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Abstract: This paper deals with the Bayesian estimation of Shannon entropy
for the generalized inverse exponential distribution. Assuming that the
observed samples are taken from the upper record ranked set sampling
(URRSS) and upper record values (URV) schemes. Formulas of Bayesian esti-
mators are derived depending on a gamma prior distribution considering the
squared error, linear exponential and precautionary loss functions, in addition,
we obtain Bayesian credible intervals. The random-walk Metropolis-Hastings
algorithm is handled to generate Markov chain Monte Carlo samples from
the posterior distribution. Then, the behavior of the estimates is examined at
various record values. The output of the study shows that the entropy Bayesian
estimates under URRSS are more convenient than the other estimates under
URV in the majority of the situations. Also, the entropy Bayesian estimates
perform well as the number of records increases. The obtained results validate
the usefulness and efficiency of the URV method. Real data is analyzed for
more clarifying purposes which validate the theoretical results.
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1 Introduction

Record values are crucial in many areas of real life applications comprising data relating
to weather, sports, economics and life testing studies. Reference [1] constructed the theory of
record values as a model for successive extremes in a sequence of independently and identically
distributed (iid) random variables. Reference [2] mentioned that an observation is called upper
(lower) record value if its value more (less than) that all of the preceding observations. Let xi, i≥ 1
be a sequence of iid random variables with a cumulative distribution function (CDF), say F(x),
and probability density function (PDF), say f (x), an observation xi is called upper record value
if its value exceeds all the preceding values, i.e., xi is an URV if xi > xj, where i> j.
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Let T1 = t1,T2 = t2, . . . ,Tn= tn be the first n URV arising from any distribution with a certain
PDF and CDF, the joint PDF of the first n URV is given by:

f (t1, t2, . . . , tn)= f (tn)
n−1∏
i=1

f (ti, θ)

1−F(ti, θ)
, −∞< t1 < t2 < · · ·< tn <∞, θ ∈�, (1)

where � is the parameter space and θ ∈� may be a vector.

Another record sampling scheme, known as upper record ranked set sampling, has been
provided by [3]. This scheme is valuable in some situations when the used observations are the
last record data such as athletic, weather and Olympic data. The URRSS can be described as
follows:

Consider n independent sequences of continuous random variables, the ith sequence sampling
is stopped when the ith record value is noticed. The only observations that are handled by analysis
are the last record values in each sequence. Let the last record value of the ith sequence in this
situation, say Ti,i, then the accessible observations are T = (T1,1,T2,2, . . . ,Tn,n)T , that is

1 : T(1)1 → T1,1 =T(1)1

2 : T(1)2T(2)2 → T2,2 =T(2)2

...

n : T(1)nT(2)n . . .T(n)n→ Tn,n=T(n)n,

where T(i)j is the ith record in the jth cycle. Let Ti,i = (t1,1, t2,2, . . . , tn,n)T , Ti,i be a set of observed

URRSS, then according to [3], the joint PDF of Ti,i, is given by

f (t1,1, t2,2, . . . , tn,n)=
n∏
i=1

[− ln(1−F (ti,i; θ))]i−1

(i− 1)!
f (ti,i; θ) . (2)

For information about ranked set sampling, see [4] for imputation of the missing observations
using RSS and [5] for mean estimation based on modified robust extreme ranked set sampling.
References [6–8] for partial, mixed and varied RSS methods, respectively. Reference [9] proposed
a new RSS technique for mean and variance estimation, as well as [10] investigated the estimation
of a symmetric distribution function in multistage ranked set sampling.

Some researchers have considered inference about different distributions based on records. For
instance, Bayesian estimators and predictions for some life distributions from record values are
discussed by [11]. Stress-strength reliability estimator of exponentiated inverted Weibull distribu-
tion values has been discussed by [12] based on lower record. Reference [13] considered Bayesian
and non-Bayesian estimators from power Lomax distribution using URV. Estimation of the two-
parameter bathtub-shaped distribution is discussed by [14] from record data. Bayesian estimators
of the generalized inverse exponential (GIE) distribution are discussed by [15] via URV. Stress
strength reliability estimator for independent GIE distributions using URRSS is handled by [16].
Reference [17] discussed estimation and prediction for Nadarajah-Haghighi distribution based on
record. Statistical inference for the power Lindley model is studied by [18] from record values
and inter-record times. Reference [19] handled reliability estimator for Weibull distribution for
multicomponent system based on URV.
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Reference [20] introduced the concept of entropy as a measure of information, which provides
a quantitative measure of the uncertainty. It is also considered as a measure of randomness of
a probabilistic system. Let X be a non-negative random variable with cumulative distribution
function F(x) and probability density function f (x). The Shannon entropy, denoted by SH(X ), of
the random variable is defined by

SH(X)=−
∞∫

−∞
f (x) log f (x)dx. (3)

It is seen that a very sharply peaked distribution has very low entropy, whereas if the proba-
bility is spread out, the entropy is much higher. In this sense, SH(X ) is a measure of uncertainty
associated with f (x). Entropy estimation for some life distributions has been discussed by many
authors. For example, [21] obtained an entropy estimator using URV from the generalized half-
logistic distribution. References [22,23] suggested some entropy estimators based on RSS and
double RSS methods, respectively. Reference [24] investigated entropy estimation and goodness-
of-fit tests for the Laplace and inverse Gaussian distributions based on pair RSS. Reference [25]
discussed the entropy Bayesian estimators of Weibull distribution based on generalized progressive
hybrid censoring scheme. Reference [26] proposed new measures of entropy and [27] discussed
the entropy maximum likelihood and Bayesian estimators of inverse Weibull distribution under
generalized progressive hybrid censoring scheme. Reference [28] provided an exact expression for
entropy information contained in both types of progressively hybrid censored data and applied
it in exponential distribution. Reference [29] discussed the estimation of entropy for generalized
exponential distribution via record values. Reference [30] discussed entropy estimators of a con-
tinuous random variable using RSS. Reference [31] obtained the maximum likelihood estimator of
Shannon entropy for inverse Weibull distribution under multiple censored data and [32] proposed
entropy Bayesian estimators of Lomax distribution using record data, and [33] considered extropy
properties of RSS.

To our knowledge, in the literature, there are no studies that had been performed
about entropy estimation in view of URRSS. So, our interest in this study is estimating the
Shannon entropy of the GIE distribution using Bayesian approach from URRSS and URV. The
Shannon entropy Bayesian estimator is considered using gamma priors. The Bayesian estimator
of entropy is induced related to symmetric and asymmetric loss functions. The proposed loss
functions are squared error loss function (SELF), linear exponential loss function (LINEX) and
precautionary loss function (PRLF). Bayesian entropy estimators under symmetric and asymmet-
ric loss functions have complicated expressions, so we implemented the Markov Chain Monte
Carlo (MCMC) technique.

The following sections are organized as follows. Formula of Shannon entropy for GIE dis-
tribution is provided in Section 2. Entropy Bayesian estimator is derived using URRSS from
symmetric and asymmetric loss functions in Section 3. Based on URV, entropy Bayesian estimator
for GIE distribution is discussed using the proposed loss functions in Section 4. Simulation issue
and application to real data are given in Sections 5 and 6, respectively. The paper ends with some
concluding remarks in Section 7.
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2 Expression of Shannon Entropy

The two-parameter GIE distribution is provided by [34] which has many applications in
various areas such as, accelerated life testing, queues, horse racing, sea currents and wind speeds.
The PDF of the GIE model with the shape parameter θ and scale parameter β is given by

f (x; θ ,β)= βθ

x2
e−β/x(1− e−β/x)θ−1; x, θ ,β > 0. (4)

The CDF of the GIE distribution is given by

F(x; θ ,β)= 1− (1− e−β/x)θ . (5)

Let X be a random variable follows a GIE distribution with PDF given in (4), hence the
Shannon entropy of X is obtained by substituting (4) in (3) as follows:

SH(X)=−[ln θ + lnβ − 2I1+ I2 − I3], (6)

where

I1 =
∞∫

−∞

βθ

x2
(1− e−β/x)

θ−1
e−β/x lnxdx, I2 = (θ − 1)

∞∫
0

βθ

x2
(1− e−β/x)

θ−1
e−β/x ln(1− e−β/x)dx,

and I3 =
∞∫
0

βθ

x2
(1− e−β/x)

α−1 β
x e

−β/xdx. To obtain I1, we use the binomial expansion as follows

I1 =
∞∑
j=0

(−1)j
(

θ − 1
j

) ∞∫
0

βθ

x2
e
−β(j+1)

x lnxdx=
∞∑
j=0

(−1)jθ
j+ 1

(
θ − 1
j

)
[ln(β(j+ 1)+ γ ],

where γ = 0.577 is Euler constant. To obtain I2, let y = 1 − e−β/x, then I2 = θ(θ − 1)⎡
⎣{

yθ

θ
lny

}1

0
−

1∫
0

yθ−1

θ
dy

⎤
⎦ = −(θ − 1)

θ
.

Also, I3 is obtained as follows

I3 =
∞∑
j=0

(−1)j
(

θ − 1
j

) ∞∫
0

θβ2

x3
e
−β(j+1)

x dx=
∞∑
j=0

(−1)jθ

(j+ 1)2

(
θ − 1
j

)
.

Substituting I1, I2, and I3 in (6), we obtain the Shannon entropy for GIE distribution as
follows:

SH(x)=−
⎡
⎣lnβ + ln θ − 2

∞∑
j=0

(−1)jθ
j+ 1

(
θ − 1
j

)[
ln(β(j+ 1)+ γ + 1

j+ 1

]
− θ − 1

θ

⎤
⎦ , (7)

which is a function of the parameters θ and β.
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3 Entropy Bayesian Estimation Based on URRSS

In this section, Bayesian estimator of the Shannon entropy for the GIE model is discussed in
view of URRSS. Firstly, the Bayesian estimators of parameters must be computed in order to get
the entropy Bayesian estimator. Then, entropy Bayesian estimator is obtained using (7) accord-
ing to the invariance property. The Bayesian estimator based on gamma priors is considered.
Three Bayesian estimators are obtained according to SELF, LINEX and PRLF. Furthermore, the
Bayesian credible intervals are constructed.

Let ti,i = (t1,1, t2,2, . . . , tn,n) be a set of observed URRSS from GIE distribution, then the

likelihood function denoted by L1, is obtained by inserting PDF in (4) and CDF in (5) in (2), as
follows

L1 = θ

n∑
i=1

i
βn

n∏
i=1

e−β/ti,i t−2
i,i

(i− 1)!
[− log(1− e−β/ti,i)]i−1 (1− e−β/ti,i)θ−1.

Assuming that the prior of parameters θ and β has a gamma distribution with parameters
(a , b) and (c,d), respectively. Hence, the joint prior distribution of parameters, denoted by π(θ ,β),
assuming independence of parameters is as follows

π(θ ,β)= 1
�(a)�(c)

θa−1 βc−1 e−bθ−dβ ; a, b, c,d, θ , β > 0. (8)

The joint posterior under the assumption that β and θ are independent gamma priors is

	•
1(θ ,β | ti,i )∝ θ

n∑
i=1

i+a−1
βn+c−1 e−bθ−dβ

n∏
i=1

e−β/ti,i t−2
i,i

(i− 1)!
[− log(1− e−β/ti,i)]i−1(1− e−β/ti,i)θ−1.

Hence, the marginal posterior distributions of β and θ are given by

	•
1(θ | ti,i)=D1 θ

n∑
i=1

i+a−1
e−bθ

n∏
i=1

t−2
i,i

(i− 1)!

×
∞∫
0

βn+c−1 e
−β(d+t−1

i,i
)
[− log (1− e−β/ti,i)]

i−1
(1− e−β/ti,i)

θ−1
dβ

,

	•
1(β | ti,i)=D1β

n+c−1 e−dβ
n∏
i=1

e−β/ti,i t−2
i,i

(i− 1)!
[− log (1− e−β/ti,i)]i−1

×
∞∫
0

θ
(
n∑
i=1

i)+a−1
e−b1θ (1− e−β/ti,i)

θ−1
dθ ,
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where

D1
−1 =

n∏
i=1

t−2
i,i

(i− 1)!

∞∫
0

∞∫
0

θ

n∑
i=1

i+a−1
βn+c−1 e−bθ−dβe−β/ti,i [− log (1− e−β/ti,i)]

i−1
(1− e−β/ti,i)

θ−1
dθdβ .

Therefore, the Bayesian estimators of β and θ under SELF, denoted by β̃1 and θ̃1, depending
on URRSS are obtained as the posterior mean as follows:

θ̃1 =
∞∫
0

θ 	•
1(θ | ti,i)dθ , β̃1 =

∞∫
0

β 	•
1(β | ti,i)dβ. (9)

The Bayesian estimators of β and θ under LINEX, denoted by
...
β 1 and

...
θ 1, are given by

...
θ 1 = −1

δ
logE(e−δθ ) = −1

δ
log

⎡
⎣

∞∫
0

e−δθ 	•
1(θ | ti,i)dθ

⎤
⎦ , (10)

and

...
β 1 =

−1
δ

logE(e−δβ) = −1
δ

log

⎡
⎣

∞∫
0

e−δβ 	•
1(β | ti,i)dβ

⎤
⎦ , (11)

where δ is a real number. Additionally, the Bayesian estimators of β and θ under PRLF, say ˜̃
θ1

and ˜̃
β1 are given as follows

˜̃
θ1 =

√
E(θ2 | t)=

√√√√√
∞∫
0

θ2	•
1(β | ti,i)dθ , (12)

and

˜̃
β1 =

√
E(β2 | t)=

√√√√√
∞∫
0

β2	•
1(β | ti,i)dβ. (13)

The integrals (9)–(13) are very hard to be solved analytically according to their convo-
luted forms. Therefore, we employ the MCMC technique to approximate these integrations. The
Bayesian estimates together with credible intervals width under SELF, LINEX and PRLF loss
functions are implemented using Metropolis-Hastings (M-H) algorithm. Therefore, the Bayes
estimate of SH(X ), denoted by SH̃1(x) under SELF is obtained as follows

SH̃1(X)=−
⎡
⎣ln β̃1+ ln θ̃1 − 2

∞∑
j=0

(−1)j θ̃1
j+ 1

(
θ̃1− 1
j

)
[ln(β̃1(j+ 1))+ γ + 1]− θ̃1 − 1

θ̃1

⎤
⎦ .
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Consequently, the Bayesian estimator of SH(X ) under LINEX and PRLF are obtained by
similar way after setting their estimators in (7). Additionally, we get the Bayesian credible interval
of entropy using the same algorithm proposed by [35].

4 Entropy Bayesian Estimation Based on URV

This section provides the Bayesian estimators of θ and β for the GIE distribution based
on URV. The Bayesian estimators are obtained assuming that the gamma priors are independent
using SELF, LINEX and PRLF. Let t= (t1, t2, . . . , tn) be n observed URV from GIE distribution
with PDF in (4) and CDF in (5), then the likelihood function, say L2, of the GIE distribution is
obtained by inserting (4) and (5) in (1), as follows:

L2 = (1− e−β/tn)θ
n∏
i=1

βθ t−2
i e−β/ti(1− e−β/ti)−1.

Assuming that the prior of θ and β has a gamma distribution with parameters (a , b) and
(c,d), respectively. Hence, the joint prior distribution of parameters, assuming independence is
considered as provided in (8). Therefore, the joint posterior can be expressed as follows:

	•
2(θ ,β | t )∝ θn+a−1βn+c−1e−bθ−dβ(1− e−β/tn)θ

n∏
i=1

t−2
i e−β/ti(1− e−β/ti)−1.

Consequently, expressions for the marginal posterior distributions of θ and β are as follows:

	•
2(θ | t)=D2θ

n+a−1e−bθ
∞∫
0

βn+c−1 e−dβ (1− e−β/tn)
θ

n∏
i=1

t−2
i e−β/ti(1− e−β/ti)

−1
dβ,

	•
2(β | t)=D2 βn+c−1 e−dβ

n∏
i=1

t−2
i e−β/ti(1− e−β/ti)−1

∞∫
0

θn+a−1e−bθ (1− e−β/tn)
θ
dθ ,

where

D−1
2

=
∞∫
0

∞∫
0

θn+a−1 βn+c−1 e−bθ−cβ(1− e−β/tn)
θ

n∏
i=1

ti−2 e−β/ti(1− e−β/ti)−1 dθ dβ .

Hence, Bayesian estimators of θ and β, under SELF, say θ̃2 and β̃2, can be obtained as
posterior mean as follows:

θ̃2 =E(θ | t)=
∞∫
0

θ 	•
2(θ | t) dθ , β̃2 =E(β | t)=

∞∫
0

β 	•
2(β | t) dβ. (14)
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Also, under LINEX, the Bayesian estimators of θ and β, say
...
θ 2 and

...
β 2, are obtained as

follows:

...
θ 2 = −1

δ
log

⎡
⎣

∞∫
0

e−δθ	•
2(θ | t)dθ

⎤
⎦ , and

...
β 2 =

−1
δ

log

⎡
⎣

∞∫
0

e−δβ	•
2(β | t)dβ

⎤
⎦ . (15)

Furthermore, considering PRLF, the Bayesian estimators of θ and β, say ˜̃
θ2 and ˜̃

β2 are given
as follows:

˜̃
θ2 =

√√√√√
∞∫
0

θ2	•
2(θ | t)dθ , and ˜̃

β2 =

√√√√√
∞∫
0

β2	•
2(β | t)dβ. (16)

Again, the MCMC procedure is provided to approximate the integrals (14)–(16) based on
M-H algorithm to compute the estimates and credible interval width considering symmetric and
asymmetric loss functions.

Regarding to Eq. (7), the Bayesian estimator of SH(x), denoted by SH̃2(x) under SELF is
obtained as follows

SH̃2(X)=−
⎡
⎣ln β̃2+ ln θ̃2 − 2

∞∑
j=0

(−1)j θ̃2
j+ 1

(
θ̃2− 1
j

) [
ln(β̃2(j+ 1))− γ + 1

j+ 1

]
− θ̃2− 1

θ̃2

⎤
⎦ .

By similar way, the Bayesian estimator of SH(X ) under LINEX and PRLF are obtained
after setting their estimators in (7). Furthermore, the Bayesian credible interval is obtained as
mentioned in the Section 3.

5 Simulation Study

In this section, a simulation investigation is carried out to compare the performance of the
entropy estimate of the GIE distribution based on URV and URRSS. The relative absolute bias
(RAB), estimated risk (ER) and width (WD) of credible intervals for the Shannon entropy based
on URV and URRSS for GIE distribution are used to evaluate the behaviour of the Bayesian
estimates. In the simulation setup, the number of records are selected as n= 4, 5, 6, 7. The values
of parameters are selected as (θ ,β)= (4, 2), (2, 2) and (0.5, 2), where the associated true values of
entropy are SH(x) = 0.8452, 1.3584 and 3.2896, respectively. The hyper-parameters for gamma
prior are selected as a= b= 2 and c= d = 2. Also, we take δ =−2, 2 for LINEX loss function.
M-H algorithm will be used via R 3.1.2 program.

The M-H algorithm procedure is described as follows:

Let g(.) be the density of subject distribution.

Initialize a starting value x0 and the number of samples N

for i= 2 to N

set x= xi−1

generate u from U(0, 1)

generate y from g(.)
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if u≤ πα(y)g(x)
πα(x)g(y) , then

set xi = y

else

set xi = x

end if

end for

Tabs. 1–3 summarize the Bayes estimates and their measures (RAB, ER and WD) based
on URV and URRSS. From the numerical outcomes given in Tabs. 1–3 and Figs. 1–6, we can
conclude the following:

Table 1: Entropy estimates, RAB, ER and WD based on URV and URRSS at (θ ,β)= (4, 2) and
SH(x) = 0.8452

n Loss function Scheme Estimate RAB ER WD

4 LINEX (δ =−2) URV 0.8382 8.20E–03 9.59E–09 0.0601
URRSS 1.0634 2.58E–01 9.53E–06 0.5085

LINEX (δ = 2) URV 0.7993 5.43E–02 4.21E–07 0.1159
URRSS 0.8465 1.58E–03 3.55E–10 1.1973

PRLF URV 0.9010 6.60E–02 6.23E–07 0.1051
URRSS 0.7206 1.47E–01 3.10E–06 0.3732

SELF URV 0.8463 1.40E–03 2.78E–10 0.0024
URRSS 0.5260 3.78E–01 2.04E–05 0.7587

5 LINEX (δ =−2) URV 0.8443 1.00E–03 1.33E–10 0.0066
URRSS 0.9265 9.62E–02 1.32E–06 0.1177

LINEX (δ = 2) URV 0.8401 6.00E–03 5.19E–09 0.0129
URRSS 0.8257 1.00E–02 1.52E–10 0.0592

PRLF URV 0.8513 7.30E–03 7.59E–09 0.0116
URRSS 0.8896 5.26E–02 3.96E–07 0.1412

SELF URV 0.8510 7.00E–03 6.94E–09 0.0119
URRSS 0.8091 4.26E–02 2.60E–07 0.0970

6 LINEX (δ =−2) URV 0.8444 9.00E–04 1.08E–10 0.0059
URRSS 0.8392 7.00E–03 7.00E–09 0.0146

LINEX (δ = 2) URV 0.8406 5.40E–03 4.21E–09 0.0116
URRSS 0.8444 9.41E–04 1.27E–10 0.0018

PRLF URV 0.8507 6.60E–03 6.15E–09 0.0105
URRSS 0.8569 1.39E–02 2.74E–08 0.0212

SELF URV 0.8505 6.30E–03 5.62E–09 0.0107
URRSS 0.8496 5.31E–03 4.03E–09 0.0160

7 LINEX (δ =−2) URV 0.8451 1.00E–04 1.33E–12 0.0007
URRSS 0.8457 6.48E–04 6.00E–11 0.0014

LINEX (δ = 2) URV 0.8446 6.00E–04 5.19E–11 0.0013
URRSS 0.8448 3.92E–04 2.20E–11 0.0009

PRLF URV 0.8458 7.00E–04 7.59E–11 0.0012
URRSS 0.8451 4.69E–05 3.14E–13 0.0005

SELF URV 0.8457 7.00E–04 6.94E–11 0.0012
URRSS 0.8458 7.79E–04 8.67E–11 0.0013

Note: E–a: stands for 10−a.
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Table 2: Entropy estimates, RAB, ER and WD based on URV and URRSS at (θ ,β)= (2, 2) and
SH(x) = 1.3584

n Loss function Scheme Estimate RAB ER WD

4 LINEX (δ =−2) URV 1.3421 1.20E–02 5.31E–08 0.1316
URRSS 1.6688 2.29E–01 1.93E–05 0.8824

LINEX (δ = 2) URV 1.2583 7.40E–02 2.00E–06 0.2550
URRSS 1.3556 2.03E–03 1.52E–09 0.0184

PRLF URV 1.4823 9.10E–02 3.07E–06 0.2334
URRSS 2.0788 5.30E–01 1.04E–04 1.1534

SELF URV 1.4763 8.70E–02 2.78E–06 0.2357
URRSS 2.2136 6.30E–01 1.46E–04 1.4540

5 LINEX (δ =−2) URV 1.3567 1.00E–03 5.31E–10 0.0132
URRSS 1.3475 8.00E–03 2.37E–08 0.0488

LINEX (δ = 2) URV 1.3482 8.00E–03 2.08E–08 0.0258
URRSS 1.3616 2.40E–03 2.13E–09 0.01491

PRLF URV 1.3707 9.10E–02 3.04E–08 0.0232
URRSS 1.3448 1.00E–02 3.65E–08 0.0919

SELF URV 1.3701 9.00E–03 2.78E–08 0.0239
URRSS 1.3912 2.40E–02 2.16E–07 0.1017

6 LINEX (δ =−2) URV 1.3480 8.00E–03 5.13E–10 0.0132
URRSS 1.3567 1.00E–03 5.34E–10 0.0065

LINEX (δ = 2) URV 1.3394 1.40E–02 7.14E–08 0.0884
URRSS 1.3639 4.04E–03 6.03E–09 0.0208

PRLF URV 1.4233 4.80E–02 3.04E–08 0.0232
URRSS 1.3573 1.00E–03 2.22E–10 0.0044

SELF URV 1.2667 9.00E–03 2.78E–08 0.0239
URRSS 1.3607 2.00E–03 1.06E–09 0.0067

7 LINEX (δ =−2) URV 1.3582 0.00E+00 5.31E–12 0.0013
URRSS 1.3579 0.00E+00 4.34E–11 0.0009

LINEX (δ = 2) URV 1.3573 1.00E–03 2.08E–10 0.0026
URRSS 1.3578 3.93E–04 5.71E–11 0.0103

PRLF URV 1.3596 1.00E–03 3.04E–10 0.0023
URRSS 1.3582 0.00E+00 6.34E–12 0.0010

SELF URV 1.3595 1.00E–03 2.78E–10 0.0024
URRSS 1.3582 0.00E+00 7.55E–12 0.0009

Note: E–a: stands for 10−a.

• The ER of entropy estimates under SELF and LINEX based on URRSS is smaller than
that of the corresponding under URV at n=6 for all values of (θ ,β) (see Figs. 1 and 2).

• The ER of entropy estimates under LINEX (δ = 2) under URRSS is smaller than that of
the corresponding under URV at n= 7 for all values of (θ ,β) (see Fig. 3).

• The ER of entropy estimates based on URSS is smaller than the corresponding under URV
at n=5, and (θ ,β)=(0.5, 2) for different loss functions (see Fig. 4).
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Table 3: Entropy estimates, RAB, ER and WD based on URV and URRSS at (θ ,β) = (0.5, 2)
and SH(x) = 3.2896

n Loss function Scheme Estimate RAB ER WD

4 LINEX (δ =−2) URV 3.3481 1.78E–02 6.84E–07 0.1290
URRSS 3.8466 1.69E–01 6.20E–05 0.6574

LINEX (δ = 2) URV 3.1869 3.12E–02 2.11E–06 0.2583
URRSS 3.4590 5.15E–02 5.74E–06 1.0862

PRLF URV 3.4135 3.77E–02 3.07E–06 0.2336
URRSS 3.2859 1.13E–03 2.78E–09 0.5921

SELF URV 3.4089 3.62E–02 2.84E–06 0.2415
URRSS 3.2191 2.14E–02 9.94E–07 0.8571

5 LINEX (δ =−2) URV 3.2733 5.00E–03 5.31E–08 0.1316
URRSS 3.2774 3.73E–03 3.00E–08 0.0917

LINEX (δ = 2) URV 3.1896 3.04E–02 2.00E–06 0.2550
URRSS 3.3409 1.56E–02 5.25E–07 0.0686

PRLF URV 3.4135 3.77E–02 3.07E–06 0.2334
URRSS 3.2916 6.02E–04 7.83E–10 0.0150

SELF URV 3.4075 3.58E–02 2.78E–06 0.2357
URRSS 3.3371 1.44E–02 4.50E–07 0.0793

6 LINEX (δ =−2) URV 3.2880 5.00E–04 5.31E–10 0.0132
URRSS 3.2835 1.87E–03 7.54E–09 0.0146

LINEX (δ = 2) URV 3.2794 3.10E–03 2.08E–08 0.0258
URRSS 3.2950 1.65E–03 5.91E–09 0.0108

PRLF URV 3.3019 3.70E–03 3.04E–08 0.0232
URRSS 3.2905 2.65E–04 1.52E–10 0.0080

SELF URV 3.3014 3.60E–03 2.78E–08 0.0239
URRSS 3.2874 6.84E–04 1.01E–09 0.0131

7 LINEX (δ =−2) URV 3.2895 0.00E+00 1.33E–12 0.0007
URRSS 3.2897 3.12E–05 2.10E–12 0.0008

LINEX (δ = 2) URV 3.2916 5.94E–04 7.64E–10 0.0120
URRSS 3.2902 1.66E–04 5.96E–11 0.0150

PRLF URV 3.2902 2.00E–04 7.59E–11 0.0012
URRSS 3.2903 2.21E–04 1.06E–10 0.0016

SELF URV 3.2902 2.00E–04 6.94E–11 0.0012
URRSS 3.2896 7.49E–08 1.21E–17 0.0005

Note: E–a: stands for 10−a.

• The ER of entropy estimates based on URRSS is smaller than the corresponding under
URV at n= 7, (θ ,β) = (2, 2) for the proposed loss functions except LINEX (δ = −2) (see
Fig. 5).

• The WD of entropy estimates based on URV is smaller than the corresponding under
URRSS at n=4 under PRLF for all values of (θ ,β) (see Fig. 6).

• In general, as n increases, the ER, RAB and WD of estimate decrease for both record
schemes.
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• As the true value SH(x) increases, the ER increases in most of the situations.

Figure 1: ER of entropy estimate based on URV and URRSS at SELF and n= 6 for all values
of (θ ,β)

Figure 2: ER of entropy estimate based on URV and URRSS at n= 6, and LINEX (δ = 2) for
all values of (θ ,β)

Figure 3: ER of entropy estimate based on URV and URRSS at n= 7 and LINEX (δ = 2) for all
values of (θ ,β)
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Figure 4: ER of entropy estimate based on URV and URRSS at n = 5, SH(x) = 3.289 and
different loss functions

Figure 5: ER of entropy estimate based on URV and URRSS at n = 7, SH(x) = 1.358 and
different loss functions

Figure 6: WD of entropy estimate based on URV and URRSS at n= 4 and PRLF for all values
of (θ ,β)
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6 Application to Real Data

In this section, a real data set is analysed for illustrative purposes. The suggested data
represent the lifetimes of steel specimens tested at different stress levels (for more details see [36].
Some preliminary data analysis is performed. The Kolmogorov-Smirnov (K-S) test is used for the
data set to the fitted model. It is observed that the K-S distance are 0.083 with the corresponding
P-value 0.917. It indicates that the GIE model provides reasonable fit to this data set. Also, the
estimated PDF, CDF and PP plots for data are represented in Fig. 7. From these figures it can
be concluded that the GIE distribution is an adequate model to fit these data.

Figure 7: Estimated PDF, CDF and PP plots of the GIE distribution for lifetimes of steel
specimens data

The extracted records from a part of this data are presented as

38.5 38 37 36

60 100 141 173
83 128 143 218
140 186 194 288

318 394
585

Based on the above record data, it can be shown that URRSS of size n= 4 is (t1,1, . . . , t4,4)=
(60, 128, 194, 394) and the URV of size n= 4 is (t1, . . . , t4)= (60, 83, 140, 186). Considering this
record data, the entropy Bayes estimator at n= 4 under SELF, LINEX and PRLF are obtained
and listed in Tab. 4.

From Tab. 4, we can conclude that ER of entropy estimates under URRSS gets the smallest
values compared to the corresponding under URV in case of PRLF and LINEX (δ =−2) at true
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value SH(X ) = 3.2896. While at true value SH(X ) = 1.3584, it is noted that the ER of entropy
estimates under URRSS is smaller than the corresponding under URV in case of LINEX (δ = 2)
and SELF. Furthermore, one can conclude that the ER of entropy estimates under URRSS are
smaller than the corresponding counterparts URV at LINEX (δ =−2) for true value SH(X )=
0.8452.

Table 4: Entropy estimates and their RAB, ER and WD of steel specimens at different stress levels
data based on URV and URRSS

True entropy (θ ,β) Loss function Scheme Estimate RAB ER WD

0.8452 (4, 2) LINEX (δ =−2) URV 0.667 0.211 6.33E–06 0.267
URRSS 0.874 0.035 1.71E–07 0.219

LINEX (δ = 2) URV 0.894 0.058 4.75E–07 0.115
URRSS 0.787 0.069 6.76E–07 0.119

PRLF URV 0.891 0.054 4.16E–07 0.168
URRSS 0.772 0.086 1.06E–06 0.208

SELF URV 0.799 0.054 4.17E–07 0.176
URRSS 0.952 0.126 2.27E–06 0.220

1.3584 (2, 2) LINEX (δ =−2) URV 1.342 0.012 5.31E–08 0.132
URRSS 1.301 0.042 6.57E–07 0.156

LINEX (δ = 2) URV 1.258 0.074 2.00E–06 0.255
URRSS 1.373 0.011 4.11E–08 0.117

PRLF URV 1.343 0.011 4.74E–08 0.118
URRSS 1.398 0.029 3.20E–07 0.143

SELF URV 1.409 0.037 5.17E–07 0.138
URRSS 1.338 0.015 8.05E–08 0.119

3.2896 (0.5, 2) LINEX (δ =−2) URV 3.347 0.017 6.61E–07 0.114
URRSS 3.274 0.005 4.80E–08 0.180

LINEX (δ = 2) URV 3.243 0.014 4.31E–07 0.124
URRSS 3.234 0.017 6.16E–07 0.159

PRLF URV 3.362 0.022 1.06E–06 0.218
URRSS 3.310 0.006 8.01E–08 0.250

SELF URV 3.278 0.003 2.49E–08 0.178
URRSS 3.244 0.014 4.11E–07 0.106

7 Summary and Conclusion

This paper provides Bayesian estimation of the Shannon entropy for the generalized inverse
exponential distribution using URRSS and URV shemes. The entropy Bayesian estimators are
considered using gamma prior functions for symmetric (SELF) and asymmetric (LINEX and
PRLF) loss functions. In order to obtain the Bayesian estimators, we employed Markov Chain
Monte Carlo method based on Metropolis-Hastings algorithm. The performance of the entropy
estimates for the GIE distribution is investigated in terms of their relative absolute bias, estimated
risk and the width of credible intervals. From simulation results, it turns out that, the entropy
Bayesian estimator approaches the true value as the number of record increases. Generally, the
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entropy and ERs are directly proportional, that is; if the real value of entropy increases, the ERs
increase. The WD of Bayes credible intervals for estimated values of entropy URRSS is smaller
than the corresponding estimated values based on URV for all loss functions for most values of
record values in the majority of the cases. A data real example has been considered to illustrate
the applicability of the proposed methodology for the considered record schemes.
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