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Abstract:Task scheduling is themain problem in cloud computing that reduces
system performance; it is an important way to arrange user needs and perform
multiple goals. Cloud computing is the most popular technology nowadays
and has many research potential in various areas like resource allocation, task
scheduling, security, privacy, etc. To improve system performance, an efficient
task-scheduling algorithm is required. Existing task-scheduling algorithms
focus on task-resource requirements, CPU memory, execution time, and exe-
cution cost. In this paper, a task scheduling algorithm based on a Genetic
Algorithm (GA) has been presented for assigning and executing different
tasks. The proposed algorithm aims to minimize both the completion time
and execution cost of tasks and maximize resource utilization. We evaluate
our algorithm’s performance by applying it to two examples with a different
number of tasks and processors. The first example contains ten tasks and four
processors; the computation costs are generated randomly. The last example
has eight processors, and the number of tasks ranges from twenty to seventy;
the computation cost of each task on different processors is generated ran-
domly. The achieved results show that the proposed approach significantly
succeeded in finding the optimal solutions for the three objectives; completion
time, execution cost, and resource utilization.

Keywords: Cloud computing; task scheduling; genetic algorithm;
optimization algorithm

1 Introduction

Recently, cloud computing is the most popular technology; resource allocation, task schedul-
ing, security, and privacy have been widely used in various fields. Scheduling plays an important
role in improving the efficiency of all cloud-based services. In cloud computing, task scheduling
is used to assign the task to the optimal resource for execution. Task scheduling algorithms
have different types of algorithms and different issues as completion time, execution cost,
complexity, etc.
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Cloud computing has emerged as a new computing platform according to the development
of virtualization and Internet technologies [1]. It can be viewed as a distributed system contain-
ing interconnected and virtualized computers that are dynamically provisioned. It maintains the
service-level agreements (SLA) between the users and the host applications [2].

Cloud computing is interested in resource management, security, performance, reliability,
etc., [3]. Resource management is one of the important issues in task scheduling. The task
scheduling problem in cloud computing is how to distribute the tasks of users on the available
hardware to improve the overall performance of the cloud computing environment [4].

In [5], the authors presented an implementation to the task scheduling using .NET and a GA-
based scheduling algorithm to achieve the task and its priority. They grouped the available jobs
and executed them using different proposed algorithms. In addition, in [6], a GA was proposed
to solve the task scheduling in cloud computing under considering total task completion time,
average task completion time, and cost constraint.

The objective of task scheduling in the multiprocessor system is to assign a dependent task
to the processors, and the processing time will be reduced. To minimize the processing time,
the GA has applied to the processors to obtain various solutions and faster processing time.
Task scheduling considers two aspects: the earliest start time (EST) and some task dependencies
(NTD). This comparison made by using Java simulation and the result obtained that the proposed
algorithm solves minimum EST attains faster processing time than the maximum EST [7].

The task scheduling algorithms using Efficient State Space Search GA (ESSSGA) use the
benefits of heuristic-based algorithms to minimize space search and time to obtain effective
solutions [8]. The task to processor mapping has been made using a heuristic-based earliest finish
time approach that reduces the time regarding task execution time.

A new GA for task scheduling in the multiprocessor systems has indicated that task execution
priority depends on the height of task graphs to perform scheduling. This method is simulated
and used to compare with the basic genetic algorithm [9]. The GA efficiency could be attained by
the optimization of different parameters like mutation, crossover, selection function, and crossover
probability. These GA parameters on the reduction of bi-criteria fitness functions and parameter
setting will be accomplished by a central composite design approach with design experiments. The
experiments use these parameters and analysis of variance, which reduce the total completion time
and makespan [10].

A new GA is used for solving the problems in scheduling task graphs. The algorithm is
entirely dependent on the new approach to reduce the communication cost of processors and the
length of critical time. In order to solve the scheduling of the task graph, effective GA has been
applied. GA proposed for scheduling the task graph that can be acquired is effective in scheduling
with low time. The results obtained from the study stated that the algorithm related to graphs
without communication cost could act quickly when compared to other MCP algorithms [11].

The GA chromosomes like task list (TL), processor list (PL), and integration of both
(TLPLC). The experiments on real-world application graphs like Gaussian elimination, Gauss
Jordan and Laplace equation, and LU decompositions. TLPLCGA is related to GA and heuristic
algorithms regarding the processor’s time and efficiency conducted. The result experienced was
that the hybrid approach performs better than the other algorithms [12].

The effectiveness of Node Duplication GA (NGA) based approach against the existing deter-
ministic scheduling techniques for reducing the interprocessor traffic communication. The results
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obtained from the simulations indicate that the GA can use the scheduled task to meet deadlines
and acquire high processor utilization. Performance analysis of NGA is compared with GA,
FCFS, and List Scheduler [13].

An effective method based on GA is created to solve the problem of multiprocessor schedul-
ing. This paper used GA for scheduling precedence task graphs with inter-task communication
onto multiprocessors without considering the communication channel. Experimental results show
that hard problems have been taken from the internet, illustrates GA with optimization of
parameters [14].

The task scheduling problem has been formulated as a multi-objective optimization prob-
lem [15,16]. In [15], the authors proposed a GA-DE algorithm based on GA and Differential
Evolution (DE) to solve the problem under three constraints; total time, cost, and virtual machine
load balancing. While [16] developed an EDA-GA hybrid scheduling algorithm based on EDA
(estimation of distribution algorithm) and GA to solve the scheduling problem.

The optimal solution to the task scheduling problem cannot be obtained in a limited time
and can be found by performing a comprehensive search. So, it is one of the NP-Complete prob-
lems [17–20]. Therefore, this paper develops a GA-based algorithm to solve the task scheduling
problem in the cloud environment. The proposed algorithm’s objective is to allocate and execute
dependent tasks in an optimal manner to minimize both the completion time and execution cost
and maximize resource utilization.

The rest of this paper is presented as follows: Section 2 discusses problem definition. In
Section 3, the operations of the proposed algorithm are illustrated. Our GA approach to finding
the optimal task scheduling for a cloud computing system is described in Section 4. Section 5
discusses the results, and in Section 6, conclusions are given.

2 Notations

G A task graph
DAG A Directed Acyclic Graph
tk Task k
Pi Processor i
M Number of tasks
N Number of processors
ni Node i
ST (ni, p) Start time of node i on a processor p
FT (ni, p) Finish time of node i on a processor p
RT (pi) Ready time of the processor i
Wij Computation cost of task i on the processor j
Cost (Pj) The cost of processor j per second.
Bj Busy time of Pj
LT Tasks’ List based on DAG order.
DAT (ti, pj) The Data Arrival Time of task i at processor j
CP A critical Path of G
Pc Crossover ratio
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Pm Mutation ratio
Pop_size Population size
GN Number of Generations
Maxgn Maximum generation

3 Problem Definition

We denote the task scheduling in the cloud computing as a Graph G (M, E) with M nodes
(n1, n2, n3, . . ., nM). Each node represents a task of G and E directed edges, denoting a partial
request of the tasks. The partial request leads to a precedence-constrained (ni → nj), i.e., ni
precedes nj in the execution process. Each node represents an instruction that could be executed
along with other instructions sequentially on the same processor; it has one or more inputs. Based
on the availability of the inputs, the node (an entry or exit node) is triggered to execute [21].

The execution time of a node ni is denoted by (ni) weight. If the processor’s processing speed
is Psj, then the processing time for task ti on the processor j (Wij) can be calculated by the
following equation. We call the processing time the computation cost.

Wij = ni
Psj

(1)

The computation cost of node i on the processor j (Wij) is estimated randomly in the proposed
algorithm.

Let C(ni , nj) be the communication cost of an edge (weight of an edge), and it will be equal
to zero if ni and nj are processed on the same processor. All the computation and communication
costs for a problem are generated randomly in the proposed algorithm. Fig. 1 is a form of task
scheduling in cloud computing.

Figure 1: The computation and communication costs of DAG
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In this paper, the processors in cloud computing are heterogeneous. Therefore, the task’s
computation cost varies according to the processor. The start and finish time of ni is denoted by
ST(ni;pj) and FT(ni;pj), respectively.

The Data Arrival Time (DAT) of ti at processor pj is given by, [21]:

DAT(ti. pj)=max{FT(tk.pj)+C(ti.tk)}; k= 1.2 . . . . . . .N_Parent. (2)

where N_parent is the number of ti’s parents and C(ti.tk) = 0; if ti and tk are scheduled on the
same processor.

The task scheduling problem in cloud computing can be defined as; Find the best assignment
of the start times of the given tasks on processors such that the schedule length (the comple-
tion time) and execution cost are minimized with the condition that precedence-constrained is
preserved.

The completion time is defined as the schedule length or finish time and is computed by:

Completion Time=max(FT(tk.pj)); k= 1.2. . . . .M (3)

where,

FT(tk,pj)= ST(tk,pj)+Wkj (4)

The following pseudo-code shows how to find the schedule length (denoted by S_Length)
using SGA, [21]:

For all processor Pj,RT[Pj]=0; j= 1, 2, 3, . . .N.
For k = 1 to M

{
Remove task tk that has the first order form LT.
j= 1
While j<=N
{

If tk is processed on Pj.then
ST[ti]=max{RT[Pj]; DAT(tk; Pj)}
FT[ti] = ST[tk] + weight[tk]
RT[pj] = FT[tk]

End If
j= j+ 1
}

}
S_Length = max{FT[tk]}

The total cost (Executin Cost) of all tasks on the available processors is calculated by:

Executin Cost=
n∑
i=1

⎛
⎝

m∑
j=1

Wij ∗Cost(Pj)
⎞
⎠ (5)
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The utilization of resources is given by dividing the total value of Bj over the completion time
of an application. As follows, [22]:

Utilization=
∑N

j=1Bj
Completion Time

∗ 100 (6)

That is, the objective is to minimize Eqs. (3), (5) and (6).

4 The Proposed GA

The following subsections investigate the different components of the proposed GA, encoding,
initialization, objective function, crossover, and mutation operations. The GA is terminated when
the best solution found, or the number of generations exceeds the Maxgn.

4.1 Encoding Method
In the proposed GA, if we have M tasks and N processors, the chromosome is divided

into two parts; distributing and scheduling parts. The distributing part represents the processor’s
indices, and the scheduling part shows the tasks to be processed, as shown in Fig. 2. According
to Fig. 2, the processor P1 processes the tasks t1, t3, while t4 and t6 will be processed by P2, . . .

etc. The length of the chromosome is linearly proportional to the number of tasks.

P1 P2 P1 P3 P2 P5 … Pn t1 t4 t3 t5 t6 …. tm

Figure 2: Tasks representation on processors

4.2 Initial Population
The initial population is generated randomly and according to the following steps:

(1) A chromosome X is generated, as shown in Fig. 2.
(2) The first part of X is generated randomly from 1 to N.
(3) The second part is generated randomly from 1 to M taking into account the precedence-

constrained.
(4) Repeat from 1 to 3 to generate the number of chromosomes (population size).

4.3 The Fitness Function
This paper’s main objective is to map all the tasks to all the processors, minimize the

completion time, execution cost, and maximize resource utilization. Therefore, the fitness func-
tion (Fit) of the candidate solution is the minimum value of the completion time. i.e., Fit =
Min(Completion Time).

4.4 The Genetic Operations
4.4.1 The Crossover Operation

In the crossover, we use a 1-point crossover to produce one child from two selected parents
based on the Pc value. The distributing part of the child is taken from the distributing part of
the first parent, and the scheduling part of it is taken from the second parent. Fig. 3 explains the
crossover operation:
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1-point crossover  
Parent p1 p2 p1 pn p1 p2 … pn t1 t4 t3 t5 t2 …. tm

Child p1 p2 p1 pn p1 p2 … pn t1 t2 t4 t6 t8 …. tm

Parent p3 p1 p2 pn p3 p1 … pn t1 t2 t4 t6 t8 …. tm

Figure 3: The crossover operation

4.4.2 The Mutation Operation
The mutation operation is performed on the distributing part of the selected parent based on

the Pm value. The position to be mutated is selected randomly to change its value as shown in
Fig. 4.

Child … ….

Child p1 p2 p1 pn p1 p2 … pn t1 t2 t4 t6 t8 …. tm

p1 p2 p1 pn p3 p2 pn t1 t2 t4 t6 t8 tm

Figure 4: The mutation operation

5 The Whole Algorithm

The following algorithm explains how to use the different components of the proposed GA
as described in Section 3 to solve the task scheduling problem.

Algorithm 1: GA for solving the scheduling problem
Input: Set the parameters: pop_size, Maxgn, Pm, Pc ,GN, N, M.
According to N processors and M tasks, randomly generate the matrix of communication
and computation cost for the tasks and processors, respectively.

Generate randomly the cost of processors per second.
Generate the initial population as in Section 3.2.
Do loop to maximum generation

Do loop to pop_size
Apply crossover according to Pc.
Mutate the child according to Pm.
For each task in the child
Compute the start time ST[ti]
Compute the Final time FT[ti]
Compute the ready time of the processor P, RT[P].
Save the child with the best Fit value as a candidate solution.

End Do
End Do
For all candidate solutions, compute the following:
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Select the maximum value of finish time FT[ti], i = 1, 2, . . ..M for the tasks as
a completion time.

The busy time for each processor.
The total of execution cost.
The resource utilization.

6 Case Study

In this section, the proposed GA has been applied to two examples. The values of pop_size,
Pc, and Pm are 20, 0.95, and 0.02, respectively.

6.1 Example1
In this example, the number of M is 10 tasks, and N is 4 processors. The communication cost

between the tasks and the computation cost of each task on different processors are generated
randomly from 1 to 20, and 1 to 5, respectively. The communication cost and the computation
cost are shown in Tabs. 1 and 2, respectively.

Table 1: The communication cost between the tasks

tk t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
t1 0 0 0 0 0 0 0 0 0 0
t2 18 0 0 0 0 0 0 0 0 0
t3 3 0 0 0 0 0 0 0 0 0
t4 0 16 14 0 0 0 0 0 0 0
t5 0 0 12 0 0 0 0 0 0 0
t6 0 0 0 8 0 0 0 0 0 0
t7 0 0 0 0 1 0 0 0 0 0
t8 0 0 0 0 0 12 10 0 0 0
t9 0 0 0 0 0 0 9 0 0 0
t10 0 0 0 0 0 0 0 7 16 0

Table 2: The computation cost of each task on different processors

tk Cost(Pj)

P1 P2 P3 P4

t1 4 4 4 3
t2 3 5 5 4
t3 4 2 5 5
t4 2 1 4 4
t5 5 3 5 4
t6 5 1 3 1
t7 1 2 5 4
t8 1 1 4 3
t9 4 1 3 5
t10 3 2 4 4
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The cost of different processors per second is generated randomly from 1 to 10 and is shown
in Tab. 3.

Table 3: The cost of different processors per second

Cost(Pj)

P1 P2 P3 P4

1 7 2 2

The best solution obtained by the proposed genetic algorithm is shown in Fig. 5.

P4 P1 P1 P3 P4 P1 P4 P2 P4 P2 t1 t3 t5 t7 t2 t4 t6 t9 t8 t10

Figure 5: The best solution

The task scheduling on the different processors is shown in Tab. 4 and Fig. 6.

Table 4: The task scheduling on the different processors

Task Start Finish Processor Computational cost

t1 0 3 4 3
t2 6 10 1 4
t3 10 15 1 5
t4 16 21 3 5
t5 3 7 4 4
t6 23 25 1 2
t7 33 34 4 1
t8 30 31 2 1
t9 34 37 4 3
t10 44 46 2 2

0
6

10
16

3

23

33
30

34

44

3
10

15
21

7

25

34
31

37

46

t1t2t3t4t5t6t7t8t9t10

The task scheduling on the different 
processors

Start Finish

Figure 6: The task scheduling on the different processors
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The busy time of the processors is shown in Tab. 5 and Fig. 7.

Table 5: The busy time for each processor

B1 B2 B3 B4

4 15 5 2

4

15

5

2

P1P2P3P4

The Busy Time of the Processors

Figure 7: The busy time for each processor

The available time of the processors is shown in Tab. 6 and Fig. 8.

Table 6: The available time of the processors

P1 P2 P3 P4

44 41 31 42

44
41

31

42

P1P2P3P4

The available time of the processors 

Figure 8: The available time of the processors
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The completion time, execution cost, utilization, speedup, and efficiency are shown in the
following table, Tab. 7.

Table 7: The completion time, execution cost, utilization, speedup, and efficiency

Completion time Execution Cost Utilization Speedup Efficiency

46 64 0.85 0.14 0.035

6.2 Example2
In this example, consider four cases with N = 8 processors. The number of tasks is: 20, 30,

40, 50, and 70 tasks in the first, second, third, and fourth case (M = 20, 30, 40, 50, and 50).
The communication cost between the tasks and the computation cost of each task on different
processors are generated randomly from 1 to 20, and 1 to 5, respectively.

The completion time, execution cost, utilization, speedup, and efficiency are shown in the
following table, Tab. 8 and Figs. 9–11.

Table 8: The completion time, execution cost, utilization, speedup, and efficiency

No. of
tasks

Completion
time

Execution
cost

Utilization Speedup Efficiency No. Processors

20 35 370 80.36 0.196 0.025 8
30 34 671 66.12 0.338 0.042
40 36 702 64.24 0.358 0.045
50 55 1008 63.64 0.364 0.045
70 64 1371 61.72 0.383 0.048

353436

55
64

20 tasks30 tasks40 tasks50 tasks70 tasks

Completion time

Completion time

Figure 9: The completion time of the problems
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370
671702

1008

1371

20 tasks30 tasks40 tasks50 tasks70 tasks

Execution Cost

Execution Cost

Figure 10: The execution cost of the problems

80.36
66.1264.2463.6461.72

20 tasks30 tasks40 tasks50 tasks70 tasks

Utilization

Utilization

Figure 11: The resource utilization of the problems

7 Conclusion

The proposed GA has successfully solved task scheduling problem in Cloud computing in this
paper. The proposed algorithm targets to minimize completion time, execution cost and maximize
resource utilization. The completeness and correctness of the proposed algorithm have been tested.
This has proven that our proposed technique enabled us to obtain results faster, leading to saving
time and effort. In other words, the use of the proposed genetic algorithm has played a major
role in reducing the search space generated by the problem.

In summary, our experimental results indicate that the algorithm is more efficient than other
heuristics. To the best of our knowledge, our method’s structure and design are designed for the
task scheduling problem in the cloud computing environment. This has made it very hard to find
common features with other previous methods for comparison reasons.
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