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Abstract:Alzheimer’s disease (AD) is a very complex disease that causes brain
failure, then eventually, dementia ensues. It is a global health problem. 99% of
clinical trials have failed to limit the progression of this disease. The risks and
barriers to detecting AD are huge as pathological events begin decades before
appearing clinical symptoms. Therapies for AD are likely to be more helpful
if the diagnosis is determined early before the final stage of neurological dys-
function. In this regard, the need becomes more urgent for biomarker-based
detection. A key issue in understanding AD is the need to solve complex and
high-dimensional datasets and heterogeneous biomarkers, such as genetics,
magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and cognitive
scores. Establishing an interpretable reasoning system and performing inter-
operability that achieves in terms of a semantic model is potentially very
useful. Thus, our aim in this work is to propose an interpretable approach
to detect AD based on Alzheimer’s disease diagnosis ontology (ADDO) and
the expression of semantic web rule language (SWRL). This work implements
an ontology-based application that exploits three different machine learning
models. These models are random forest (RF), JRip, and J48, which have been
used along with the voting ensemble. ADNI dataset was used for this study.
The proposed classifier’s result with the voting ensemble achieves a higher
accuracy of 94.1% and precision of 94.3%. Our approach provides effective
inference rules. Besides, it contributes to a real, accurate, and interpretable
classifier model based on various AD biomarkers for inferring whether the
subject is a normal cognitive (NC), significant memory concern (SMC), early
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mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI),
or AD.

Keywords: Mild cognitive impairment; Alzheimer’s disease; knowledge
based; semantic web rule language; reasoning system; ADNI dataset;
machine learning techniques

1 Introduction

Alzheimer’s disease (AD) [1] is a neurodegenerative disorder that robs the elderly of their
thinking skills and memory and ultimately leads to cognitive impairment and dementia. With the
number of deaths due to AD increasing by 146% recently, it is likely to be ranked third among
diseases that cause death in the elderly, directly after heart disease and cancer [2]. By 2050, 16
million elderly peoples are likely to have AD [3]. It would be a global health problem in the
absence of effective diagnostic and treatment systems for this disease. Health care systems must
raise the alarm about this dangerous disease’s future and provide new therapies to prevent, slow,
or treat AD.

The diagnosis of AD depends primarily on the doctor’s experience in dealing with a spe-
cific set of biomarkers that can reliably indicate AD. However, a manually diagnostic approach
can sometimes be error-prone, time-consuming, and requires experience. AD diagnostic could be
managed effectively by developing a biomarker-based detection system. Hence, the need becomes
even more urgent to validate biomarkers that can detect patients who are likely to develop AD.
In general, biomarkers in AD are categorized into heterogeneous modalities, such as biochemical,
genetic, imaging, cognitive, and demographic. Tab. 1 gives a brief overview of the common
biomarkers for AD.

Table 1: The common biomarkers for AD

Category Biomarkers Description

Biochemical CSF [4] AD may cause an imbalance in the Cerebrospinal fluid (CSF) levels
of a specific protein (tau and beta-amyloid). The CSF test is used
to check these cerebral fluid proteins’ concentration levels as an AD
marker.

Blood-based [5] It is a biological sample that is difficult to use for AD detection
due to its low concentrations of Alzheimer’s biomarkers such as tau
and beta proteins in human plasma. But it may be instrumental in
finding problems that may affect how the mind works, such as
hypothyroidism or deficiency of certain vitamins.

Genetic APOE4 [6] It is the more risk gene, which could identify individuals at high
risk for AD.

Imaging Functional
imaging
(FDG)-PET [7]

Fluorodeoxyglucose positron emission tomography (FDG-PET)
provides the nature of glucose use in important brain cells
concerned with memory, learning, and solving the problems.

Structural
imaging
(MRI) [8]

The primary role of magnetic resonance imaging (MRI) is to make
detailed images of your brain using powerful magnets and radio
waves that determine information about the volume, shape, or brain
tissue position.

AV45 [9] It is an imaging biomarker to measure beta-amyloid accumulation
in the brain in people with MCI that may be attributed to AD.

(Continued)
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Table 1: Continued

Category Biomarkers Description

Cognitive (MoCA) [10] The Montreal Cognitive Assessment (MoCA) is a highly sensitive
test in detecting MCI with a rate of up to 90%. The patient is
evaluated on a 30-point scale as follows 26 or over, Normal; an
average of 22.1, MCI; and an average of 16.2, AD.

CDR [11] Clinical Dementia Rating (CDR) is a generic measure of the
severity of dementia. It is rated on a 3-point scale as follows 0, no
dementia; 0.5, questionable dementia; 1, MCI; 2, moderate
cognitive impairment; and 3, severe cognitive impairment.

CDRSB [12] Clinical Dementia Rating Sum of Boxes (CDRSB) is an alternative
to CDR used to stagger patients with AD with scores ranging from
0 to 18. Staging category as follows: 0, Normal; 0.5–4.0,
Questionable cognitive impairment; 4.5–9.0, Mild AD; and
16.0–18.0, Severe AD.

ADAS-Cog [13] The Alzheimer’s Disease Assessment Scale–Cognitive Subscale
(ADAS-Cog) determines the cognitive impairment level. It includes
two types which are ADAS-Cog-11 (max. 70 points) or
ADAS-Cog-13 (85 points). Participants with better cognitive
function scored lower on ADAS-Cog.

MMSE [14] The Mini-Mental Status Test (MMSE) assesses patients’ cognitive
performance (max 30 points). Participants with better cognitive
function had higher MMSE scores.

FAQ [15] Functional Activities Questionnaire (FAQ) rates patient’s ability. It
is rated on a 3-point scale as follows 0, Normal; 1, Has difficulty
but does by self; 2, Requires assistance; and 3, Dependent.

RAVLT [16] The Rey Auditory Verbal Learning Test (RAVLT) is a
neuropsychological evaluation tool that assesses the severity of
memory impairment and monitors any memory changes over time.

Demographic AGE AD affects the elderly, starting from the age of 65.
EDUCATION People with a lack of education are the groups most at risk of

developing AD.

There are many barriers to finding an ideal biomarker for detecting AD [17,18]. First, many
of the clinical and biological signs of AD are explained as normal processes in the elderly. The
second barrier is the unavailability of anatomical diagnosis during life. The third one is the
uncertain progress of the disease. The fourth barrier is the failure to understand the pathogenic
process of Alzheimer’s fully. Finally, the last barrier is the existence of heterogeneous modalities
and different clinical measures of AD. However, none of them can be considered reliable and
sensitive enough to detect small changes in complex neuropsychological and cognition. Most
current AD studies rely primarily on a single biomarker and ignore other biomarkers, such as the
MRI scan variation.

As a knowledge engineering model, ontology has gained interest and success in the healthcare
field for some reasons as it is a humanly understandable description of the domain [19,20]. It
can reduce the workload of writing and updating software code because it allows the conceptual
model to be expanded at any time as new features emerge. The ontological model is able to
describe concepts in a specific field by building class hierarchies and linking these classes using
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properties. Therefore, using ontology to represent complex domains as clinical diseases, their
relationships, and behavior can standardize knowledge of clinical diseases, preserve semantic
interoperability, and make them shareable. It can also provide inference capabilities and offer
queries and web services flexibility.

However, ontology is insufficient to provide support for relational reasoning. To complete
knowledge organization, SWRL [21,22] is used to expand ontology’s relations reasoning ability
and enhance expression’s ability. SWRL consists of an antecedent and the consequent of a
simple horn-like base structure, expressed in terms of ontology concepts (classes, properties, and
individuals); used to infer new knowledge about OWL individuals, and stored as OWL syntax in
the domain ontology. Pellet, FaCT++, and HermiT [23] are the most common OWL reasoner in
ontology for executing SWRL rules.

We previously implemented Alzheimer’s disease diagnosis ontology (ADDO) [24]. It is a
standard ontology that follows BFO and OGMS building guides. It supports key aspects of
AD, including patient demographic, family history, medical disease history, patient longitudinal
visit data, complications, drugs, symptoms, and a comprehensive of AD diagnostic test categories
(blood test, physical state examination, screening test, brain imaging, cerebrospinal fluid test,
mood evaluation, cognitive test, neuropsychological test, and genes test). Fig. 1 displays a partial
graphical of the ADDO founding concepts. In this article, we propose an extension to ADDO.
By providing rule-based reasoning capabilities related to the essential AD biomarkers to produce
higher reasoner classifier accuracy with interpretable capabilities. The main contributions can be
summarized in the following points:

Figure 1: A partial graphical of the ADDO founding concepts related to the patient, patient
profile, demographic, patient visit, and diagnostic test

• Increase reliability by applying machine learning (ML) techniques to the Alzheimer’s disease
Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/) to identify key biomarkers of
AD and extract effective rules for detecting AD.

• Improve performance in the classification problem. We used ensemble learning based on
different machine learning models with the voting ensemble. It provides a more accurate
result than its base classifier.

http://adni.loni.usc.edu/
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• Establish of interpretable OWL/SWRL reasoning model. An SWRL rules-based reasoning
is used under-extracted rules to improve the semantic expressivity of ADDO for identifying
the current state of AD patients with high accuracy.

• Implement and evaluate the reasoning approach and illustrate its capabilities using a real
dataset.

The rest of this paper is arranged as follows. Section 2 introduces an analysis of the
recent studies used to detect and predicate AD. Section 3 discusses our methodology used in
this approach as the rule-based semantic modeling for AD. Section 4 describes the obtained
experimental results obtained. The discussion of ADDO inference capabilities is represented in
Section 5. Finally, conclusions and future research directions are provided in Section 6.

2 Related Work

Prediction and diagnosis of AD is a complicated and challenging task. Many researchers went
ahead and tried to build different algorithms for the early detection of AD. In this section, we
review the recent researcher’s studies and focus on (1) ontology-based systems and (2) ML-based
systems related to AD. We previously showed in [25] that limited ontologies developed for the
AD domain, such as ADO, MIND, ADMO, AlzFuzzyOnto. These ontologies are focused only on
exploiting the expressions of ontology. These ontologies are built for various purposes, whether
to support standardization, store and retrieve AD information or suggest an AD diagnosis [26].
However, these ontologies lack patient concepts and diagnosis rules. These ontologies do not
provide an efficient AD diagnosis.

ADNI database effectively supports many of the proposed ML models and their practical
application. The importance of ADNI in Alzheimer’s diagnostic applications cannot be overstated.
Deep learning’s ability to learn from large data sets such as ADNI is likely to lead to increased
use of this technique in diagnosing AD [27]. There is a series of important deep learning models
related to AD progression detection carried out by El-Sappagh et al. [28], where convolutional
neural network (CNN) and a bidirectional long short-term memory (BiLSTM) were used to
extract local and longitudinal features of five modalities from ADNI based on 1536 subjects.
In [29], AD progress was predicted based on four cognitive scores CDRSB, ADAS, MMSE, and
FAQ. Regarding experimental results using1536 ADNI subjects, this model is medically intuitive
and more accurate. Far from using neuroimaging data to predict AD, [30] focused on multimodal
time-series data, including patient comorbidities, demographics, cognitive outcomes, and drug
history. ML algorithms, such as random forest (RF) and vector support machine (SVM), were
used to predict AD progression based on 1029 ADNI subjects. In [31], a random forest-based
interpretable AD detection and progression prediction model within three years from a baseline
diagnosis was proposed. One of its primary goals is to detect possible MCI-to-AD progression.
It was evaluated using 1048 ADNI subjects.

Abuhmed et al. [32] suggested two hybrids, deep learning models, for AD progression. It was
evaluated using different modalities of 1371 ADNI subjects. Prakash et al. [33] used CNN to clas-
sify magnetic resonance (MR) images. The experimental results used ADNI and showed 98.37%
accuracy. Using the brain’s structural and functional changes for early diagnosis of dementia,
Herzog et al. [34] used CNN and supervised machine learning based on six hundred MRI scans
from the ADNI to detect the degree of asymmetry between the left and right hemispheres. Yuan
et al. [35] suggested an RF_based model classify MCI patients using genotype data and structural
magnetic resonance imaging (sMRI) data. The experimental results used 592 MCI samples from
ADNI-1and showed 85.50% accuracy.
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AD progression and diagnosis detection have been intensively studied [36–41]. As discussed
in several papers, we can conclude the following:

• By focusing on the biomarkers studies to detect AD, the combination of demographic data,
brain imaging data, neuropsychological test results, genetic information, and cerebrospinal
fluid biomarkers can lead to very high predictive accuracy than other studies depend mainly
on neuroimaging.

• Recently, deep learning methods have received wide popularity in AD diagnosis and
progression detection.

• The RF classifier used in many ADNI classification models and in most cases has shown
better accuracy when compared to other ML classifiers such as SVM.

Regarding large recent studies designed for AD using ML algorithms, especially deep learning,
most of these models do not meet the standards in practical use. It has been concluded that
these approaches are time-consuming, subjective, and primarily focus on improving performance,
regardless of their ability to interpret and explain how/why they have reached a specific decision.
However, dealing with AD’s difficult nature requires many important additional factors, such as
standardizing AD knowledge, preserving interoperability, offering queries, explaining their deci-
sions, etc. which can be accomplished in terms of semantic models, which may be very useful.
The integration of ML and ontology will provide real success and overcome the difficulties of
dealing with AD. So, we carefully develop ADDO to include building rule-based reasoning for
diagnosing AD using ML techniques with the hope of developing an accurate and interpretable
diagnosis of AD.

3 Methodology

This section describes the medical benchmark data set used in our experiment and the
methods used to prepare these data. Moreover, the block diagram of the proposed model of a
semantic reasoner classifier for diagnosing AD explains in detail.

3.1 Dataset
This study’s experiment uses the benchmark data as an ADNI database to achieve real and

reliable results. The primary goal of ADNI is to assist in the early detection and measurement of
the longitudinal progression of AD based on its compilation of real data rich in biomarkers such
as basic demographics, biological biomarkers, neuropsychological assessment, brain MRI, and
PET. Participants are categorized into five classes according to their baseline diagnosis (normal
cognitively (NC), significant memory concern (SMC), early mild cognitive impairment (EMCI),
late mild cognitive impairment (LMCI), and AD). We collected 2256 subjects at the baseline visit.
These subjects were extracted from all ADNI stages of study (i.e., ADNI-1, ADNI-GO, ADNI-2,
and ADNI-3). Of the 2256 Participants, 397 subjects were diagnosed as AD; 561 subjects were
diagnosed in LMCI; 389 subjects were diagnosed in EMCI; 301 subjects were diagnosed in SMC;
518 subjects were in the NC. We utilized 43 features like age, gender, education (number of years).
Besides, a set of different biomarkers such as (FDG-PET), MRI, CSF protein levels, APOE, and
neuropsychological. Tab. 2 describes 44 types of the ADNI samples’ biomarker for analysis along
with their mean values and standard deviation.
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Table 2: The description of the ADNI features

Feature Mean ± SD Feature Mean ± SD Feature Mean ± SD

Age (years) 73.2 ± 7.2 PTAU 27.4 ± 14.6 FDG 1.2 ± 0.13
Gender (M/F) 1197 M/1059F EcogSPTotal 1.7 ± 0.6 CDRSB 1.49 ± 1.7
Education (years) 16 ± 2.7 EcogPtMem 2.1 ± 0.7 ADAS11 10.9 ± 6.3
Race 2061W/111b/84 other EcogPtLang 1.7 ± 0.5 ADAS13 16.9 ± 9.2
Marry 1718 M/203D/335other EcogPtVisspat 1.3 ± 0.4 ADASQ4 4.9 ± 2.9
APOE 1226(0)/836(1)/194(2) EcogPtPlan 1.2 ± 0.4 MMSE 27.3 ± 2.6
Ventricles vol.
(/1000)

39.325 ± 20.336 EcogPtOrgan 1.4 ± 0.5 LDELTOTAL 7.7 ± 5.4

Hippocampus
vol. (/1000)

6.724 ± 1.136 EcogPtDivatt 1.9 ± 0.8 TRABSCOR 116.8 ± 72.8

WholeBrain vol.
(/1000)

1023.7 ± 97.925 EcogPtTotal 1.6 ± 0.4 FAQ 3.8 ± 6.08

Entorhinal vol.
(/1000)

3.461 ± 0.692 EcogSPMem 2.1 ± 0.9 MOCA 23.5 ± 3.9

Fusiform vol.
(/1000)

17.527 ± 2.352 EcogSPLang 1.5 ± 0.6 RAVLT_immediate 36.4 ± 12.7

MidTemp vol.
(/1000)

19.518 ± 2.608 EcogSPVisspat 1.4 ± 0.6 RAVLT_learning 4.5 ± 2.6

ICV vol. (/1000) 1530.58 ± 152.24 EcogSPPlan 1.5 ± 0.7 RAVLT_forgetting 4.3 ± 2.3
ABETA 1000.53 ± 456.5 EcogSPOrgan 1.5 ± 0.7 RAVLT_perc_forgetting 56.7 ± 33.5
TAU 285.5 ± 134.09 EcogSPDivatt 1.8 ± 0.8 Class 518(NC)/301(SMC)/389(EMCI)/

651(LMCI)/397(AD)

3.2 Proposed Model
This proposal aims to investigate the utility of discovering correlations between biomarkers of

AD based on the ADNI dataset. It extracts rules useful in detecting the current state of AD with
high accuracy. Then it integrates these rules into ontology-based reasoning. It makes the model
more stable, more accurate, and interpretable. Fig. 2 shows the proposed model of a semantic
reasoner classifier. It is divided into some sub-tasks as follows: data preprocessing and features
selection, classification task, rule extraction, SWRL rules creation, semantic reasoner classifier, and
validity of semantic reasoner classifier.

3.2.1 Data Preparation
One of the most common problems in the ADNI database is the missing values in a large

percentage of about 80% of the ADNI patients. We excluded features with a high percentage
of missing data, such as DIGITSCOR (64%), AV45 (52%), ABETA (46%), TAU (46%), and
EcogSPTotal (36%). To deal with missing values, the traditional method replaces these values with
the mean value for numerical data and the mode value for categorical features. This would not be
useful to assign a single value for the different subject cases, and logically it will have a negative
effect on the accuracy of the model. To avoid this problem, these missing values are replaced
with subjects’ case values closest to their class label, gender, and with the help of other stable
features as CDRSB (0% missing), MMSE (0% missing), ADAS11 (0.5% missing), LDELTOTAL
(0.5% missing), and FAQ (1.2% missing). The box plots show minimum, maximum, first and third
quartile, median values, etc. These statistical data give significant discrimination for some features,
such as CDRSB, LDELTOTAL, ADAS13, Hippocampus, and FAQ, as shown in Fig. 3.
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Figure 2: The proposed SWRL-based inference rules model

3.2.2 Feature Reduction
Feature selection plays an essential role in ML models to exclude features that do not

help make the best prediction. To minimize the features, we used the CorrelationAttributeEval
algorithm [42] with a ranking method to find a group of biomarkers that work well together
and have a high correlation to the target label. This step reduced the number of biomark-
ers used from 30 to 18 features. It suggested that the most effective biomarkers for detecting
Alzheimer’s are LDELTOTAL, ADASQ4, MOCA, ADAS13, CDRSB, MMSE, RAVLT_imme-
diate, ADAS11, FAQ, RAVLT_perc_forgetting, FDG, Hippocampus, TRABSCOR, Entorhinal,
Fusiform, MidTemp, Ventricles, and APOE4.

3.2.3 Classification Task
ML can explore key risk disease detection patterns based on the use of patient electronic

healthcare records. In this sense, ML can assess a patient’s health and inform doctors of any
anomalies based on the knowledge gained from availability datasets. Ensemble learning is a flexible
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ML technology for improving performance in classification tasks, in which multiple base learners
are used for combining them into a strong classifier.

GDFBSRDCNOITACUDEEGA

ACOMESMM31SADA11SADA

LDELTOTAL FAQ RAVLT_immediate RAVLT_learning 

RAVLT_forgetting RAVLT_perc_forgetting Ventricles Hippocampus 

Entorhinal Fusiform MidTemp WholeBrain 

Figure 3: NC, SMC, EMCI, LMCI, and AD features

To achieve much better performance, we used three benchmark classification methods along
with the voting ensemble [43], such as RF, Java Repeated Incremental Pruning (JRip), and
decision tree (DT). The 10-fold cross-validation was adopted to validate the performance of our
model. The accuracy of classification obtained by RF, JRip, DT, and its voting ensemble is
92.80%, 92.27%, 91.47%, and 94.09%, respectively. Tab. 3 shows the accuracy, precision, recall,
and F-Measure scoring for each patient group diagnosed with NC, SMC, EMCI, LMCI, and AD.
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Table 3: The performance metrics of the tested classifiers

Methods Voting ensemble (%) RF (%) JRIP % DT (%)

Accuracy 94.09 92.80 92.27 91.47
Precision
(NC, SMC, EMCI, LMC,I AD)

(90, 96, 93, 97, 92) (89, 97, 94,
94, 91)

(89, 89, 91,
96, 92)

(88, 84, 93, 95, 92)

Recall
(NC, SMC, EMCI, LMCI, AD)

(98, 81, 96, 81, 97) (98, 78, 91,
93, 97)

(94, 78, 96,
91, 96)

(92, 79, 91, 93, 95)

F-measure
(NC, SMC, EMCI, LMCI, AD)

(94, 94, 94, 95, 95) (93, 86, 92,
93, 94)

(91, 83, 93,
94, 94)

(90, 81, 92, 92, 93)

3.2.4 Rule Extraction
RF was similar to a black box as it could not explain the decisions presented. JRip is a

rule-based classifier and easily interpretable model that searches for relationships between data set
attributes and class labels and extracts a set of rules. DT is a fast classification technique, and
rules can be obtained from its structure. In our model, decision rules can be obtained from the
JRip, and DT. Tab. 4 shows some of the learned rules obtained.

Table 4: A sample of the extracted rules

VARIABLES OF THE RULES: [IF (AND . . . AND)] THEN

IF (CDRSB <= 0) and (LDELTOTAL >= 10), THEN patient with NC
IF (CDRSB <= 0) and (FDG <= 1.2913) and (FDG >= 1.28685), THEN patient with SMC
IF (CDRSB <= 0) and (MOCA <= 25), THEN patient with SMC
IF (LDELTOTAL >= 9) and (CDRSB >= 0.5) and (MMSE <= 28) and (MOCA >= 27),
THEN patient with EMCI
IF (MMSE <= 27) and (Fusiform >= 17897) and (CDRSB >= 0.5) and (LDELTOTAL >= 9),
THEN patient with EMCI
If (CDRSB > 0) and (FAQ <= 8) and (LDELTOTAL <= 4), THEN patient with LMCI
IF (FAQ >= 9) and (MMSE <= 25) and (CDRSB >= 3.5), THEN patient with AD

3.2.5 SWRL Rules Creation
The establishment of SWRL rules [44] is based on the abstract syntax as antecedent

consequent pairs expressed in terms of ontology concepts. SWRL greatly expands its expres-
sive power by supporting a range of built-in predicates such as the swrlb:greaterThan,
swrlb:lessThanOrEqual, etc. By knowing the value of some essential AD biomarkers for a patient
such as CDRSB, MMSE, FAQ, etc; ADDO will be able to deduce the diagnosis for this patient.
To do this, the rule is expressed in SWRL language and coded in ADDO. A part of the extracted
rules that we encoded in ADDO using SWRL and their various builts-in are discussing as follows:

Based on the patient’s CDRSB, LDELTOTAL, and MOCA, ADDO determines whether the
subject is a NC or SMC. Rule 1 identifies NC patients. Rule 2 and Rule 3 identifies SMC
patients.

• Rule 1) patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧ has_
CDRSB(?PV, ?CDR) ∧ CDRSB_value(?CDR, ?DCDR) ∧ has_value(?DCDR, ?CDRV) ∧
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swrlb:equal(?CDRV, 0.0) ∧ has_LDELTOTAL(?PV, ?LDEL) ∧ LDELTOTAL_value(?LDEL,
?DLDEL) ∧ has_value(?DLDEL, ? LDELV) ∧ swrlb:greaterThanOrEqual(?LDELV, 10) ->
has_diagnosis(?PV, NC)

• Rule 2) patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧ has_
CDRSB(?PV, ?CDR) ∧ CDRSB_value(?CDR, ?DCDR) ∧ has_value(?DCDR, ?CDRV) ∧
swrlb:equal(?CDRV, 0.0) ∧ has_FDG(?PV, ?FDG) ∧ FDG_value(?FDG, ?DFDG) ∧ has_
value(?DFDG, ?FDGV) ∧ swrlb:lessThanOrEqual(?FDGV, 1.2913) ∧ swrlb:greaterThanOr
Equal(?FDGV, 1.28685) -> has_diagnosis(?PV, SMC)

• Rule 3) patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧ has_
CDRSB(?PV, ?CDR) ∧ CDRSB_value(?CDR, ?DCDR) ∧ has_value(?DCDR, ?CDRV)
∧ swrlb:equal(?CDRV, 0.0) ∧ has_MOCA(?PV, ?MOCA) ∧ MOCA_value(?MOCA,
?DMOCA) ∧ has_value(?DMOCA, ?MOCAV) ∧ swrlb:lessThanOrEqual(?MOCAV, 25) ->
has_diagnosis(?PV, SMC)

MMSE, FAQ, MOCA, and LDELTOTAL are significant for the EMCI and LMCI. In the
combination of CDRSB, LDELTOTAL, Hippocampus, and Fusiform volume, ADDO determines
whether the subject is an EMCI or LMCI. For example, Rule 4 and 5 identify EMCI patients.
Rule 6 identify LMCI patients.

• Rule 4) patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧ has_
CDRSB(?PV, ?CDR) ∧ CDRSB_value(?CDR, ?DCDR) ∧ has_value(?DCDR, ?CDRV) ∧
swrlb:greaterThanOrEqual(?CDRV, 0.5) ∧ has_LDELTOTAL(?PV, ?LDEL) ∧ LDELTO-
TAL_value(?LDEL, ?DLDEL) ∧ has_value(?DLDEL, ?LDELV) ∧ swrlb:greaterThanOr
Equal(?LDELV, 9) ∧ has_MOCA(?PV, ?MOCA) ∧ MOCA_value(?MOCA, ?DMOCA)
∧ has_value(?DMOCA, ?MOCAV) ∧ swrlb:greaterThanOrEqual(?MOCAV, 27) ∧ has_
MMSE(?PV, ?MMSE) ∧ MMSE_value(?MMSE, ?DMMSE) ∧ has_value(?DMMSE,
?MMSEV) ∧ swrlb:lessThanOrEqual(?MMSEV, 28) -> has_diagnosis(?PV, EMCI)

• Rule 5) patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧ has_LDEL-
TOTAL(?PV, ?LDEL) ∧ LDELTOTAL_value(?LDEL, ?DLDEL) ∧ has_value(?DLDEL,
?LDELV) ∧ swrlb:greaterThanOrEqual(?LDELV, 5) ∧ swrlb:lessThanOrEqual(?LDELV, 9)
∧ has_MMSE(?PV, ?MMSE) ∧ MMSE_value(?MMSE, ?DMMSE) ∧ has_value(?DMMSE,
?MMSEV) ∧ swrlb:lessThanOrEqual(?MMSEV, 27) ∧ has_EDUCAT(?PF, ?EDU) ∧ EDU-
CAT_value(?EDU, ?DEDU) ∧ has_value(?DEDU, ?EDUV) ∧ swrlb:lessThanOrEqual
(?EDUV, 15) -> has_diagnosis(?PV, EMCI)

• Rule 6) patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧ has_
CDRSB(?PV, ?CDR) ∧ CDRSB_value(?CDR, ?DCDR) ∧ has_value(?DCDR, ?CDRV) ∧
swrlb:greaterThanOrEqual (?CDRV, 0.5) ∧ has_LDELTOTAL(?PV, ?LDEL) ∧ LDELTO-
TAL_value(?LDEL, ?DLDEL) ∧ has_value(?DLDEL, ? LDELV) ∧ swrlb:lessThanOrEqual
(?LDELV, 4) ∧∧ has_FAQ(?PV, ?FAQ) ∧ FAQ_value(?FAQ, ?DFAQ) ∧ has_value(?DFAQ,
?FAQV) ∧ swrlb:lessThanOrEqual(?FAQV,8) -> has_diagnosis(?PV, LMCI)

According to high patient FAQ with additional features such as high CDRSB, low MMSE,
and low MOCA, ADDO determines whether the subject is an AD. Rule 7, 8, and 9 identify AD
patients.

• Rule 7) patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧
has_FAQ(?PV, ?FAQ) ∧ FAQ_value(?FAQ, ?DFAQ) ∧ has_value(?DFAQ, ?FAQV) ∧
swrlb:greaterThanOrEqual(?FAQV, 9) ∧ has_CDRSB(?PV, ?CDR) ∧ CDRSB_value(?CDR,
?DCDR) ∧ has_value(?DCDR, ?CDRV) ∧ swrlb:greaterThanOrEqual(?CDRV, 4.5) -> has_
diagnosis(?PV, AD)
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• Rule 8) patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧ has_
FAQ(?PV, ?FAQ) ∧ FAQ_value(?FAQ, ?DFAQ) ∧ has_value(?DFAQ, ?FAQV) ∧ swrlb:great-
erThanOrEqual(?FAQV, 9) ∧ has_MOCA(?PV, ?MOCA) ∧ MOCA_value(?MO
CA, ?DMOCA) ∧ has_value(?DMOCA, ?MOCAV) ∧ swrlb:lessThanOrEqual(?MOCAV,
19) -> has_diagnosis(?PV, AD)

• Rule 9) patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧
has_FAQ(?PV, ?FAQ) ∧ FAQ_value(?FAQ, ?DFAQ) ∧ has_value(?DFAQ, ?FAQV) ∧
swrlb:greaterThanOrEqual(?FAQV, 13) ∧ has_MOCA(?PV, ?MOCA) ∧ MOCA_value(?MO-
CA, ?DMOCA) ∧ has_value(?DMOCA, ?MOCAV) ∧ swrlb:lessThanOrEqual(?MOCAV,
20) ∧ has_ ICV(?PV, ?ICV) ∧ ICV_value(?ICV, ?DICV) ∧ has_value(?DICV, ? ICVV) ∧
swrlb:lessThanOrEqual(?ICVV, 1395260) ) -> has_diagnosis(?PV, AD)

3.2.6 Semantic Reasoner Classifier
In this approach, OWL/SWRL combines ontology and rules to develop a semantic rule-based

system for AD diagnosis. ADDO ontology represents the semantic knowledge base of AD and
focuses on the concept description; the SWRL expresses the extracted rules from ADNI. The
inference task divides into ontology-based reasoning and SWRL rule-based reasoning. Ontology-
based is responsible for testing the ontology consistency, retrieving the individual and concept in
the knowledge base, and performing instance detection for classifying individuals belonging to a
specific class. The SWRL-Based Inference [45] engine provides mechanisms to retrieve the relevant
OWL (classes, properties, individuals, and restrictions) and the SWRL rules. First passes them
to the rule engine as Pellet. Then performs inference and may find some additional information
about the individuals and relationships as new inferred knowledge. Finally, the new infer result will
add to OWL to enrich the knowledge base. The framework of the SWRL rule-based reasoning is
shown in Fig. 4.

Figure 4: SWRL-based inference framework
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4 Results

To demonstrate the power of the ontological reasoning results of the classification of AD
in the ADDO approach. Using the ADNI data set, we developed the ML model to find the
biomarkers set have a significant correlation to determine the current state of an Alzheimer’s
patient with high accuracy and extract the rules out of it. We encoded all required rules as SWRL
rules to automate the integrated OWL/SWRL diagnostic process. We predicted AD diagnosis
using AGE, EDUCATION, APOE4, CDRSB, ADAS13, MMSE, RAVLT_perc_forgetting, FAQs,
ventricular volume, and Hippocampus volume, available in all clinics and inexpensively. Finally,
find an inferred relationship has_diagnosis between patient visit related to specific patient and
diagnosis.

Next, we evaluate the validity of the ontology inference system. We used Protégé 5.5.0 editor
to develop ADDO. We have chosen Pellet to perform all the inference tasks. We evaluate the
ontology validity for 40NC, 45SMC, 50EMCI, 41LMCI, and 32AD samples added to ADDO by
using owl API. The ADDO classification results achieved 92%, 91.3%, 94.6%, 93.4% and 92.6%
accuracy results for NC, SMC, EMCI, LMCI and AD respectively. Fig. 5 shows the correct
ontological reasoning results of AD classification for five ADNI subjects.

Figure 5: ADDO reasoning results of some patient’s classification
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As a result of this model, using a combination of different categories of biomarkers has a
significant impact than neuroimaging features, which is a globally important feature. Demographic
features such as age, education level, race, and marriage do not significantly influence different
classifications. With the exception of age, this is an important factor in differentiating NC class,
as the average level of education is distinctive for AD from other classes. For the NC class,
LDELTOTAL and CDRSB have the highest effect; the lower the CDRSB value down to Zero and
the higher the LDELTOTAL value, up to 10 positive impacts will be on the NC class prediction.
Followed by MMSE, ADAS13, AGE, APOE4, and Hippocampus volume, with a higher MMSE
value up to 28, lower ADAS13, AGE values, APOE4 = 0, and higher Hippocampus volume
value positive effect NC class prediction. For the AD class, FAQ, CDRSB, and MMSE have the
highest effect, a higher the CDRSB value up to 4 with higher FAQ, lower MMSE, and MOCA;
the more positive impact will be on the AD class prediction. Followed by ADAS13, education,
APOE4, AGE, Ventricles, and Hippocampus volume; the higher ADAS13, AGE values, APOE4
= 1, and lower education, Hippocampus volume, and Ventricles volume values have a positive
effect on AD class prediction. For the EMCI class, the lower CDRSB, low FAQ, high MMSE,
high LDELTOTAL, and moderate ADAS13 values, the more positive impact will be on the EMCI
class prediction. The further decreases in LDELTOTAL and the higher the FAQ and CDRSB,
the more positive effect will be on the prediction of LMCI.

One of the most advantages of this model is that it can explain the decision taken for
each patient case, making it a helpful tool for inexperienced doctors. It also contributes to
detecting entry errors and illogical values. For example, Fig. 5 shows the ADDO classification’s
incorrect results for Patients with RID 4542 recorded in ADNI as LMCI subjects at baseline visit.
However, ADDO reasoning result inferred relationship has_diagnosis between baseline visit and
AD diagnosis according to the following SWRL.

patient(?P) ∧ has_patientProfile(?P, ?PF) ∧ has_patientVisit(?PF, ?PV) ∧ has_FAQ(?PV, ?FAQ)
∧ FAQ_value(?FAQ, ?DFAQ) ∧ has_value(?DFAQ, ?FAQV) ∧ swrlb:greaterThanOrEqual(?FAQV,
9) ∧ has_MMSE(?PV, ?MMSE) ∧ MMSE_value(?MMSE, ?DMMSE) ∧ has_value(?DMMSE,
?MMSEV) ∧ swrlb:lessThanOrEqual(?MMSEV, 25) ∧ has_CDRSB(?PV, ?CDR) ∧ CDRSB_
value(?CDR, ?DCDR) ∧ has_value(?DCDR, ?CDRV) ∧ swrlb:greaterThanOrEqual(?CDRV, 3.5)
-> has_diagnosis(?PV, AD)

Regarding this patient data, he has a high value for FAQ (20), RAVLT_perc_forgetting (100),
ADAS13 (34), and CDRSB (4); and the low value for MMSE (25) and MOCA (21), the diagnosis
with LMCI is not medically intuitive.

5 Discussion

Our work is the Alzheimer’s diagnostic model that builds semantic intelligence from ontologies
that allow the implementation of the concepts of Alzheimer’s and the desired relationships and
thus understanding every part of the model. Additionally, use ML to learn from the benchmark
data set and generate rules for making decisions. In practice, this provides our proposed model
with critical points to be applied in the real world as follows:

• Overcoming the dynamic nature of AD, change over time—development of new concepts,
new diagnostic bases, change in vital signs used in the detection, etc. Thus, support for
change is an essential feature of the model that meets change in several aspects. The
ontology allows the model to be expanded at any time as new concepts, relationships, and
decision rules emerge.
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• Solving the problem of insufficient expressiveness of ontologies in properties association
using ML to identify AD’s key biomarkers and extract effective rules for detecting AD.

• Offering human-interpretable decision rules that provide how the model arrives at a decision
can help in data validation and error detection and increase motivation to discover new
biomarkers and study patient medical history to increase classifiers’ accuracy.

• Achieving high performance, in addition, can work as a guide tool for inexperienced
physicians.

Thanks to ontology and ML as complementary forces, they have provided an interpretable
classifier. ML solves the problem of insufficient expressiveness of ontologies in properties associ-
ation. Logic and interpretable inference behind ontology predictions can understand the decision
for each individual. In this way, it provides a good analysis of the data. It helps users to detect
and correct errors that positively affect the accuracy of ML classifiers. Fig. 6 shows the impact
of both ontology and ML on the other.

Figure 6: The impact of both ontology and ML on the other

The limitation of our study is that the rule-based is crisp based on numerical biomarkers.
To avoid these problems, we have to extend the rule-base to the fuzzy rule-base. Our inference
relies solely on biomarkers of AD and ignores significant features such as patient disease history.
Therefore, the patient’s disease history, symptoms, and drugs must be considered in the inference
rules to make robust decisions.

6 Conclusion

Based on ontology and rule-based inference, this paper established the AD knowledge base.
It exploited ML and ADNI dataset to provide effective inference rules. It implemented a homoge-
neous reasoning system based both on semantic and relations inference. The ontologies succeeded
in well expressing the concepts of a specific field and its relationships, which enhanced inquiry-
based accuracy on semantic and knowledge levels. Since rules can relate properties to each other,
we used the rules with the help of SWRL to enhance reasoning efficiency. SWRL can bypass
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the inherent limitations of expressing both ontology and rule-based. In brief, the SWRL rule-
based inference based on the minimal set of biomarkers can be considered good support for
clinicians to diagnose AD. Also, as part of a classification system, ADDO can be used to infer
a more efficient AD diagnosis by using the ML techniques power (effectiveness in exploring the
key risk disease detection patterns). This integration will help gain a deeper understanding of
how the model arrives at each individual’s decision. The results show that SWRL rule reasoning
can effectively improve intelligent decision-making regarding AD diagnosis. However, ADDO
reasoning bases on crisp rule-based relies on AD biomarkers only and ignores patient disease
history. To handle the uncertain nature of AD biomarker data, accommodate medical linguistic
variables, and solve inconsistency, our future work will extend the ADDO rule-based to build
fuzzy rule-based inference. We expect that fuzzy rule-based reasoning will make the inference
system more acceptable and accurate. Besides, the entire patient’s disease history, symptoms, and
drugs must be considered in the inference rules to make robust decisions.
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