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Abstract: The interest in selecting an appropriate cloud data center is expo-
nentially increasing due to the popularity and continuous growth of the cloud
computing sector. Cloud data center selection challenges are compounded by
ever-increasing users’ requests and the number of data centers required to
execute these requests. Cloud service broker policy defines cloud data center’s
selection, which is a case of an NP-hard problem that needs a precise solution
for an efficient and superior solution. Differential evolution algorithm is a
metaheuristic algorithm characterized by its speed and robustness, and it is
well suited for selecting an appropriate cloud data center. This paper presents
a modified differential evolution algorithm-based cloud service broker policy
for the most appropriate data center selection in the cloud computing envi-
ronment. The differential evolution algorithm is modified using the proposed
new mutation technique ensuring enhanced performance and providing an
appropriate selection of data centers. The proposed policy’s superiority in
selecting the most suitable data center is evaluated using the CloudAnalyst
simulator. The results are compared with the state-of-arts cloud service broker
policies.

Keywords: Cloud computing; data center; data center selection; cloud
service broker; differential evolution; user request

1 Introduction

A data center (DC) is a set of essential shared resources, including but not limited to
servers, network devices, power systems, data storage, and cooling systems [1]. A traditional DC
is a physical site where all servers are located, but a cloud DC is a set of shared computing
resources with higher Quality-of-Service (QoS) at a lower total cost of ownership [2]. However, the
main difference between traditional DC and cloud DC is virtualization that provides enormous
scalability, virtualized computing resources, and on-demand utility computing.

DC virtualization is a precious opportunity for IT. It saves the cost to a remarkable extent
by efficiently sharing the available resources, such as servers, storage, and network capabilities,
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translating into lower purchasing and operating costs. The DC virtualization provides com-
patibility with more applications and services and fast implementation at a higher QoS level.
Cloud Computing (CC) technology advancement utilizes DC virtualization as a springboard to
access cloud services provided by third-party Cloud Service Providers (CSPs) to build private CC
platforms with many of the same economies and efficiencies as by third-party CSPs.

Nowadays, cloud DC demand is increasing due to the importance of speed in IT service
delivery. Cloud DC speeds up service delivery by providing processing and storage capabilities and
networking close to the users from different locations worldwide. Besides, increased demand for
business agility and cost-saving with a high QoS level has led to the rapid growth of cloud DCs
over traditional DCs. Also, the CC services have increased rapidly in number and scale across
different application areas. Fig. 1 below is from Cisco’s report in 2018, showing the total amount
of cloud DC traffic in 2017 reaching 7.7 Zettabyte and 9.8 Zettabyte in 2018. It is projected to
reach 11.9 Zettabyte and 14.1 in 2019 and 2020, respectively [3].
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Figure 1: Total annual data center traffic from 2015–2020 [3]

With an increased volume of cloud services generated and data volume stored across geo-
distributed DCs, the question of how to route users’ requests in a manner that ensures efficient
resource utilization and a high level of QoS has become an emerging topic. Also, the target DC
location has a direct influence on the CC environment’s QoS level. An appropriately selected cloud
DC will enhance a large-scale CC environment’s overall performance for user requests’ execution
by providing efficient resource usage, reduces processing and response time, provides scalability,
and averts deadlock [4]. Also, the increased demand for CC’s services makes cloud users more
aware of higher-level QoS. This awareness raises a new challenge on efficient and optimal cloud
DC selection to cater to different user’s needs from a large set of cloud DCs distributed among
different regions worldwide.

1.1 Problem Formulation of Cloud Data Center Selection
cloud DCs communicate with each other in an ad-hoc manner within the CC environment

[5–7] to execute users’ requests. Therefore, similar to selecting a physical DC, the cloud DC must
be chosen appropriately for efficient user requests’ execution with minimum computational time
and the lowest cost, which remains challenging in the CC field. The following example clarifies
the main problem of cloud DC selection.

Assume there are N user requests UR= {UR1, UR2,. . ., URn}, which are routed to N
available cloud DCs: DC = {DC1, DC2, . . ., DCn} such that the fitness of x (DC × UR → x)
given objectives O = {O1, O2, . . .,On} are optimized within a specific time frame. The problem
of cloud DC selection can be depicted below in Fig. 2, where, for instance, two or more users’
requests may be executed by one cloud DC. The main objective often comprises users’ QoS
requirements and CSPs’ interests such as processing time, response time, availability, total cost,
power consumption, and profit.
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Figure 2: Cloud DC selection problem: routing n users’ requests to n DCs

An improper cloud DC selection overloads the cloud DC. It degrades the CC environment’s
performance, especially when there is an expanding number of users’ requests, resulting in the
perceived QoS and user satisfaction deteriorating. Consequently, the cloud DCs will drop and
refuse any new user request because they are overloaded [8,9].

Several prior works attempted to address the cloud DC selection problem by proposing CSB
policies in the CC environment. However, the primary challenge of achieving the maximum perfor-
mance with the minimum cost remains [10,11]. Several related works such as [12,13] considered the
cloud’s DC selection and resource allocation an NP-hard problem; therefore, this paper pertains
to adopt a metaheuristic based CSB policy to overcome the improper cloud DC selection due to
the following reasons:

• Processing time and response time and/or a high total cost still require more enhancements
during the execution of user requests.

• To ensure adaptive user request execution, the DC selection assumptions should consider
incoming user requests’ size, which will avoid inaccurate estimation of the processing time.

• The efficient selection of the most appropriate DC requires consideration of more impor-
tant DCs parameters.

• There is a lack of multi-objective optimization usage in terms of cloud users’ QoS needs;
few CSB policies only use a single (simple or complex) optimization objective.

This paper contributes to the literature on service provisioning and CSB policies by highlight-
ing the significance of using multi-objective optimization in selecting the cloud DC to execute
users’ requests. This paper’s unique contribution is that it incorporates more than one QoS (i.e.,
users’ interest) simultaneously when executing users’ requests.

2 Related Works

Improper selection of cloud DCs is time and resource-consuming because the same cloud
DC executes many users’ requests while others remain idle. Improper cloud DC selection nega-
tively impacts the QoS, especially when user requests executions require a high QoS level. As a
result, the DC will drop any new users’ requests because the DCs are busy responding to users’
requests [8,9]. To address the problem mentioned above, any new users’ requests must be routed to
the most appropriate cloud DC, which is the responsibility of the CSB to ensure high performance
of the CC environment and to execute these users’ requests efficiently with a high level of QoS.

Indeed, proposing an efficient CSB policy grabs the researchers’ attention to address the issues
related to selecting the proper cloud DC in the CC environment. The existing CSB policies might
be commonly categorized based on users’ QoS needs into (i) CSB policy based on enhancing
response and processing time, (ii) CSB policy based on enhancing DC availability, and (iii) CSB
policy based on enhancing the total cost.
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The CSB policy based on enhancing processing and response time, such as [4,5], suffers
from several setbacks because most of them ignore the DC availability and efficiency parameters.
Also, the DC selection assumptions do not take the size of the subsequent user request into
consideration (i.e., the DC selection assumption is built based on the previously executed users’
requests); thus, inaccurate DC selection has occurred. Therefore, there are still gaps in these
considerations because the CC environment’s overall performance might be impacted negatively.

Meanwhile, the proposed CSB based on enhanced availability, such as [6] and [14], increases
the cloud DC availability and slightly enhances computation time. Despite its advantages, those
policies ignore the dynamic nature of user requests’ size (i.e., different users’ requests may have
different sizes). Besides, the DC selection assumption does not take the size of the subsequent
users’ requests into consideration, and the total cost is not as reduced as needed.

Moreover, many researchers proposed several CSB policies to decrease the total cost con-
sumed by the cloud DCs to execute users’ requests [15,16], which successfully acheive significant
results in reducing the total cost. However, the processing and response time requires more
improvements, and the number of executed users’ requests is not always as expected (i.e., through-
put is relatively low). Furthermore, these CSB policies are only concentrating on enhancing the
performance in terms of the total cost, but also still gaps exist in these CSB policies in terms
of ignoring important parameters when selecting DCs, which is one of the considerations in this
paper.

Also, all CSB policies in the literature are based on a single (i.e., simple or complex) opti-
mization objective. At the same time, none uses multi-objectives in the cloud DC selection process.
Therefore, a multi-objective might enhance DCs selection, as the multi-objective includes more
than one parameter (i.e., objective), which will not focus on one parameter. For instance, some
users look for services with the lowest cost, while others require high QoS level services, which is
acceptable. However, it would not be efficient in the future, especially with an expanding number
of users’ requests and connected cloud DCs. Therefore, implementing a multi-objective problem-
based cloud DCs selection technique might be highly required. The use of CSB policies based
on metaheuristic to provide an efficient cloud DCs selection is also needed, as considered in this
paper.

The Differential Evolution (DE) algorithm is arguably one of the most robust stochastic
optimization algorithms applied on real-parameter. It is still adapted or modified by researchers
for solving optimization problems [17–19]. For instance, a modification on the DE algorithms was
proposed in [17] to overcome constrained optimization problems by adaptively adjusting the scale
factor and crossover rate based on uniform distribution. Thus, both global and local searches are
balanced, which allows efficient exploration of the solution space.

3 Differential Evolution Algorithm

The DE algorithm was developed by Price and Storn in 1997 [20] to solve optimization
problems for continuous domains. The DE is considered one of the best optimization algorithms
due to its simplicity, easiness, quickness, and robustness [21]. Many different scientific applications
use the DE algorithm to obtain the most effective solution without using complicated algorithms
or experts’ knowledge [20,21]. The DE uses the mutation phase as a search and selection technique
to search for feasible solution regions (i.e., possible solution regions). It is a search mechanism
based on the population with vector parameters for every generation. The DE algorithm consists
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of the following four main phases, namely: (i) initialization, (ii) mutation, (iii) recombination, and
(iv) selection. The following sub-sections discuss these phases in detail.

3.1 Initialization
DE is a population-based search algorithm that uses NP variables as the D dimensional

parameters population (i.e., vectors) for each search generation. Initially, if there is no information
about the problem, the initial population is selected randomly; otherwise, the initial population
using DE is usually generated by adding random deviations that are normally distributed to
the preliminary solution. The core idea behind the differential evolution is a new technique for
generating trial parameter vectors [21]. In our optimization problem, the DCs in each simulation
scenario is considered the NP variables. The proposed DCs’ parameters are considered D dimen-
sional vectors (i.e., 4-dimensional vectors: DCAV, DCEff, TotC, ExptPT). The dimensional vector
for each generation is computed for each variable that belongs to solution space, as illustrated in
the following formula:

VG(i)= 1, 2, . . . ,NP (1)

where VG(i) denotes the vector i for generation G, NP denotes the population size.

3.2 Mutation
The mutation phase is the second phase of the DE algorithm. In this phase, a noisy random

vector is generated for each generation using Eq. (2) [22]:

Vi, G+1 =Xn1,G+Z ∗ (Xn2,G −Xn3,G) (2)

where Vi,G+1 denotes the vector for the next generation, Xn1,G is the first vector, Z is a user-
defined value ∈ [0.5, 1] used to control the amplification of (Xn2,G – Xn3,G), and (Xn2,G – Xn3,G)
denotes the difference between two selected vectors which they are different from the first vector
(i.e., Xn1,G) for the generation (G). For example, assume that we have four DCs (DC1, DC2, DC3,
and DC4). DC1 is selected as a target vector, DC2 is the first vector (Xn1,G), and the difference
between DC3 and DC4 indicates the value of Xn2,G – Xn3,G.

The variable resulted from this stage (i.e., Vi,G+1) is called a noisy random vector is used in
the next stage to be compared with the target vector based on a crossover rate.

3.3 Recombination
This phase is crucial because it is responsible for increasing the diversity of vectors. In this

stage, the noisy random vector resulting from the previous stage (i.e., Vi,G+1) is compared with
the target vector (i.e., DC1) to generate a trial vector. Eq. (3) is used to generate a trial vector.

Yi,G+1 =
⎧⎨
⎩
Vi, G if rndb(n) >CR

Vi, G+1 if (rndb(n)≤CR)

(3)

where Yi,G+1 denotes the trial vector for generation Gl; Vi,G+1 denotes the noisy random vector
resulting from the previous stage using Eq. (2); Vi,G is the target vector (i.e., DC1); rndb(n)
denotes a random number ∈ [0, 1] generated for the target vector and noisy random vector; and
CR denotes crossover ratio ∈ [0, 1].

For instance, assume the value of CR is 0.50, and the rndb(n) values for the four-dimensional
parameters are as follows: 0.7, 0.2, 0.3, 0.5 for DCAV, TotC, ExpPT, and DCEff, respectively. Since
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0.7> 0.5 => yes, the value of the DCAV dimensional parameter associated with the target vector
is copied. Besides, 0.2> 0.5 =>no, the value of the TotC dimensional parameter associated with
the noisy random vector is copied. While 0.3> 0.5 => no, the value of the ExptPT dimensional
parameter associated with the noisy random vector is copied. Last, since 0.9> 0.5 => yes, the
value of the ExptPT dimensional parameter associated with the target vector is copied. However,
this phase’s output is a trial vector (Yi,G+1) with dimensional parameter values.

3.4 Selection
The last phase of the DE is the selection phase. In this phase, a greedy criterion is used to

determine whether the trail vector’s fitness function (Yi,G+1) is less than the target vector’s fitness
function (i.e., Xi,G) or not. Since the problem is a maximization optimization problem, the vector
among trial and target vectors with the optimal fitness function value is selected as a target vector
for the next generation (i.e., G2). The following rule-base summarizes this process [22,23]:

IF (F (Yi,G+1) > F (Xn1,G)

Xn1, G+1= Yi, G+1

else

Retain Xn1,G

4 Proposed Policy

This section describes the proposed policy phases, called High-Performance Lowest Cost CSB
(HPLCCSB) policy. In a real cloud environment, the proposed CSB policy operates in an online
mode since the users’ requests arrive through the Internet. However, for experimental purposes,
the proposed CSB policy is evaluated in offline mode since conducting repeatable experiments in
large-scale environments such as a real cloud environment is very complex and time-consuming [6]
and [24].

Fig. 3 depicts the main phases of this policy. Upon receiving a new user’s request, the fitness
function of each DC is computed based on the proposed DC’s parameters. Then the modified DE
is adapted to find the most optimal DC among the available DCs (in terms of the value of fitness
function). After that, the arriving user’s request is routed to this DC to execute it and return it
to its originator (i.e., user base).

4.1 Data Centers’ Parameters Computation
In this phase, four main parameters are computed in order to be contributed to formulating

the fitness function (i.e., multi-objective function). These parameters are considered the most
important parameters that might characterize the DCs [25,26]. Therefore, considering these param-
eters during the selection phase could allow optimal DC selection with the best computational
capabilities with the lowest cost. As aforementioned, most existing studies focus only on one
and only one parameter without considering others. Thus, part of QoS might be improved and
others not. Therefore, it is necessary to incorporate these crucial parameters to formulate a
multi-objective function that ensures optimal value.

However, the data center availability parameter is one of the most important DC parame-
ters that describes the ratio between throughput and available bandwidth for each cloud DC is
computed based on Eq. (4).

DCAV = TH[x,y]
BN[Nx, My]

(4)
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where DCAV denotes the DC availability parameter, TH[x,y] denotes cloud DC throughput,
obtained from the InternetCharacteristics component in the CloudAnalyst, and BN[Nx, My]
denotes bandwidth matrix for cloud DC(y), located in a region(x).

Figure 3: Proposed policy

Each cloud DC’s expected processing time parameter describes the estimated processing time
required to execute the incoming users’ requests. This parameter is computed based on Eq. (5).

ExpPT =NxURS/AVGPR (5)

where ExpPT denotes the expected processing time for the subsequent user request, NxURS
denotes the subsequent user request’s size determined from the InternetCloudlet component in the
CloudAnalyst simulator, AVGPR denotes the average processing ratio for DC, computed using
Eq. (6).

AVGPR= AEUR
AVGPT

(6)
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where AEUR denotes the average size of previously executed users’ requests determined from
the DatacenterController component in the CloudAnalyst simulator, AVGPT denotes the average
processing time for the previously completed users’ requests, which is also obtained from the
DatacenterController component by dividing the total processing time on the total number of
executed users’ requests by a given cloud DC.

Third, the total cost parameter describes the consumed cost (in US dollars) to execute and
deliver the user requests to the user. This parameter is computed based on Eq. (7).

TotC =DTC+VMC (7)

where TotC denotes total cost, DTC denotes data transfer cost, and VMC denotes virtual machine
(VM) cost.

Last, the DC efficiency parameter describes how efficient a DC is in executing the users’
requests. This parameter is computed based on Eq. (8).

DCEff =
⎛
⎝ UsT(

UsT
IdT

) ∗NoVM ∗THr
⎞
⎠ /(ART +APT −AWT) (8)

where DCEff denotes the DC efficiency, ART denotes average response time obtained from
the VMLoadBalancer component in the CloudAnalyst simulator, APT denotes average pro-
cessing time obtained from DatacenterController in the CloudAnalyst simulator. AWT denotes
the average waiting time obtained from VMLoadBalancer in the CloudAnalyst simulator. Thr
denotes throughput for each DC obtained from the InternetCharacteristics component in the
CloudAnalyst simulator. UsT denotes total useful time for each processor obtained from the
DatacenterController component in the CloudAnalyst simulator. IdT denotes a total idle time for
each processor obtained from the DatacenterController component in the CloudAnalyst simulator.
NoVM denotes the number of the virtual machines located in each cloud DC, which is also
obtained from the DatacenterController component in the CloudAnalyst simulator.

4.2 Fitness Function Computation
This phase proposes the fitness function derived from the values of the previously proposed

parameters (i.e., DCAV, ExpPT, TotC, and DCEff). The proposed fitness function uses the scalar-
ization method based on rank-sum weights [27,28], where all objectives functions are incorporated
altogether into the scalar fitness function. Eq. (9) computes the value of DCPP parameter value.

DCPP=−w1 ∗TotC+w2 ∗DCEff Wi+w3 ∗DCAV −w4 ∗ExpPT (9)

where DCPP denotes the DC processing power, ExpPT denotes the expected processing time
for the subsequent user’s request determined from Eq. (5), DCAV denotes DC availability value
determined from Eq. (4), DEff denotes DC efficiency determined from Eq. (8), and TotC denotes
total cost determined from Eq. (7). w1, w2, w3, and w4 are the weights of TotC, DCEff, DCAV,
and ExpPT, respectively. These weights are determined using Eq. (10) [27–29]:

wi = 2(n+ 1− i)
n(n+ 1)

(10)

The TotC and ExptPT are negatively signed since they are minimization objective functions,
whereas maximization objective functions (i.e., DCAV and DCEff) are positively signed. These
weights are not assigned arbitrarily. Instead, they are set based on extensive experiments to
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identify each DC parameter’s optimal weight value. In sum, the following weight values are
assigned for each proposed DC parameter as illustrated in Tab. 1.

Table 1: Weight for each proposed DC’s parameter

Parameter Weight

ExpTotC 2(4+1−1)
4∗5 = 4

10

DCEff 2(4+1−2)
4∗5 = 3

10

DCAV 2(4+1−3)
4∗5 = 2

10

ExpPT 2(4+1−4)
4∗5 = 1

10

Finally, the root mean square method normalizes the objective functions’ values to ensure a
sense of fairness between them. As a result, the final formula of the proposed fitness function is
as shown below in Eq. (11):

DCPP=−
(
2
5

)
∗ TotC√

E(TotC2)
+

(
3
10

)
∗ DCEff√

E(DCEf f 2)
+

(
1
5

)
∗ DCAV√

E(DCAV2)

−
(

1
10

)
∗ ExpPT√

E(ExpPT2 )
(11)

4.3 Optimization Using a Modified Differential Evolution
This phase finds the optimal solution (i.e., optimal cloud DC) to maximize the fitness

function. The optimization process follows the following steps:

4.3.1 Initialization
The initialization stage presents the cloud DC selection description with the optimal fitness

value (i.e., the maximum value of MOF).

Max MOF (i)

=−
(
2
5

)
∗ TotCij√

E(TotCij) 2)

+
(

3
10

)
∗ DCEff ij√

E(DCEff ij) 2
+

(
1
5

)
∗ DCAVij√

E(DCAVij) 2

−
(

1
10

)
∗ ExpPTij√

E(ExpPTij)
2

i subject to 0<=i<=5

where DCAV denotes the cloud DC availability parameter for DCi, DEff i denotes the cloud DC
efficiency parameter for DCi, TotCi denotes the cloud DC total cost for DCi, and ExpPTi denotes
the expected processing time of DCi required to execute subsequent user’s request.
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4.3.2 Mutation
Herein, the modification on the DE is presented. The perturb of existing solutions to generate

the new solution is the basis of any computational method. Prior works contain plenty of such
techniques in different algorithms, focusing on enhancement towards optimal solution region. This
paper proposes a new mutation mechanism to utilize the neighbors to perturb the current solution
with control on the solution’s randomness. The proposed mechanism is performed as follows and
summarized in Fig. 4:

a) Randomly choose a set of mutation vectors “X” from the available solution vectors, then
from that random set, select a candidate “Y” and perturb the solution to find the F-number
of neighbors. A ring-shaped neighborhood topology proposed in [30] is used to derive
neighbors from the vectors’ index graph.

b) Select all the neighbors and perform a fitness comparison with the “Y.”
c) Locally improve using a direct search technique to all those which are better than “Y.” The

direct search technique uses the greedy criterion to make this process. Using the greedy
criterion, a new vector is accepted if and only if it minimizes the value of the proposed
multi-objective function.

d) The new value of “Y” sets to the best solution obtained amongst all in the above points
(i.e., in terms of fitness function’s value).

e) Repeat this process till involving all mutation vectors in this mutation mechanism.

4.3.3 Recombination
As aforementioned, this stage increases the vectors’ diversity by comparing the noisy random

vector with the target vector to generate a trial vector. Eq. (3) is used to generate a trial vector
with settings of rndb (n) and crossover ratio.

4.3.4 Selection
This stage achieves optimal DC selection by applying the rule mentioned in Section 3.4. The

vector among trial and target vectors with the lowest fitness function value is selected as the next
generation’s target vector.

Since real-world problems commonly contain computationally expensive objectives, the opti-
mization iteration should finish as soon as the optimum solution is obtained. Several techniques
are available to determine the best stopping criterion for evolutionary algorithms [31–33]. However,
determining this stopping condition is not a simple task. While the global optimum is generally
unknown, distance measures are not usable to achieve this goal. Stopping after a specific number
of generations is limited to trial-and-error techniques that are used to determine the appropriate
number of objective runs. Also, the number of objectives runs at which convergence happens is
subject to large fluctuations because of the randomness in evolutionary algorithms. Subsequently,
efficient stopping criteria must be applied to comply adaptively with the state of the optimization
run. In this paper, a distribution-based criterion [33] called Diff, that depends on the difference
between the value of the best objective function and the value of the worst objective function in
a generation. The following rule is the termination condition used in this paper.
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Figure 4: Flowchart of the proposed mutation mechanism
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If (Diff < Thr)

Terminate;

else

Proceed;

Where Thr denotes a value with many orders of magnitude less than the required accuracy
of the optimum [34].

An experimental analysis proves that the convergence rate of 100% has been achieved when
the difference threshold is set to one order of magnitude smaller than the demanded accuracy [33].

One hundred numerical experiments were conducted using two optimization methods to
demonstrate the superiority of the modified DE over conventional DE. Fig. 5 illustrates the
number of cases that each method can find the global maximum solution and how predominantly
it ended up in the local maximum of the multi-objective function.

Figure 5: Experiments carried out using a modified and conventional DE

The modified DE algorithm is an extremely high global optimizer since it achieves an 89%
hitting rate for the global maximum. Thus, it ensures getting asymptotic convergence to the global
maximum.

5 Experiments and Findings

This section provides details of the simulation environment and scenarios used in this paper
and discusses the experiments and findings.

5.1 Simulation Environment
This section provides details of the simulator used in this paper and simulation scenarios as

well.
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5.1.1 Simulator
The CloudAnalyst simulator is used to implement the proposed CSB policy and to simulate

the experiments. It is easy to use due to its interactive graphical user interface, ability to con-
figure simulation environment with a high degree of flexibility, and ability to provide visual and
numerical outputs [35].

5.1.2 Simulation Scenarios
Six simulation scenarios are used to evaluate the proposed policy. Each scenario describes

different situations regarding the number of cloud DC(s) and user bases that initiate jobs. Tab. 2
presents these simulation scenarios in detail.

Table 2: Simulation scenarios

No. Number of DC Number of user bases

1 (6) DCs are distributed among (6)
different regions.

(1) User base is located in the first region.

2 (6) DCs are distributed among (6)
different regions.

(3) User bases are located in three
different regions.

3 (5) DCs are distributed as follows:
(2) DCs are located in the first regions
(3) DCs are located in the second,
third, and fourth regions, respectively.

(3) User bases are located in the fourth,
fifth, and sixth regions, respectively.

4 (4) DCs are distributed as follows:
(2) DCs are located in the first regions
(2) DCs are located in the second and
third regions, respectively.

(2) User bases are located in the fourth
and fifth regions, respectively.

5 (6) DCs are located in the first region. (4) User bases are located in the second,
third, fourth, and fifth regions,
respectively.

6 (6) DCs are distributed among (6)
different regions.

(6) User bases are distributed among (6)
different regions.

5.2 Experimental Results
The proposed HPLCCSB policy is evaluated with other existing CSB policies, including

[25,35]: (i) closest DC policy, (ii) optimized response time policy (iii) reconfigure dynamically with
load balancing policy, and (iv) OSBRP policy in terms of processing time, response time and total
cost.

The experiments are performed five times for each scenario described earlier in Tab. 1. Each
load balancing policy includes round-robin, equally spread load execution, and throttled load
balancing policy to verify results and ensure more reliable and accurate findings to reflect the real
world. The following sections report the overall findings and the proposed CSB policy’s evaluation
against the existing CSB policy in terms of processing time, response time, and the total cost.
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5.2.1 Evaluation of HPLCCSB Using Testing Scenarios
The following testing scenarios aim to assess the proposed HPLCCSB policy’s ability to

select the most appropriate cloud DC to execute incoming users’ requests in the CC environment.
Mainly, the evaluation focuses on calculating the processing and response time and the total cost
of the proposed policy. Herein, the evaluation process is divided into six sub-scenarios to evaluate
the HPLCCSB policy using the CloudAnalyst simulator.

All simulation scenarios were executed using the same configurations to get the most accurate
results by covering both peak and off-peak hours to analyze the proposed HPLCCSB policy’s
efficiency. Since the proper allocation of the CC resources is guaranteed during user request
execution, an appropriate selection of CSB policy and load balancing policy should positively
influence the overall CC environment’s QoS [24] and [35]. Each simulation scenario was executed
five times for each load balancing policy (a total of 15 times) to ensure consistent CloudAnalyst
simulator results and average performance metrics (i.e., response time, processing time, and total
cost). The detailed results for the six simulation scenarios are in the following subsections.

Evaluation Using Simulation Scenario 1 The first scenario aims to determine the influence
of low load on the performance metrics. Herein, the proposed HPLCCSB policy is evaluated
by executing the first simulation scenario using round-robin, equally spread execution load, and
throttled load balancing policies. Tab. 3 shows the obtained results.

Table 3: Evaluation of HPLCCSB policy using the first scenario

Load
balancing
policy

Average
response
time (ms)

Average
processing
time (ms)

Average
total cost
($)

Round-robin 28.206 0.23457 0.84573
Equally spread
execution load

28.206 0.23457 0.84573

Throttled 28.002 0.2305 0.84573

In this experiment, it is noticeable that the proposed HPLCCSB policy has improved perfor-
mance since it always routes the different users’ requests to the cloud DCs with the best processing
power. Therefore, it reduces congestion to the lowest level, unlike most existing CSB policies
that might repeatedly select the same cloud DC to execute different user requests. The proposed
HPLCCSB policy performs better with throttled load balancing policy because it assigns only one
user’s request to each virtual machine at a time, and the other users’ requests can be routed to
other virtual machines. Thus the proposed policy assures efficient execution of the users’ requests
using different cloud DCs with minimal response, processing time, and total cost.

Evaluation Using Simulation Scenario 2 The second scenario aims to assess the influence of
heavy load on the CC environment’s performance metrics. In a similar evaluation manner in
scenario 1, the proposed policy is evaluated by executing the second simulation scenario using
the three selected load balancing policies. Tab. 4 shows the findings resulted from the HPLCCSB
policy using the second scenario.
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Table 4: Evaluation of HPLCCSB policy using the second scenario

Load
balancing
policy

Average
response
time (ms)

Average
processing
time (ms)

Average
total cost
($)

Round-robin 28.2756 0.23618 1.01225
Equally spread
execution load

28.2756 0.23618 1.01225

Throttled 27.096 0.23229 1.01225

The results show a trivial decrease in the response time because of the slight reduction in
the processing time compared to results when executing simulation scenario 1. Indeed, this trivial
decrease is due to the large load rate on the available network and the cloud DCs. But the
proposed policy still has improved performance because it ensures selecting the cloud DCs with
the best processing power each time.

EvaluationUsing Simulation Scenario 3 Simulation Scenario 3 aims to assess the influence of an
increasing number of users’ requests per unit of time on the CC environment’s performance met-
rics. The proposed policy is evaluated using a similar evaluation mechanism followed previously
by executing simulation scenario 3, and the results are in Tab. 5. The average total cost increases
in this simulation scenario compared to scenario number 2 due to the number of users’ requests
and the data transfer cost. But the response time and the processing time are not considerably
impacted.

Table 5: Evaluation of HPLCCSB policy using the third scenario

Load
balancing
policy

Average
response
time (ms)

Average
processing
time (ms)

Average
total cost
($)

Round-robin 91.848 0.19358 1.02101
Equally spread execution load 91.848 0.19358 1.02101
Throttled 91.314 0.19358 1.02101

The experiment results demonstrate that out of the selected load balancing policies, the cloud
DC response and processing time are the lowest when using the throttled policy. The response and
processing time are low because the HPLCCSB policy ensures an efficient allocation of the users’
requests to all cloud DCs with the optimal processing power and ready to execute user requests.
The throttled policy guarantees that each virtual machine has single user’s request to execute. This
equitable allocation enhances the performance of the proposed HPLCCSB policy significantly.

Evaluation Using Simulation Scenario 4 Simulation Scenario 4 aims to assess the influence of
peak and off-peak users’ parameters on the CC environment’s performance metrics. In this regard,
the experimental results, shown in Tab. 6, ensure that the parameters that relate to the peak and
off-peak users are important to bypass any influence on the response time or the processing time
due to cloud changes DCs’ load.
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Table 6: Evaluation of HPLCCSB policy using the fourth scenario

Load balancing
policy

Average
response
time (ms)

Average
processing
time (ms)

Average
total cost
($)

Round-robin 128.268 0.20566 0.49955
Equally spread execution load 128.268 0.20566 0.49955
Throttled 126.666 0.18449 0.49955

The proposed policy performs much better when executed with throttled load balancing policy.
Hence, considering the DCPP parameter (i.e., the proposed fitness function) with throttled load
balancing policy enhances the QoS requirements for the simultaneous online users during peak or
off-peak hours. Therefore, the average number of dropped user requests is noticeably decreased,
the average number of executed users’ requests is increased, and the average number of rejected
users’ requests is also decreased (i.e., the DC efficiency is increased) with a reduced cost of VM
usage.

Evaluation Using Simulation Scenario 5 The fifth scenario aims to assess the influence of the
cloud DCs’ location from the user base on the CC environment’s performance metrics. This
simulation scenario illustrates the worst-case scenario that the HPLCCSB policy might encounter
due to the user bases’ geographical location and the cloud DCs. Despite that challenge, the
proposed policy still achieves improved performance metrics (i.e., response and processing time
and total cost). Tab. 7 presents the findings resulted from the HPLCCSB policy using the fifth
scenario.

Table 7: Evaluation of HPLCCSB policy using the fifth scenario

Load balancing
policy

Average
response
time (ms)

Average
processing
time (ms)

Average
total cost
($)

Round-robin 195.294 0.17962 1.25764
Equally spread execution load 195.294 0.17962 1.25764
Throttled 192.792 0.17962 1.25764

Also, the HPLCCSB policy performs much better when used with the throttled load balancing
policy. The distribution of the cloud DC among different regions might negatively affect the data
transfer cost (i.e., total cost). However, using the proposed CSB policy with the throttled load
balancing policy might reduce the required data transfer cost by utilizing the most efficient cloud
DC and VM among the available resources.

Evaluation Using Simulation Scenario 6 Finally, similar to simulation scenario 5, the aim of
simulation scenario 6 is to assess the influence of the geographical location of the cloud DCs and
user bases on the performance metrics in the CC environment. This simulation scenario proves the
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urgent need for such a policy that accommodates different situations by routing users’ requests to
different cloud DCs only when required. Since many distributions of users’ requests among DCs
will not always be the optimal solution, the proposed HPLCCSB policy selects a smaller number
of cloud DCs for user request execution. It selects a new cloud DC only if needed. Therefore, the
response time decreased noticeably. Tab. 8 presents the results from the HPLCCSB policy using
the sixth scenario.

Table 8: Evaluation of HPLCCSB policy using the sixth scenario

Load
balancing
policy

Average
response
time (ms)

Average
processing
time (ms)

Average
total cost
($)

Round-robin 27.654 0.2265 1.36719
Equally spread execution load 27.654 0.2265 1.36719
Throttled 26.544 0.21585 1.36719

The results in Tab. 8 show a considerable reduction in the cloud DCs’ response time when
using simulation scenario number 6. It requires less processing time obtained from executing the
previous simulation scenario compared to this simulation scenario. Indeed, it is deduced that the
processing time in every cloud DC is minimized once the user base is situated in a totally different
region from the cloud DC.

5.2.2 Comparative Analysis with Existing CSB Policies
The performance of the proposed HPLCCSB policy is compared with some of the well-known

CSB policies based on the evaluation metrics that are obtained from the previous simulation
scenarios. The comparative test is used to estimate the computation time and total cost of the
proposed HPLCCSB policy against related CSB policies for selecting the cloud DCs in the CC
computing environment (refer to Fig. 8). The proposed HPLCCSB policy is compared with the
closest DCs, the optimized response time, the reconfigure dynamically with load balancing, and
the OSBRP policies for the following reasons: (i) The closest DC policy is one of the simplest DC
selection technique in the CC environment, (ii) The optimized response time policy achieves superb
response time, (iii) The reconfigure dynamically with load balancing policy has a varied behavior
according to simulation scenario, which might perform more suitable in specific scenarios, (iv) The
OSBRP policy is based on a metaheuristic optimization algorithm similar to the proposed policy.
Tab. 9 shows the average of evaluation metrics of HPLCCSB Policy vs. existing CSB policies.

In specific, the findings demonstrated in Tab. 9 reveal that out of the three selected virtual
machine load balancing policies, the average response time, the average processing time, and the
average total cost are the lowest when using Throttled policy with the proposed HPLCCSB policy.
As aforementioned, this fact is due to the HPLCCSB policy guarantees an efficient allocation of
users’ requests to all the cloud DCs that have the best processing power and available for executing
the users’ requests. In comparison, the throttled load balancing policy guarantees that each virtual
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machine has only one user request for execution. This balanced and efficient distribution of users’
requests enhances response and processing time substantially.

Table 9: Average performance metrics of HPLCCSB policy vs. existing CSB policies

Load
balancing
policy

CSB policy Average
response
time
(ms)

Average
processing
Time
(ms)

Average
total cost
($)

Round-robin Closest DC 50.11 0.49 3.34
Optimized Response
Time

50.08 0.49 3.34

Reconfigure
Dynamically with LB

52.38 2.76 18.99

OSBRP 46.09 0.37 3.12
HPLCCSB (Proposed) 27.654 0.226 1.367

Equally spread
execution load

Closest DC 50.11 0.49 3.34

Optimized Response
Time

50.08 0.49 3.34

Reconfigure
Dynamically with LB

50.72 1.1 18.8

OSBRP 64.09 0.37 3.12
HPLCCSB (Proposed) 27.654 0.226 1.367

Throttled Closest DC 50.11 0.49 3.34
Optimized Response
Time

50.08 0.49 3.34

Reconfigure
Dynamically with LB

50.69 1.07 18.99

OSBRP 44.24 0.33 3.12
HPLCCSB (Proposed) 26.544 0.215 1.367

5.2.3 Significance of Enhancement
This section is to measure whether the enhancement produced by HPLCCSB is significant

or not using the T-test. A T-test is one of the most commonly used statistical tests to compare
means [36]. It is a parametric technique where the probability distribution of variables is defined,
and inferences about the distribution parameters are made. The T-test is usually used when two
independent groups describe the experimental subjects. It is also known as a student’s T-test,
which can be used as a statistical analysis method to test whether there is a difference between
two independent means or not.

However, statistical significance is measured by calculating the probability of error (i.e., the
p-value). If p is less than 0.05, the difference between the two means is statistically significant;
else, the difference is not significant. Therefore, in this paper, the hypothesis of significance can
be formulated as follows:
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H0: HPLCCSB does not significantly enhance the other CSB policies with respect to
evaluation metrics.
H1: HPLCCSB does significantly enhance the other CSB policies with respect to evaluation
metrics.

Tab. 10 summarizes the T-test results, while Figs. 6 and 7 presents the enhancement percent-
ages of HPLCCSB with CDCP, ORTP, DRCSB, and OSBRP in average processing time, average
response time, and average total cost, respectively. However, the results show that the proposed
HPLCCSB policy has significantly improved the other existing CSB policies in terms of average
processing time, average response time, and average total cost.

Table 10: T-test results

T-test Metric P-value Significance H1 H0

HPLCCSB with
CDCP

Avg. response time 0.00338152 Significant Accepted Rejected

Avg. processing
time

0.03917106 Significant Accepted Rejected

Avg. total cost 0.00705398 Significant Accepted Rejected
HPLCCSB with
ORTP

Avg. response time 0.005669908 Significant Accepted Rejected

Avg. processing
time

0.07789978 Significant Accepted Rejected

Avg. total cost 0.011235101 Significant Accepted Rejected
HPLCCSB with
DRCSB

Avg. response time 0.00035696 Significant Accepted Rejected
Avg. processing
time

0.033628082 Significant Accepted Rejected

Avg. total cost 9.38559E-05 Significant Accepted Rejected
HPLCCSB with
OSBRP

Avg. response time 6.547E-05 Significant Accepted Rejected
Avg. processing
time

0.009733 Significant Accepted Rejected

Avg. total cost 0.000945 Significant Accepted Rejected

In sum, HPLCCSB enhances the average processing time of CDCP, ORTP, DRCSB, and
OSBRP by 48.12%, 47.2%, 84.8%, and 37%, respectively, when using a round-robin load balanc-
ing policy. When using the equally spread execution-load load balancing policy, the HPLCCSB
enhances the CDCP, ORTP, DRCSB, and OSBRP by 48.1%, 47.2%, 78%, and 37%, respectively.
Using the throttled load balancing policy enhances CDCP, ORTP, DRCSB, and OSBRP by 49.7%,
48.9%, 78.7%, and 34.2%, respectively. While, in terms of the average response time, HPLCCSB
also enhances CDCP, ORTP, DRCSB, and OSBRP by 50.5%, 50.4%, 54.1%, and 40%, respectively
when using the round-robin load balancing policy. Besides, it enhances CDCP, ORTP, DRCSB,
and OSBRP by 50.5%, 50.4%, 50.6%, and 40%, respectively, when using the equally spread
execution-load load balancing policy. Moreover, HPLCCSB also enhances CDCP, ORTP, DRCSB,
and OSBRP by 50.8%, 50.8%, 51%, and 39.5%, respectively, when using throttled load balancing
policy. Also, in terms of the average total cost, the HPLCCSB enhances CDCP, ORTP, DRCSB,
and OSBRP by 63.4%, 63.4%, 91.7%, and 56.1%, respectively when using a round-robin load
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balancing policy. Also, it enhances the CDCP, ORTP, DRCSB, and OSBRP by 63.3%, 63.3%,
91.7%, and 56.1%, respectively, when using the equally spread execution-load load balancing
policy. Furthermore, when using the throttled load balancing policy, the HPLCCSB enhances
CDCP, ORTP, DRCSB, and OSBRP by 63.3%, 63.3%, 91.7%, and 56.1%, respectively.
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Figure 6: Enhancement percentages of HPLCCSB with other CSB policies using round-robin load
balancing policy in terms of average processing time and average response time

0.633269839 0.633269839
0.917110264

0.561797025

0
0.2
0.4
0.6
0.8

1

CDCP ORTP DRCSB OSBRP

U
.S

. D
O

LL
A

R

CSB POLICY

Enhancement Percentage in Terms of Average Total Cost

Figure 7: Enhancement percentages of HPLCCSB with other CSB policies using round-robin load
balancing policy in terms of the average total cost

5.2.4 Discussion
The effectiveness of the HPLCCSB has been demonstrated with three different load balancing

policies: (i) round-robin, (ii) equally spread execution-load, and (iii) throttled. The HPLCCSB was
evaluated using three main metrics: (i) average response time, (ii) average processing time, and (iii)
average total cost. The following subsections discuss the results.

Average Processing Time and Average Response Time The previous section analysis reveals that
the proposed HPLCCSB policy significantly improves the existing CSB policies’ performance in
response and processing time. Since the HPLCCSB policy always routes the incoming user request
to the least congested DC with maximum availability and efficiency and with the lowest average
processing time and average response time, this might be guaranteed by maximizing the value of
the proposed multi-objective function. Tab. 9 shows the comparison results, which reveal that the
HPLCCSB has an average processing time of 0.212688 milliseconds, 0.212688 milliseconds, and
0.206066 milliseconds when using round-robin, equally spread execution-load, and throttled load
balancing policies, respectively. In user requests executions, the average response time is 83.2576
milliseconds, 83.2576 milliseconds, and 82.069 milliseconds when using the round-robin, equally
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spread execution-load, and throttled load balancing policies, respectively. HPLCCSB has a lower
average processing time because it routes user requests to the most efficient DC based on the
processing power (i.e., the proposed multi-objective function). Consequently, this causes the users’
requests to be distributed to multiple DCs with the highest DCPP value, resulting in a significant
reduction in response time and processing time.

By contrast, the existing CSB policies rely only on the previous DC load or processing time
for the last executed user request, regardless of the expected processing time that might reflect
the actual processing time to some extent. Besides, the HPLCCSB policy ensures efficient resource
utilization by selecting the most suitable DC without overloading one DC over others. It always
invokes more VMs on different DCs compared to other existing policies. The existing policies
select the same DCs frequently, which overload them and increase the response and processing
time. Therefore, giving high weight to DCEff (i.e., maximization-positive weight) ensures the
selection of DC with minimal processing time and response time.

Due to the proposed MOF’s nature, HPLCCSB must achieve the minimum value of response
time and processing for user request execution since it is one of the proposed MOF’s core
objectives. Therefore, average processing time and average response time are compared with a
minimum value of processing time and minimum value of response time, respectively, achieved by
HPLCCSB using simulation scenarios. Figs. 8 and 9 depict comparison results of HPLCCSB with
CDCP, ORTP, DRCSB, and OSBRP, respectively, by presenting the difference between minimum
values and average values resulting from each CSB policy in terms of processing time and response
time.

0

0.2

0.4

0.6

CDCP ORTP DRCSB OSBRP HPLCCSB

0.11 0.103333333

0.484666667

0.097666667
0.03306499

M
IL

L
IS

E
C

O
N

D
S

Difference between Min and Average Values in Terms of 
Processing Time

CSB POLICY

Figure 8: Difference between the minimum and average values for each CSB policy in terms of
processing time using Round-Robin load balancing policy

Figs. 8 and 9 show the differences between the average values and minimum values of process-
ing time and response time for each CSB policy. Since the HPLCCSB has the minimum difference
between the value of average processing time and obtained value of minimum processing time
and between the value of average response time and obtained value of minimum response time,
thereby suggesting the HPLCCSB policy obtains the minimum processing time and response time
values in the majority of the simulation experiments. By contrast, the difference between the
average processing time and processing time’s minimum values, and the average response time and
response time’s minimum values of the CDCP, ORTP, DRCSB, and OSBRP policies are mostly
large. This large difference in the values indicate that these policies have higher processing time
and response time in most of the experiments than the HPLCCSB policy. In sum, the HPLCCSB
policy demonstrates optimal QoS requirements in terms of average processing time and average
response time amongst these CSB policies.
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terms of response time using Round-Robin load balancing policy

Average Total Cost Unlike other existing CSB policies, the increase in the number of user
requests or their sizes does not negatively impact HPLCCSB policy since it considers the incoming
user requests sizes during DC selection (i.e., by considering the expected processing time in MOF).
Additionally, it always execute user requests using the most efficient and available DC (i.e., DC
with the highest value of DCEff and DCAV) among the existing DCs. Generally, executing large-
sized user requests costs more than the small ones since it involves more data transfer between
the DC and user base. Despite that, the HPLCCSB policy does not always increase the total
cost significantly since it gives the highest weight (i.e., minimization-negative weight) to the total
cost in the proposed MOF (refer to Tab. 9); thus, it ensures the lowest cost even when executing
incoming user requests constantly. Meanwhile, the comparison results shown earlier in Tab. 9
reveal that HPLCCSB consumes less average total cost (1.000562 US Dollar, 1.000562 US Dollar,
and 1.000562 US Dollar when using round-robin, equally spread execution-load, and throttled
load balancing policies, respectively). Due to the proposed MOF’s nature, HPLCCSB must achieve
the minimum value of total cost when executing user requests since it is one of the proposed
MOF’s core objectives. Therefore, the average total cost is compared with the minimum value of
total cost achieved by HPLCCSB using simulation scenarios. Fig. 10 shows the comparison of
HPLCCSB with CDCP, ORTP, DRCSB, and OSBRP, respectively, by presenting the difference
between minimum values and average values resulting from each CSB policy in terms of the total
cost using a round-robin load balancing policy.

As noticed from the previous Fig., HPLCCSB has the minimum difference between average
total cost and minimum obtained value of total cost, thereby suggesting that the HPLCCSB policy
achieved the minimum total cost value in most simulation experiments. By contrast, the difference
between values of average total cost and minimum values resulting from CDCP, ORTP, DRCSB,
and OSBRP are mostly higher than the difference resulting from HPLCCSB, indicating that these
policies have higher total cost values in most of the experiments. Therefore, the HPLCCSB policy
demonstrates optimal QoS requirements in terms of average total cost amongst these CSB policies.

Due to the nature of the CC environment, based on a pay-as-you-go or pay-per-use basis,
achieving minimum total cost is a major QoS requirement for cloud users. Therefore, from a
cloud user’s perspective, HPLCCSB ensures executing their requests efficiently with minimum cost.
From a security perspective, HPLCCSB minimizes the Economic Denial of Sustainability attack
(EDoS) impact. Indubitably, understanding the reasoning behind scheduling decisions is quite
important property in practical scenarios. In this regard, simple heuristics such as CDCP and
ORTP are appealing approaches since the reason behind their scheduling decisions (the assignment
of cloud applications to data centers) is straightforward. Any alternative scheduling decisions
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approach must have significant performance improvements to be appealing. In this context, results
of enhancement significance justify the need for the deployment of the proposed policy since it
performs better when compared to simple heuristics.

In conclusion, the HPLCCSB policy is usable to select the most appropriate DC in the
cloud environment to execute the users’ requests efficiently without degrading the level of QoS.
Implementing the proposed CSB policy in a real-cloud environment might ensure efficient selection
of the DCs without being overloaded; thereby, improving the overall performance and reducing
the total cost. Therefore, efficient utilization of the DCs enhances the cloud environment by
allowing user request execution with a high QoS level. Indeed, the HPLCCSB policy achieves the
major QoS requirements, including the lowest processing time, lowest response time, and minimum
total cost. This policy also provides a better QoS than CDCP, ORTP, DRCSB, and OSBRP in
terms of average processing time, average response time, and average total cost.
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Figure 10: Difference between the minimum and average values for each CSB policy in terms of
the total cost using Round-Robin load balancing policy

6 Conclusion and Future Work

This paper proposed a modified DE algorithm-based CSB policy used to select the cloud DC.
The attention to finding an efficient CSB policy to select the cloud data center is always a topic of
interest due to the continuous growth of users’ requests. As reviewed from prior works, traditional
and existing proposed CSB policy still suffer from different challenges due to the dynamic and
incremental nature of users’ requests. Compared to the existing policies, the proposed policy using
a modified DE algorithm seems a practicable policy to route users’ requests to the most efficient
DC. The findings demonstrate that the proposed policy is superior to other existing policies.

As future work, the cloud users’ QoS requirements should be considered to determine how
good the solution is with respect to the optimal solution. Besides, deploying the proposed solution
in an online mode (i.e., real cloud’s environment) should take place in the future to determine the
ability of the proposed solution in dealing with varying arrival rates of real users’ requests.
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