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Abstract: A tremendous amount of vendor invoices is generated in the corpo-
rate sector. To automate the manual data entry in payable documents, highly
accurate Optical Character Recognition (OCR) is required. This paper pro-
poses an end-to-end OCR system that does both localization and recognition
and serves as a single unit to automate payable document processing such as
cheques and cash disbursement. For text localization, the maximally stable
extremal region is used, which extracts a word or digit chunk from an invoice.
This chunk is later passed to the deep learning model, which performs text
recognition. The deep learning model utilizes both convolution neural net-
works and long short-termmemory (LSTM). The convolution layer is used for
extracting features, which are fed to the LSTM. The model integrates feature
extraction, modeling sequence, and transcription into a unified network. It
handles the sequences of unconstrained lengths, independent of the character
segmentation or horizontal scale normalization. Furthermore, it applies to
both the lexicon-free and lexicon-based text recognition, and finally, it pro-
duces a comparatively smaller model, which can be implemented in practical
applications. The overall superior performance in the experimental evaluation
demonstrates the usefulness of the proposed model. The model is thus generic
and can be used for other similar recognition scenarios.

Keywords: Character recognition; text spotting; long short-term memory;
recurrent convolutional neural networks

1 Introduction

Deep Learning (DL) relies on the powerful function approximation and representation
attributes of deep neural networks [1]. DL’s innovation and realization have revolutionized many
areas, including computer vision, speech recognition, pattern recognition, and natural language
processing. DL has enabled computational mathematical models and frameworks, which comprise
multiple interlinked processing intermediate layers, to learn the inherent representations of data.
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This learning is achieved with multiple levels of abstraction by introducing multiple layers [2].
Recognition of sequence objects, such as handwritten text, scene text, and the musical score, is
challenging compared to other similar problems. The challenge comes from the prediction of the
series of object labels rather than single labels. The second challenge to sequence-based objects
is their arbitrary lengths. The lengths of sequence objects may vary on a case-to-case basis,
and no restrictions can be imposed as these occur in natural problems and represent natural
circumstances. An example of such sequence objects in the scene is the text with the word “yes”
with only three characters and a word like “investments” having eleven characters. This poses
a challenge to detection and recognition algorithms. State-of-the-art contains efforts to address
this problem using conventional and non-conventional Machine Learning (ML) approaches. DL
is used in object detection, image understanding, document analysis, and text recognition.

In this paper, we propose an end-to-end Optical Character Recognition (OCR) system, which
does both localization and recognition and serves as a single unit to automate payable docu-
ment processing such as cheques, vendor invoices, and cash disbursement. For text localization,
the maximally stable extremal region is used, which extracts a word or digit chunk from an
invoice. This chunk is later passed to the deep learning model, which performs text recogni-
tion. The deep learning model utilizes both the convolution neural network and long short-term
memory (LSTM). The convolution layer is used for extracting features, which are fed to the
LSTM. The model integrates feature extraction, modeling sequence, and transcription into a
unified network. The proposed architecture, being an end-to-end trainable network, handles the
sequences of unconstrained lengths, independent of the character segmentation or horizontal scale
normalization.

Furthermore, it applies to both the lexicon-free and lexicon-based text recognition, and finally,
it produces a comparatively smaller model, which can be implemented for practical applications.
The overall superior performance in the experimental evaluation demonstrates the usefulness of
the proposed model. The model is thus generic and can be used for other similar recognition
scenarios.

The rest of the paper is organized as follows. Section 2 presents the related work, whereas the
proposed architecture is given in Section 3. Similarly, Section 4 discusses the experimental analysis
and evaluation, whereas Section 5 concludes the paper.

2 Related Work

Shi et al. [3] investigated text recognition in the scene. A unified framework and novel deep
architecture are presented that integrate feature extraction, sequence modeling, and transcription.
The proposed approach is end-to-end trainable and handles sequences without restrictions on
the length. The approach is also independent of the prior lexicon and generates a comparatively
smaller model for real-time, real-world scenarios. Tian et al. [4] propose an approach for text
localization in natural images. They term the approach as the Connectionist Text Proposal Net-
work (CTPN). CTPN is based on the vertical anchor that efficiently predicts text location and the
scoring of text and non-text for fixed-width proposals. The approach fuses the Recurrent Neural
Network (RNN) with the Convolutional Neural Network (CNN). The CTPN, which uses RNN
and CNN, is shown to work reliably on multi-scale and multi-language text. The approach does
not need the post-processing steps compared to the previous approaches.

In [5], the authors propose an approach to text detection in complex scenarios involving
panorama images. The approach exploits the Extremal Regions (ER) as well as the fusion of
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edge information, probabilistic color detection, and geometric properties for segmenting the text
from the background. The authors report good overall detection performance. In [6], the authors
present a novel approach for detecting tables in document images. The workflow for table detection
is based on three unique steps: the first one is preprocessing, followed by the detection of
horizontal and vertical lines. The last one is the table detection based on the previous two steps.
The performance is evaluated using forms, magazines, newspapers, scientific journals, certificates,
handwritten documents, and cheques. In [7], the authors use morphological operators for text
feature extraction for text line segmentation in documents. The algorithm is based on projecting
multiple histograms. From the horizontal projection on the text image, line segments are extracted
based on the peak horizontal projection. Threshold-based segmenting segments the images into
multiple parts. The histogram’s vertical projection is exploited for the line segments, followed
by the decomposition in words and, finally, characters using different thresholds. They got an
accuracy of 98%.

Yang et al. [8] propose a hierarchical network based on two unique characteristics. First, the
proposed network follows the structure of the documents. Second, the approach employs two
attention levels that are applied at the sentence and word levels. In evaluating six large-scale text
tasks, the proposed method outperforms the state-of-the-art by a large margin. The approach
in [9] investigates Neural Network (NN) architecture for multi-label text classification tasks. The
article proposes that simple NN models and the integration of rectified, dropout, and AdaGrad
are suitable for this task. Specifically, Backpropagation for Multi-Label Learning’s (BP-MLL)
ranking loss minimization is useful to be replaced with the commonly used Cross Entropy Error
(CEE) function. The evaluation suggests that rectified linear units (RLU), dropout, and AdaGrad
outperform other detection approaches based on six large-scale text datasets. Graves et al. [10]
proposed an approach based on the RNN that is specifically designed for sequence labeling tasks,
in which the data is complex and contains multi-range, directional dependencies. The proposed
network is robust to the size q of the lexicon. The impact of hidden layers and the use of hidden
layers’ context is also demonstrated. The approach significantly outperforms the state-of-the-art.

In [11], two text extraction approaches from the natural images are compared based on
the edge-based and connected-component. Furthermore, DL and RNN are also widely used for
generic object detection in images. In [12], Zuo argues that CNN networks alone are not adequate
and suitable to model the complex relationship between pixels in images. RNN, on the other
hand, can model the inherent contextual dependencies in digital images. Therefore, the authors
propose to merge CNN and RNN, especially for tasks involving pixel-based detection. As an
example application, the work demonstrates its use of the fusion approach for skin color detection
in two datasets. The work in [13] is also based on the similar concept of using CNN and RNN
together due to the inherent complexities involved in the images’ objects. The proposed approach
is termed the CNN-RNN framework. It uses image-label embedding to learn the semantic label
interdependency and the relevance of the image label. The CNN-RNN is end-to-end trainable.
The approach outperforms the state-of-the-art.

In [14], the authors also propose a recurrent CNN represented as the RCN for image-based
object recognition tasks. The activities of the proposed Recurrent Convolutional Neural Network
(RCNN) layers and units evolve by modulated activities of the neighboring units, thus learning the
contextual information. On evaluating the proposed approach using the four datasets, the RCNN
outperforms state-of-the-art models on all of these datasets and demonstrates the advantage of
RCNN. Elfwing et al. [15] propose the deep architecture of the Free-Energy Restricted Boltzmann
Machines (FE-RBM). The RBMs are stacked on top of each other, and the class node is
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connected to all the hidden layers to improve performance. The performance of the approach
shows its effectiveness.

3 Proposed Methodology

OCR generally requires two steps: the first is the localization, and the second being recogni-
tion. Our method of processing payable documents is also divided into two steps. The first step
is text localization. In this step, an image is segmented to get only the text candidate region,
and other regions are removed. These segmented regions or chunks are then passed to the text
recognition module, which then transcribes the image. We use the Maximally Stable Extremal
Region (MSER) for text localization due to its robustness to noise and illumination. MSER
detects text chunks, which are then passed on to the recurrent convolutional neural network, which
generates a transcription of the image.

3.1 Maximally Stable Extremal Region (MSER)
MSER is proposed by Matas et al. [16] for the correspondence between two image-based

objects with different viewpoints. The MSER regions are used for blob detection in digital images.
MSER regions possess two properties: first, they are affine invariant and are independent of
warping or skewness. Secondly, the regions are sensitive to lightness or darkness. The intensity
function calculates the MSER regions in the corresponding region and the outer boundary, which
results in the regions’ valuable characteristics for detection tasks. Sambyal et al. [17] proposed
character segmentation and text extraction based on the MSER. The MSER is used to treat
the essential letter candidates. The MSER threshold regions are used to determine the various
connected components for various characters’ identification. The algorithm is evaluated on the
character sets from English, Russian, Urdu, and Hindi languages. The authors report good
performance for the English and Russian languages characters, but comparatively low performance
for the character set of Urdu and the English languages. The authors advocate the simplicity
and less overhead of the proposed approach. In [18], Sung et al. propose the Extremal Region
(ER) tree construction. It is advocated that the use of MSER regions alone, as done by Sambyal
et al. [17], is not a viable solution due to the strict requirements of maximum stability and,
therefore, achieves decreased performance. The approach employs sub-path sampling, pruning,
character candidate selection, and finally, using Adaptive boosting to verify the candidates in
extracted characters. Thus, the approach achieves an increased recall of 8%, precision of 1%, and
F-measure of 4%. In [19], the authors propose a multi-level MSER for text segmentation from
the scenes. The proposed approach defines a segmentation score based on the four measures of
stroke width, boundary curvature, character confidence, and color constancy. The best MSER
scored from each channel is fused for final segmentation. In [20], the authors propose a text
detection approach based on enhanced MSER. The approach employs an enhancement based on
edge detection and is termed as edge-enhanced MSER for basic letter candidates. Based on the
geometric and stroke width information, the basic letters’ candidates are then filtered for excluding
non-textual objects. Finally, the letters are paired and subsequently separated into discrete words
using the text lines’ identification.

In our paper, an image is fed to MSER, which extracts the character candidate region and the
input image’s noise. Further enhancement to the MSER is done to extract only the characters and
discard the non-text regions such as logos, lines, and boxes. The text and text regions are separated
based on the stroke width of the candidate region. The characters usually have a stroke width
less than that of non-text. After getting the character candidate region, chunking of individual
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letters was done to form words from characters. Word chunks are formed if two letters overlap
each other in a horizontal direction.

3.2 Proposed MSER Recurrent Convolutional Neutral Network (MRCNN)
The proposed architecture is shown in Fig. 1. Our network consists of four units, the MSER

layer, convolution layers, recurrent layers, and the transcription layers. The MSER is applied as
a preprocessing to segment the characters. The convolutional layers extract and learn the feature
sequence from each input image character. The recurrent network is constructed from the feature
sequence of the convolutional layer output, making a probabilistic prediction for each frame.
The final layer of transcription that gets input from the recurrent layer is used to translate the
recurrent layer predictions into sequence labels. The convolutional and the recurrent networks are
jointly trained with one loss function.

3.3 Convolutional Feature Map
In the proposed approach, the convolutional layers are like conventional Deep CNN, using

the convolutional and max-pooling layers and removing the fully connected layers. This setup thus
extracts sequential features from input. One constraint is the similar scaling of the input images.
The feature vectors of feature maps are produced by applying the convolutional layers used by
the next recurrent layer. Each feature vector is generated in a left to right fashion on the feature
map using a column. The width of the column is kept fixed, i.e., 26 pixels. In the proposed
network, deep features are conveyed into sequential representations invariant to the length of
sequence-like objects. The translation invariance comes from applying the layers of convolution,
max pooling, and element-wise activation function operating on the local regions. Thus, the feature
maps’ columns represent the original image’s rectangle region, also referred to as the receptive
field.

3.4 LSTM Recurrent Labeling
For predicting the label Y for each frame x in feature sequence X , a deep bi-directional RNN

is constructed on top of the CNN layers as the recurrent layers. The RNN has strong capabilities
in capturing the context information in the image sequence. It can trace back the errors to input
convolutional layers that calculated these features, allowing a joint CNN and RNN to train in
sequence. Furthermore, RNN can operate on arbitrary length sequences. A basic unit of the RNN
contains a self-connected hidden layer in between the input layer and the output layer. When
it receives a frame in the input sequence, it issues an update to its internal state using a non-
linear function. This function takes the current input and previous state as inputs and predicts
the current class. The generic RNN networked units suffer from the vanishing gradient problem,
as discussed by Bengio et al. [21]. Thus, this problem adds a burden on the overall training setup
and reduces the range of context storage. Thus, the LSTM of [22,23] as RNN types addresses this
problem. Since the context from both directions is valuable and complementary to each other, we
follow [3,24], combining two LSTMs. We combine a forward and backward LSTM for two-way
directional LSTM.

Moreover, multiple LSTMs layers can be used to construct a deep LSTM model. The deep
LSTM has contributed to the task of speech recognition [24]. Furthermore, it allows for a higher
level of abstractions than simple LSTM. The error is propagated in the opposite directions of
the directional LSTM using the Back-Propagation Through Time (BPTT). In the last stages of
RNN, the propagated sequence differentials are mapped. This inverts the operation of feature
maps conversion into feature sequences, fed to the convolutional layers.
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Figure 1: The proposed architecture of the CNN-LSTM network. The network contains three
layers: the convolution layer, which learns and thus extracts features, LSTM Recurrent layer that
predicts the class label for each frame; and the transcription layer that maps the predictions into
the final label
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3.5 Label Transcription
The frame-based predictions of the RNN are converted into sequence labels. This process

is termed transcription, where we find the label sequence based on the highest probabilistic
distribution of predictions. There are two kinds of transcriptions: lexicon-based and lexicon-
free transcriptions. A lexicon puts a constraint on the predictions. In a lexicon-free setup, the
predictions are unconstrained. In lexicon mode, the highest probability drives the predictions for
label sequence. The transcription is done using the connectionist temporal function, which uses a
forward-backward algorithm for finding the optimal candidate. That is why it learns the contextual
information about predicting a chunk. However, the Back-Propagation Through Time (BPTT) is
applied in the recurrent layers for calculating the error differentials in these layers.

4 Experiments and Results

This section contains the details of the experiments along with a detailed discussion of the
obtained results.

4.1 Network Training
We consider an image training dataset X = {I , L}, where I represent the images, and L

stands for the ground truth labels. The network minimizes the negative log-likelihood of the
conditional probability of the ground truth. A Stochastic Gradient Descent (SGD) is used and
calculated by the back-propagation algorithm for training the network. The “forward-backward”
algorithm of [25] propagates the error differences backward in the Transcription layer. For per-
dimension learning rates calculation and its optimization, we used the ADADELTA algorithm
of [26]. Compared to others, the ADADELTA automatically calculates the learning rates. We also
found that the optimization by the ADADELTA converged faster.

4.2 Network Configuration
The architecture of the convolution setup is extended from the work of Simonyan et al. [27].

Tab. 1 shows the configuration of the network. The network of [27] is adapted to work for the
English text. As such, in the max-pooling layers of row 8 and row 11 (Tab. 1), we adapted pooling
strides of 1 × 2 compared to the conventional 2 × 2. We also represent them as third and
fourth max-pooling layers. This results in the feature maps having larger widths, thus producing
a comparatively more extended feature sequence. Our network has deep convolutional layers with
deep recurrent layers and uses the batch normalization technique introduced by Ioffe et al. [28].
The technique in [28] is beneficial for training a network of these extreme depths. The network is
augmented with the batch normalization layers. These layers are inserted after the third, fifth, and
seventh convolutional layers. The batch normalization process of [28] greatly reduces the training
times, thereby expediting the network’s execution.

4.3 Environmental Specification and Experimental Details
We used the GeForce GTX 1080 Ti server containing 3584 cores and 12 GB of dedicated

GPU memory for the experimental setup. Besides the GPU configuration, the server contains 20
CPUs and 32 GB of memory. The model was trained on 0.65 million images and validated against
0.15 million images. Due to the simplicity of the training data (since the data only consists of
numbers and alphabets), the model converged in just two hours. On a test set of 20 thousand
payable cash vocabulary, the model reported an accuracy of 95 percent when used without lexicon.
When used with a lexicon, the model reported 99 percent accuracy in predicting words. One of
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the advantages of this network is the duality of its configuration, i.e., it can be used to predict
words restricted either to a particular lexicon or without any restrictions. Restricting the model
prediction to a lexicon helps in the correct identification of key terms that are used in various
financial and analytic processes. In this way, we utilize both lexicon-based and lexicon-free models.
Predicting words through the lexicon-based model is cost-effective, but if there is a small lexicon,
e.g., twenty thousand words and CUDA environment, then the time taken by the lexicon-based
model does not cost that much.

Table 1: RNN configuration

Layer Details

Input data 100 × 32 image
Convolution (1:64, 3 × 3, 1, 1, 1, 1)
Max pooling (1) (2 × 2, 2, 2)
Convolution (64:128, 3 × 3, 1, 1, 1, 1)
Max pooling (2) (2 × 2, 2, 2)
Convolution (128:256, 3 × 3, 1, 1, 1, 1)
Convolution (256:256, 3 × 3, 1, 1, 1, 1)
Max pooling (3) (2 × 2, 1, 2, 1, 0)
Convolution (256:512, 3 × 3, 1, 1, 1, 1)
Convolution (512:512, 3 × 3, 1, 1, 1, 1)
Max pooling (4) (2 × 2, 1, 2, 1, 0)
Convolution (512:512, 2 × 2)
Transpose-split-sequential
LSTM-bidirectional Hidden: 256 units
LSTM-bidirectional Hidden: 256 units
Transcription

4.4 Experimental Results and Discussion
Our deep pipeline consists of two phases: the first phase is image detection, i.e., detection of

textual geometries in a scanned document, and the second one is the transcription of detected
textual geometry. MSER, already discussed in this paper’s methodology section, is widely used
for text detection [17–20]. Although MSER detects the textual geometries accurately in scanned
documents, it detects some non-textual regions such as horizontal and vertical lines, logos, noise
(bar codes and dashes). MSER works in the following manner: firstly, it performs thresholding
based on the luminance, and then it extracts the connected components called extremal regions
that survive the recursive thresholding. Thus, the final regions we obtain are the maximally stable
extremal ones. To get only the stable textual regions, we enhanced the MSER module to get only
textual regions. Before passing the image to the MSER module, we performed some preprocessing
to remove vertical and horizontal lines, as shown in Fig. 2.
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Figure 2: (a) Shows the overall MSER pipeline (b) shows original images (c) shows binary images
after applying MSER (d) shows the final image after applying preprocessing and MSER
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Lines are not the only type of noise that we encounter in documents, and there are some
other types of noise as well, such as logos and barcodes. To remove such noise, we got statistical
properties of these regions obtained from the connected component analysis. For each of the
connected components obtained from MSER, we obtain the following region properties as shown
in Eqs. (1)–(5):

Aspect_ratio = region_width
region_height

, (1)

Solidity = Area
region_width ∗ region_height , (2)

Height_ratio = image_height
region_height

, (3)

Rectangular_area = region_width ∗ region_height, (4)

Extent = Area_of_the_region
Rectangular_area

. (5)

Based on the region properties, we applied adaptive thresholding to determine whether a
particular region is textual or not. Fig. 3 shows the graphical illustration of our discussion.

Figure 3: The description of the various transformations applied to the input data

After localizing the text candidate regions using MSER, we then pass the image to the RCNN
(Recurrent convolutional neural network). The configuration of layers used for RCNN is discussed
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in the previous sections. RCNN uses the connectionist temporal classification, which predicts the
whole word by using contextual information. However, it cannot help identify numbers since
they do not rely on the context. We can use RCNN either in lexicon mode, i.e., predictions
are constrained to a limited vocabulary, or lexicon-free mode, where the predictions are not
constrained to any specific dictionary. We made changes in the RCNN and used the classifier in
both the modes, i.e., lexicon mode and lexicon-free mode. The lexicon mode is used for predicting
words that can later be used for extracting specific information from invoices, while the non-lexical
mode is used for predicting alphanumeric and numbers. The connectionist cost function does not
help predict numbers because number prediction does not depend on the previously predicted
number.

Nevertheless, bi-directional LSTM can capture the geometrical information about a particular
symbol and classify that number/alphanumeric. The previous results obtained using the connec-
tionist temporal classification have been state-of-the-art [3]. In our case, we obtained an F-score
of 0.99 during testing of 0.15 M images in lexicon-free mode.

5 Conclusion and Future Work

This paper presented a deep learning model based on Convolutional Recurrent Neural Net-
work (CRNN) and Long Short-Term Memory (LSTM) to automate the tedious task of payable
document processing. CNN helps in feature extraction. The extracted features are then passed
to the LSTM. The RNN part is explored to describe the context of scene text images and
predict sequence-like objects’ structured outputs. The primary benefit of this approach is that it
can handle both lexicon-free and lexicon-based text recognition. Furthermore, Maximally Stable
Extremal Regions (MSER) were used for text extraction while avoiding noise. Our approach was
able to get an accuracy of 95 percent on a test set of 20,000 payable images when used without
lexicon. On the other hand, we got 99 percent accuracy while using the lexicon-based approach.
In the future, we plan to use Bidirectional Gated Recurrent Units (BGRU).
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