure for monitors running inside them. Even though
container processes are not privileged, they can also detect monitoring tools, which is not
secure for monitoring tools.
RQ2: Security tools should be isolated from the host. Processes running inside containers
can be accessed in the host, but it is not secure to run security tools of cloud tenants in
the host in cloud computing.



CMC, 2021, vol.69, no.3 3787

RQ3: Cloud service providers should not closely cooperate with security tools. Another
monitoring solution in the context of virtual machines is that the host intercepts execution
information of the target VM and then sends it to the security tools running inside another
secure VM. In the context of containers, it is possible for CSP to transmit the execution
information of target containers to a secure container. However, this solution needs the
close cooperation of CSPs. CSPs need to provide the customized monitoring APIs or
required information for different monitors. It is very complicated for CSPs to perform
API authorization and access control, since there are many containers of different cloud
tenants running on the host.

To meet these requirements, this paper proposes an external approach for container intro-
spection, which builds a one-way isolated management container over target containers. The
management container is a secure and flexible environment for monitoring tools.

3.2 Threat Model & Assumptions
Before describing the design of our system, we first discuss the threat model and some

assumptions.

We first assume that containers cannot escape to the cloud host. Container privilege escalation
is a serious attack for cloud computing and security researchers are keeping fix vulnerabilities in
the host kernel. But currently there no perfect host-based solution to defense container privilege
escalation. Therefore, we do not consider container escape attack in this paper.

In addition, the CSPs are considered to be trusted, which is a common trust base in
cloud computing. Most security monitors in cloud computing rely on the isolation provided
by cloud hosts or hypervisors. The design of our system is also based on the security protection
of cloud hosts.

Cloud tenants are responsible for the security of their security monitors. In this paper, we do
not analyze the security of monitoring tools from cloud tenants and do not provide mechanisms
for cloud tenants to intercept their security monitors.

3.3 System Overview
The core method of our system is to build a one-way isolation management container, which

can intercept the execution information of target containers but is transparent to them. The
architecture of our system is shown in Fig. 1.

The host provides OS virtualization service for containers, which has the highest privilege
and isolates different containers. There are two modules in the system, building the one-way
isolation environment for management containers. The PID NS management module makes the
PID namespace of the management container be the parent of target containers by leveraging
the host namespace mechanism. After that, the management container can intercept the process
information of the target containers without the cooperation of the host. File system management
module analyzes the structure of target containers and mounts them to the management container.
Security tools of cloud tenants run in the management container, so that they can access the
execution information of target containers. There can be many target containers managed by only
one management container.



3788 CMC, 2021, vol.69, no.3

File system
Management

PID NS
Management

Security 
Tools

Management
Container

Target
Container 1

Target
Container 2

Libraries LibrariesLibraries

Userspace

OS Kernel

Cloud Host

Namespaces File System

Figure 1: The system architecture of container introspection

4 Namespace-based Process Introspection

We leverage the Linux namespace mechanism to achieve one-way process isolation. The
main steps include: 1) constructing a parent PID namespace of target containers; 2) letting
the management container join the parent namespace dynamically; 3) hiding other processes of
the parent PID namespace. At first, we make a brief introduction of Linux namespaces.

4.1 Linux PID Namespace
There are 6 different namespaces introduced by the Linux kernel after v2.6. These namespaces

are used to isolate different kinds of resources for containers, including PID namespace, UTS
namespace, IPC namespace, MNT namespace, NET namespace and USER namespace. Among
them, the PID namespace is used for process domain isolation. The relationship between different
PID namespaces is shown in Fig. 2. Only processes within the same PID namespace could see
each other. The parent PID namespace has full privilege over child namespaces. Processes of child
namespace are mapped into parent namespace. For instance, Process 1 of Namespace 1 is mapped
as Process 5 in Namespace 0, so all of the processes in Namespace 0 are able to see it. For the
Docker container, a new namespace is automatically created when the container is created. All
processes running inside one container belong to the same PID namespace, so they can see each
other. Since different containers have different PID namespaces, processes of different containers
can see each other.

Inspired by the PID namespace, we found that if the PID namespace of the management
container is that of the target container, the management container can visit the processes of the
target container transparently.

4.2 Docker-in-docker Architecture
There are several docker-in-docker solutions (e.g., dind), which make the docker create a

new docker inside it. A child namespace can also be the parent of other namespaces. Based on
this mechanism, running a docker in another docker is possible. But most dockers cannot create
child dockers, because there are several challenges First, the parent docker should be privileged.
However, privileged dockers are not safe and not accepted in cloud computing. Second, the file
system of Docker (AUFS) should only consist of normal file systems, which means docker cannot



CMC, 2021, vol.69, no.3 3789

run based on multiple AUFS file systems. These challenges are shortcomings of dind. So, dind
should be created by Docker with ‘privileged’ flag, and the file system of child docker should be
a volume of the parent docker.

1 2 3

4 5 6

Init Namespace

1 2 1

1

Level 1

Level 2

Figure 2: The relationship between different namespaces

Even though docker-in-docker solutions can build multiple levels of namespaces and make
external monitoring possible, the security risks of privileged containers are unacceptable in cloud
computing. Therefore, our approach leverages the architecture of the docker-in-docker solution
and tries to overcome the problems of it.

4.3 Joining into Parent Namespace
To address the problems of the docker-in-docker solution, our system is based on the docker-

in-docker solution but does not execute security monitors directly in the parent docker. The main
approach is to let the target containers run inside a parent container, and then let management
container join the PID namespace of the parent docker. The steps are as follows.

1) Creating a parent container. When a cloud tenant creates her first container, the host first
creates a parent container. This container can create child containers, so it is created with
the ‘privileged’ flag. But this step is transparent to the cloud tenants, and the tenants
cannot operate the parent container.

2) Creating target containers. Target containers are created within the parent container, so the
PID namespace of the parent container is the parent of those of target containers. Parent
container has the client which can create child containers for cloud tenant. Only containers
of the same cloud tenant can be created in one parent container.

3) Creating the management container. Management container is the execution environment
of security monitors. To access the information of target containers, we let it join the PID
namespace of the parent container, when it is created. Since this container only shares the
same PID namespace of the parent container, it is not as privileged as the parent container.
Therefore, it is more secure.



3790 CMC, 2021, vol.69, no.3

4.4 Process Hiding
Since the management container shares the same PID namespace of the parent container, the

management container can obtain the process information of client tools of the parent container,
making the parent container be visible. To overcome this problem, we leverage a kernel module
to hide the client in the parent container.

The process hiding approach is inspired by kernel rootkits. Kernel rootkits are used to hide
processes or files in operating systems. They usually hook kernel functions and inject malicious
code in kernel system calls. Among them, adore-ng is a popular rootkit, which is used for process
and file hiding. It injects malicious code into several system calls (e.g., gedents64, etc.). The
injected code deletes the process that needed to be hidden from the result list.

Our process hiding module is also based on the idea of kernel rootkit, hooking some key
kernel functions and injecting code into several system calls (e.g., getdents). The difference is the
module only hides the process information of the client from the management container. Since the
management container and parent container share the same PID namespace, we hide the client
process in the parent container from other processes within this namespace. Therefore, the most
important step is to identify the processes of different namespaces.

To address this challenge, we first explore the relationship between processes and namespaces.
In Linux, all task structures are linked by a doubly linked list, which first task is labeled with
the ‘init_task’ symbol. As shown in Fig. 3, every task structure has a nsproxy object to record
its different namespaces. The pid_ns fields of different tasks in a same container point to only
one PID namespace object, so we can identify all the processes of a container in the kernel by
identifying the pid_ns pointer of its task structure.

Figure 3: Relationship between process structure and namespace

When a parent container is created, the corresponding PID namespace is identified. Then, the
pid of client in the parent container is obtained. After that, the namespace and pid are transferred
to the kernel module via a customized system call. The kernel module reads the information and
performs process hiding. If a process of parent container wants to obtain the process list by using
ps command, the result of the system call is checked and the information of the client is cleared.

5 File System Introspection

The file system introspection is based on the AUFS file system, which is widely used by the
Docker containers. So, we first make a brief introduction of AUFS, and then describe how we
leverage AUFS to perform external file system introspection.



CMC, 2021, vol.69, no.3 3791

AUFS (short for advanced multi-layered unification file system) is an implementation of the
Union File System, which can merge file directories stored in different locations and mount them
to the same directory. As shown in Fig. 4, the file system is copy-on-write. There are several layers
in the file system of a docker. The lower layers are image layers, which are read-only. Therefore,
these layers can be used for many dockers at the same time. The upper layer is writable, which
records the modifications to the underlying images. When files are added, deleted, and modified
in the container, a runtime copy will be generated in the upper layer. All the layers are mounted
to the same directory with a number, which is not the ID of the container. So, we need to find
the correspondence between this number and the container ID.

...

Target
Container

Union Mount

AUFS Branch

CoW Layer

File System

AUFS Branch

...

Management
Container

Union Mount

AUFS Branch

CoW Layer

AUFS Branch

Figure 4: File system introspection

Based on the features of AUFS, we achieve the one-way file system isolation by mounting the
mount point of the target container in the host to a subdirectory of the management container
and analyzing the mapping between container ID and mount ID automatically, which is shown
in Fig. 4. In addition, when the target containers are going to be removed, the file system of it
should be unmounted from the management container first, to prevent the failure of container
removal.

6 Evaluation

This section evaluates the effectiveness and performance of our system. The testbed is a PC
equipped with 3.2 GHz Intel i5 CPU and 8 GB RAM. The host operating system is Ubuntu
16.04. Dind is selected as the image of the parent container. The image of the target container is
Ubuntu 14.04.

6.1 Effectiveness
Our system can obtain the process information and files of the target container from the

management container, so the first step is to deploy the monitoring tools in the management
container after deploying the target container. We test the effectiveness of process introspection
and file system introspection respectively.

To test the effectiveness of process introspection, we first introduce a workload in the target
container and then run the ‘ps’ command in management to obtain the process list of the target



3792 CMC, 2021, vol.69, no.3

container. The target container is running the ps command, and the management container is able
to get the corresponding process information. Then, we run the ping command in the management
container, and run the ps command in the target container. The results show that the processes
of the management container are transparent to the target container.

We obtain the file list of the target container in the management container to test the
effectiveness of file introspection. As shown in Fig. 5, we first add a new file in the target
container, then get the file list in the management container in Fig. 6. From the result, we can
know that the management container is able to access the file system of target containers.

Figure 5: Adding a file in the target container

Figure 6: Accessing files from the parent container

6.2 Performance
Since our system introduces a parent container to user containers, the parent container will

consume file space. Therefore, we measure the size of the dind image, which is 533 MB. According
to the results, the space cost is acceptable for cloud computing.

There is a kernel module to hide the client processes in parent containers, which could
introduce overhead to the ‘ps’ command. So, we test the execution time before and after the
injection of the kernel module for 1000 times, and then compare the performance. The average
execution time of ‘ps’ before module injection is about 23.05 ms, and it is 23.2 ms after injection.
The experimental results show that the overhead is acceptable since the ‘ps’ operation is not
time-sensitive.

7 Conclusion & Future Work

This paper proposes an external container introspection approach to monitor target containers
from a management container, which is built by achieving a one-way transparent process and
file isolation. Based on Linux namespaces, the namespace of the management container is the
parent of target containers, so security tools running inside the management container can obtain
the execution information of the target containers. For file system introspection, we analyze and
mount the file system of target container to the management container. After the implementation,



CMC, 2021, vol.69, no.3 3793

we test the prototype. The experimental results show that our system is effective with acceptable
overhead. In this paper, we do not analyze cross-host containers of one cloud tenant. Containers
belonging to one cloud tenant may be deployed in different physical cloud hosts, but our system
can only analyze containers in one host. To analyze cross-host containers of one cloud tenant,
we need to correlate and analyze different cloud hosts. This work is left to future work.

Funding Statement: This paper is supported by National Natural Science Foundation of China
(http://www.nsfc.gov.cn/) under Grant No. 61872111, and Sichuan Science and Technology Pro-
gram (http://kjt.sc.gov.cn/) under Grant No. 2019YFSY0049 which are both received by L. Ye.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] L. Jiang and Z. Fu, “Privacy-preserving genetic algorithm outsourcing in cloud computing,” Journal of

Cyber Security, vol. 2, no. 1, pp. 49–61, 2020.
[2] W. M. Eid, S. Atawneh and M. Al-Akhras, “Framework for cybersecurity centers to mass scan

networks,” Intelligent Automation & Soft Computing, vol. 26, no. 6, pp. 1319–1334, 2020.
[3] T. Garfinkel and R. Mendel, “A virtual machine introspection based architecture for intrusion detec-

tion,” in Proc. NDSS, San Diego, California, USA, pp. 191–206, 2003.
[4] S. Anjali, S. Gupta and K. Padam, “A light weight centralized file monitoring approach for securing

files in cloud environment,” in Proc. ICITST, London, UK, pp. 382–387, 2012.
[5] X. Jiang, X. Wang and D. Xu, “Stealthy malware detection through vmm-based” out-of-the-box”

semantic view reconstruction,” in Proc. CCS, Alexandria, Virginia, USA, pp. 128–138, 2007.
[6] A. Dinaburg, P. Royal, M. Sharif and W. Lee, “Ether: Malware analysis via hardware virtualization

extensions,” in Proc. CCS, Alexandria, Virginia, USA, pp. 51–62, 2008.
[7] J. Pfoh, C. Schneider and C. Eckert, “Nitro: Hardware-based system call tracing for virtual machines,”

in Proc. IWSEC, Tokyo, Japan, pp. 96–112, 2011.
[8] J. Wang, M. Yu, B. Li, Z. Qi and H. Guan, “Hypervisor-based protection of sensitive files in a

compromised system,” in Proc. ACSAC, Orlando, Florida, USA, pp. 1765–1770, 2012.
[9] N. Li, B. Li, J. Li, T. Wo and J. Huai, “vMON: An efficient out-of-VM process monitor for virtual

machines,” in Proc. HPCC-EUC, Zhangjiajie, Hunan, China, pp. 1366–1373, 2013.
[10] Y. Hebbal, S. Laniepce and M. J. Menaud, “K-binID: Kernel binary code identification for virtual

machine introspection,” in Proc. DSC, Taipei, Taiwan, pp. 107–114, 2017.
[11] C. Lv, J. Zhang, Z. Sun and G. Qian, “Information flow security models for cloud computing,”

Computers, Materials & Continua, vol. 65, no. 3, pp. 2687–2705, 2020.
[12] J. Pan, Y. Zhuang, X. Hu and W. Zhao, “Fine-grained binary analysis method for privacy leakage

detection on the cloud platform,” Computers, Materials & Continua, vol. 64, no. 1, pp. 607–622, 2020.
[13] J. Qin, Y. Cao, X. Xiang, Y. Tan, L. Xiang et al., “An encrypted image retrieval method based on

simhash in cloud computing,” Computers, Materials & Continua, vol. 63, no. 1, pp. 389–399, 2020.
[14] H. wook Baek, S. Abhinav and J. Van der Merwe, “Cloudvmi: Virtual machine introspection as a

cloud service,” in Proc. IC2E, Boston, MA, USA, pp. 153–158, 2014.
[15] H. Zhou, H. Ba, Y. Wang, Z. Wang, J. Ma et al., “Tenant-oriented monitoring for customized security

services in the cloud,” Symmetry, vol. 11, no. 2, pp. 252, 2019.
[16] J. Ren, L. Liu, D. Zhang, H. Zhou and Q. Zhang, “ESI-Cloud: extending virtual machine introspection

for integrating multiple security services,” in Proc. SCC, San Francisco, CA, USA, pp. 804–807, 2016.
[17] T. Bui, “Analysis of docker security,” arXiv preprint, arXiv:1501.02967, 2015.
[18] T. Combe, A. Martin and R. Di Pietro, “To docker or not to docker: A security perspective,” IEEE

Cloud Computing, vol. 3, no. 5, pp. 54–62, 2016.

http://www.nsfc.gov.cn/
http://kjt.sc.gov.cn/


3794 CMC, 2021, vol.69, no.3

[19] S. Arnautov, B. Trach, F. Gregor F, T. Knauth, A. Martin et al., “SCONE: Secure linux containers
with intel SGX,” in Porc. OSDI , Savannah, GA, USA, pp. 689–703, 2016.

[20] Z. Jian and L. Chen, “A defense method against docker escape attack,” in Proc. ICCSP, Wuhan, China,
pp. 142–146, 2017.

[21] E. Bacis, S. Mutti, S. Capelli and S. Paraboschi, “Dockerpolicymodules: Mandatory access control for
docker containers,” in Proc. CNS, Florence, Italy, pp. 749–750, 2015.

[22] X. Gao, Z. Gu, Z. Li, H. Jamjoom and C. Wang, “Houdini’s escape: Breaking the resource rein of
linux control groups,” in Proc. CCS, London, UK, pp. 1073–1086, 2019.

[23] T. Watts, R. Benton, W. Glisson and J. Shropshire, “Insight from a docker container introspection,” in
Proc. HICSS, Grand Wailea, Hawaii, USA, 2019.

[24] S. Su, Z. Tian, S. Liang, S. Li, S. Du et al., “A reputation management scheme for efficient malicious
vehicle identification over 5G networks,” IEEEWireless Communications, vol. 27, no. 3, pp. 46–52, 2020.


