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Abstract: In the digestion of amino acids, carbohydrates, and lipids, as well as
protein synthesis from the consumed food, the liver has many diverse respon-
sibilities and functions that are to be performed. Liver disease may impact the
hormonal and nutritional balance in the human body. The earlier diagnosis
of such critical conditions may help to treat the patient effectively. A com-
putationally efficient AW-HARIS algorithm is used in this paper to perform
automated segmentation of CT scan images to identify abnormalities in the
human liver. The proposed approach can recognize the abnormalities with
better accuracy without training, unlike in supervisory procedures requiring
considerable computational efforts for training. In the earlier stages, the CT
images are pre-processed through an AdaptiveMultiscale Data Condensation
Kernel to normalize the underlying noise and enhance the image’s contrast
for better segmentation. Then, the preliminary phase’s outcome is being fed
as the input for the AnisotropicWeighted—Heuristic Algorithm for Real-time
Image Segmentation algorithm that uses texture-related information, which
has resulted in precise outcome with acceptable computational latency when
compared to that of its counterparts. It is observed that the proposed approach
has outperformed in the majority of the cases with an accuracy of 78%. The
smart diagnosis approach would help the medical staff accurately predict the
abnormality and disease progression in earlier ailment stages.
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1 Introduction

It is well known that medical image processing and computer-aided diagnosis have advanced
significantly in recent years. Medical imaging is essential in the process of evolving a plan of
action for clinical therapy and surgery. In such a case, analysis is critical for a better interpretation
and identification of the ailments from the medical CT, MRI, and PET scan images. By perform-
ing the examination and analysis of medical images, various regions and artefacts in the region
of interest can be easily identified. This paved the way for research involving the medical image
segmentation process to identify abnormalities that would assist in surgical procedure planning
and decision-making. Among the various imaging technologies available, MRI imaging is the most
predominantly used technology for medical diagnosis as it can represent the various elements
and artifacts of internal body parts in the most detailed manner. CT is the most widely used
technology alongside MRI technology due to its vast spectral resolution, greater convenience to
access, and faster image acquisition time.

To accurately diagnose an acute liver disorder in its early stages and to decide on the best
therapeutic option, information pertaining to its precise location and size is required, and CT
imaging is the most commonly used technology for identifying such artifacts. It offers detailed
anatomical details about the abdomen organs and tissues. The manual process of segmenting the
CT Scan images for the abnormality identification is tedious and needs considerable effort. The
liver is exceptionally different in concern to the size and the shape of individuals. The acquired
CT scan images might have divergent non-liver artifacts, and images might be of low contrast,
making disorder identification quite challenging. Additionally, the size, shape, and texture of the
affected region vary depending on the severity of the liver disorder. There are plenty of automated
approaches used to segmentation the medical CT images classified as semi-automated and auto-
mated segmentation approaches [1–3]. The quality of the segmentation depends on the preciseness
of the proposed model and the features that are selected for the segmentation. The outcomes of
either of those approaches would be almost identical, but the automated segmentation techniques
outcome is more accurate on practical implementation.

There are various supervised and semi-supervised approaches that are used in automated
segmentation of the CT Scan images. Supervisory models like Deep learning-based approaches
(DL) [4,5] and convolutional neural network (CNN) [6,7] need tremendous training for better
precision of outcome. The quality of the resultant outcome is directly proportional to the size of
the training set. The outcome of the approaches mentioned above is more suitable for medical-
related image analysis, as they are highly accurate and precise. The main issue with the approaches
as mentioned earlier is that the availability of the training set for identification of the lesion.
Moreover, with the most recently discovered form of any disorder, previously acquired data for
training the algorithm may be inaccessible, resulting in an ineffective automated segmentation of
the images.

Particle Swarm Optimization [8,9] based CT/MR image segmentation is a metaheuristic in
nature. It can effectively handle the data without any prior knowledge about the context and
handle ample search space efficiently. It is being observed that the suggested approach is compar-
atively easy to implement and strong enough to address the issue of heterogeneous regions in the
image and performs better in contrast to the conventional Genetic Algorithm approach. Support
vector machine (SVM) [10] is considered one of the best approaches for automated segmentation
of the CT/MR image through a classification mechanism that can knob the unstructured images
and high dimensional data efficiently with a comparatively lesser storage requirement. However,
SVM has the limitation of training the machine with a large amount of data in order to achieve
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decent performance, which requires additional computing time and storage space for the training
collection that results in additional computational efforts. Additionally, locating the case-specific
training data is a tedious task.

Convolutional neural networks [11,12] based models for brain and liver image segmentation
have proven to be most accurate by researchers. CNN models are designed to handle the high
dimensional data by recognizing the features and the translation invariance that are essential
for automated segmentation. Automated CT image segmentation based on Single-Block Linear
Detection (SBLD) [13] is reasonably accurate in identifying the abnormalities and requires few
iterations to reach the optimal level of segmentation, resulting in less computational efforts. But
the SBLD model largely relays on the initial parameters for the segmentation.

Deep learning [14] based liver MR image segmentation is considered efficient in handling
unstructured and ambiguous data. It doesn’t need the labeling of the data. However, the deep
learning models are complex to design and they need a large training set for an acceptable level of
performance. In some cases, the large amount of training data may cause the model to overfit. The
Active Contour model [15] is an automated segmentation framework that works by considering
the boundaries and the curvature of the target for the region outline contour. The Active Contour
model is an adaptive searching model that needs minimal computational efforts. The process of
identify and elucidate the features would be the most challenging job of fitting it into a problem-
centric mechanism. This particular approach is not always suitable for the image with huge explore
domain space.

The objective of the paper is to mechanize a systematic procedure that can automatically
diagnose human liver abnormalities from CT image through a self-regulated segmentation model.
Through conventional strategies like k-means, Fuzzy C-Means, Seed Region Growing, and Graph-
cuts-based semi-automated approaches for the segmentation, there are considerable limitations that
are susceptible to misinterpretation of the normal tissues as an abnormality, and deciding the
initial parameters is a challenging task. To address the challenges of semi-automated approaches,
fully robotic approaches have been implemented, including the Genetic Algorithm, Deep Learn-
ing, and Neural Network. But all the aforementioned automated approaches need considerable
computational efforts and meticulous training for a better resultant outcome. We have proposed
a computationally efficient method and robust mechanism, namely the AW-HARIS algorithm for
automated segmentation of the CT image that assists in ease of abnormality identification, on
evaluating the proposed approach through various performance evaluation metrics the outcome is
reasonable with minimal computational efforts.

The complete paper is being organized along these lines; the first portion of the paper deals
with the introduction and various existing mechanism and their challenges. The following section
is about the proposed algorithm that includes the Adaptive Multiscale Data Condensation Kernel-
based de-noising approach, AW-HARIS-based segmentation approach followed by the dataset
used, and the experimental setup are presented in this section. The third section of the paper
presents the experimental results and discussions, and the performance analysis through various
metrics has been furnished. Finally, the paper concludes with a conclusion and future scope.

2 Adaptive Multiscale Data Condensation (AMDC) Kernel

Adaptive Multiscale Data Condensation [16,17] is a robust mechanism used in Noise elimi-
nation and image magnification in the proposed model. The ADMC method pivots the portrayal
of the information related to image pixels’ consistency with the solidity of distribution of solitary
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search space, i.e., the kernel’s original proportions. The magnitudes’ dependability would vary from
every window that upshots a difference in the noisy pixel parameters. The architecture diagram
of the AMDC kernel is represented in Fig. 1, with all the necessary components incorporated.

Figure 1: Architectural diagram of the AMDC kernel

The fewer corresponding points concerning the approximated seed points are being recog-
nized. A few of them that are not part of the search space are being ignored through the
evaluation process’s classification parameters. The seed points that are being categorized and that
are probably the part of the k nearest neighborhood are presumed to be identified with a set of
M points that are the part of the search domain with an approximated radius r concerning the
point p in an Md dimensional search space. Now the formula for the hyperplane is identified as
shown in Eq. (1)

Hplan(r,p) = {x | dist(x, p)≤ r, x ∈X} (1)

From the above equation, dist(x, p) determines the distance measure among the point x
and the centroid p of the hyperplane, And the Lebesgue measurement in the hyperplane is
approximated using Lm(x, p). It is determined through the set {xs: s = 1, 2, 3,. . ., n, n → ∞}
and the distance is calculated through dist(s, p) for each sth point to the corresponding the pth

neighborhood point. The probability distribution function is represented through Dp is used to
direct by the asymptotically robust formula

Dp = p
n
× 1
fr(s,p)

(2)

Eq. (2) can be used with a 2D CT image whose size is determined by Ii×j and TP = i × j,
representing the complete number of pixels in the entire image. The proposed de-noising mecha-
nism will recognize only the hidden crucial points assumed to be the seed points by performing
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the above task. So, the dissimilarity between the two predetermined seed points differs from the
approximated probability density function among the identified seed points. The approach that
assesses the distance measure among each approximated point using the Minkowski metric [18] is
stated through Eq. (3) as follows

distm = z

√√√√( N∑
i=1

|pai− pbi|z
)

(3)

when z= 1, that is like a city-block distance measure [19], and when the value of z= 2 it resembles
to be like a Euclidean distance measure, and when the value of z=∞ the value of the Chebychev
distance [20], is assessed through the Eq. (4) as follow

distmsr=maxi |xai−xbi| (4)

The association between the two seed points (m, n) is assessed using the formula in Eq. (5)

a(m, n)= e−α×distmnr Where α = −(ln0.5)
dist

> 0 (5)

The value of the arbitrary variable α is determined as above, where ln denotes the approx-
imated mean distance measure between the two corresponding seed points available distance
matrix.

3 AW Based HARIS Approach for CT Image Segmentation

In this paper, an enhanced version of the Heuristic approach for real-time segmentation
using the Anisotropic Weighted module improves the HARIS [21] algorithm’s performance. The
improved version of the HARIS is organized efficiently compared to the conventional HARIS
algorithm and its equivalents. The AW-HARIS works with multiple objective functions to identify
a random number of segments and assign the membership function pixels. And further, the
segments are refined through the other objective process, and it continues until it reaches the
best possible number of segments that elaborate every minute object in the image. The proposed
mechanism would identify the best possible number of inception segments through the elbow
methods, whose equation is stated in Eq. (6)

is=
n∑
si=1

∑
pi∈ti

‖pi− centroidi‖ (6)

From Eq. (6), the variable pi designates the pixels in the ith segment of the image, and the
variable centroidi designates the centroid of the ith segment in the image. The entire equation is
identified through the variable that approximates the initial number of segments for the segmen-
tation. The value of n is assumed to approximately equivalent to 24 from the previous studies.
However, the 24 may not be the same value though out the iterations, and it may not be the final
value for evaluation. Si designates the range of image regions that are assumed as segments in the
range 1 ton. The variable Centroidi whose value is evaluated from the formulating that is stated
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by Mac Queen model [21]. The algorithm is being modified such that it is suitable to address the
challenge. The formula to identify the centroid is stated below

centroidi =
n∑

pix=1

s∑
segmnt=1

αpix, segmnt β(xpix, centroidsegmnt) (7)

In Eq. (7), the variable centroidsegmnt designates the appropriate pixel that can be considered
the segment centroid, concerning the segment identified through the variable segmnt. And the
variable αpix, segmnt from the equation designated the likelihood or can also be called the pixel

membership in concern to the segment xpix, The variable that designated the xth pixel in the
segmented and the variable centroidsegmnt that designated the centoidth center in the given segment
whose value lies between 1 to s. β(xpix, centroidsegmnt) is the distance measures that are being
used in estimating the membership. The distance measure is estimated using the Mahalanobis
distance mechanism [22], which estimates the data centroid’s closeness a significant local maximum
point. The distance metric is to be considered as standard deviation concerning a point. If the
approximated distance measure is too large, then the pixel can be accredited to an alternative
centroid whose estimated distance is smaller.

The distance estimation is concerned with the centroid pixel intensity rather than consid-
ering the coordinates’ distance, as we generally do it in the Euclidean distance approach. The
Mahalanobis distance estimates the mean of the feature vector that gives the average of the
pixel intensities in the inception population in the image that is approximated image kernel using
Eq. (8)

μm = {μ(m)
p1 μ

(m)
p2 μ

(m)
p3 . . .μ

(m)

pi } =
⎧⎨
⎩

im∑
i=1

Ip1
im∑
i=2

Ip2 . . .

im∑
i=m

Ipm

⎫⎬
⎭ (8)

In Eq. (8), the variable m designates various classes of pixel intensities that are considered
the inception population. The pixels in each segment are concerned to the image segment whose
centroid is identified through the Eqs. (9) and (10)

Segm =
m∑
i=1

(Imi −μm)(Imi −μm)T (9)

Where Imi = (I(m)

i=1, I
(m)

i=2, I
(m)

i=3 . . . I(m)

i=m)T (10)

The Mahalanobis distance to unexploited pixels identified by I to allot it to the pixel segment
segmnt can be assessed using the following Eq. (11)

n2(I, pm)= (I−μ(m))TIN−1
i (I−μ(m)) (11)

In Eq. (11), the variable IN−1
i defines the inverse matrix, which is assessed from the unbiased

evaluated covariance matrix as shown in Eq. (12)

IN−1
i = (xi − 1)Seg−1

m (12)

Once the distance is evaluated and the likelihood or the degree of belongingness by using the
Mahalanobis distance measure as mentioned above distance mechanism, all the pixels are allotted
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to the appropriate segment. And the assessed membership is being used later in the objective
Function-I of the proposed mechanism.

3.1 AW-HARIS Algorithm’s First Objective Function
In the proposed mechanism, multiple objective functions are extensively used throughout the

segmentation process that approximate the regions’ optimal number in the assumed CT image.
That so crucial that the segmentation will not be either over-fitted or under-fitted. It is segmented
so that every minute object is being highlighted clearly in the segmented image. The proposed
approach would consider the Anisotropic Weighted (AW) module [23] has exhibited a better
optimal solution while approximating the suitable number of segments. Once the regions are
decided and the centroids are identified, the pixels are being allotted to the corresponding pixels
based on the membership value that is being estimated that is being determined through the
Eq. (13)

ceni =
1

pixsi
(pix2i=1+pix2i=2+ . . .+pix2i=n)

1
pixsi

(pixi=1+pixi=2+ . . .+pixi=n)
(13)

In the above equation, the variable ceni is the contra harmonic mean of the pixel intensities
that are the part of the image segment. The variable i designates the approximate number of
segments between 1 and the N. The value of the ceni is upgraded in every iteration and the
variable pixsi designates all the pixels completely in the corresponding segment i. All the pixel
intensities in the segment are being assessed to identify the optimal pixel that will be the centroid
with a minimal distinction between the present iteration and which is being performed in each
iteration.

The standard deviation identified using the variable σ that is evaluated in concern to Segi
That denotes the ith segment in the image. The pixels are allotted based on the value of the
variableGThrsld that designated the global threshold generally whose value lies between .3 and
.6 that is determined by experimental studies over the previous observations presented through
Eq. (14)

(σ = |Segi− Intensity of pixelpi|)≤GT (14)

The objective function that is being used to estimate of the likeliness of pixels to be the part
of the segment and the pixels are being allotted based on the value of the elucidated distance.

Objfun =Aw×
{(

α× sp
pixsegi

)
+
(

β × totcent
rn

)}
(15)

In Eq. (15), the arbitrary variables α and β are very significant that are considered to be
the deciding factors that control the proposed algorithm’s overall accuracy and efficiency. The
equation to determine the value of inter-class variance is identified by α from the Eq. (16). The
value of intra-class correlation is identified through the variable β from the Eq. (17). And the sum
of all pixels is determined by the variable Sp. The variable pixsegi determines the total number of
pixels that are part of the segment i the range lies between 1 to n. The variable totcent would be
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used to identify the total number of segment centroids in the image. The variable rn designates
the total number of pixels in the region r.

α =
σ 2
pix(

σ 2
pix+

σ 2
e
2

) (16)

β =
n∑

si=0

ωi(t)σ
2
i (t) (17)

The arbitrary variable α represents the inter-class variance is formulated through the Eq. (16)
that is the intra-class coefficient that determines the closeness of pixels that are the part of the
same segment that holds a special significance in deciding the accuracy of the approximations
performed to form the segments. The arbitrary variable β controls the inter-class variance con-
cerning the centroid of the segments based on thresholding. However, the main inspiration behind
estimating the values of arbitrary variables α and β is to minimize the intra-class variance and
maximize the inter-class variance.

Now for every pixel centroid identified through the variable totcent in the original CT image
identified by I , the neighborhood is being identified through the variable Np as Ix(Ix∈Np). Initially,
the values of the variables Ix that represents the grey mean square value outlined in the Gaussian
kernel function’s kernel space and the neighborhood variable Np is being assessed. The value of
the Anisotropic Weighted is being assessed through the outlined value of the grey mean square.

Where the variable Me be the value of the Ix in the neighborhood Np of the corresponding
pixel p to another point Np is determined using the Eq. (18)

Me =
[∑

x′ ∈Np\x(gx′ − gx)
2

np− 1

]
(18)

In the above Eq. (18), the variable gx′ and gx represents the grey value of the neighborhood
pixels points Ix and np respectively. The mean square error Me the outlined value that can be
assessed in concern with mean square kernel spaces. The outlines value of the Me is determined
through Ø as stated below

∅= exp
[
−
(
Me−

∑
x ∈NpMe

np

)]
(19)

Based on the Eqs. (18) and (19) is used to determine the Anisotropic Weight as follows in
Eq. (20)

Aw = ∅∑
x ∈Np

∅ (20)

Now the number of segments is to be increased or to be decreased concerning the fitness
value. The value of the fitness is assessed by Eqs. (21) and (22)

fit(pixi)= 1+ abs(Obj(f)) if fit(pixi) < 0 segments needed to be added (21)
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fit(pixi)=
1

1+obj(f)
if fit(pixi) > 0 segments needed to be reduced (22)

The number of segments in the proposed approach would keep on changing in each iteration
that would keep changing in concern to the fitness of pixel to be the part of the segment and
also based on the values of the inter-class variance and intra-class correlation that are computed
through the variables α and β.

3.2 AW-HARIS Algorithm Second Objective Function
The later objective function of the proposed mechanism is to judge the most appropriate

point that can be used as the centroid of the segment. All the pixels will be assigned to the
centroid based on the criteria discussed in the proposed mechanism’s first objective function. All
the centroid (center) are picked in coherence with the global best so that the recognized point
would be the fittest among all the points in the segment. However, throughout the segmentation
and refinement process in every iteration of the proposed algorithm, the corresponding segments’
centroids are updated concerning the predetermined objective function. The pixels would be
allotted to the segments according to the membership value that has been computed. In every
iteration throughout the process, the values of the arbitrary variables α and β are assessed that
would judge whether the segments are to be increased or not. The objective function of the
proposed algorithm is stated below in Eq. (23)

cents = rand(0, 1)× fit_cents−1+ rand(0, 1)× (G_Bestcentfit −fit_cents−1) (23)

In Eq. (23), the function rand( ) would randomly choose a value between the 0 and 1 and
the variable fit_cents−1 Designates the corresponding centroid’s fitness concerning the global best
in the earlier iteration and the variable G_Bestcent_fit designates the centroid’s fitness value that
is assumed to be the global best solution that bears the maximum fitness value among the rest
of the centroid in the image. Always the new centroid is picked concerning the global best seed
points in the image.

3.3 Removing Unwanted Artifacts from CT Image
The unwanted regions in the CT scan images that include the bone structures and the fat

accumulation around the liver region are discarded for precise identification of the abnormal
region from the abdominal CT scan image. Removing unwanted artifacts from the CT scan
image is done through a sequence of image processing operations that include thresholding and
morphological operations. The bit map generation’s threshold estimation process is done through
the adaptive Otsu thresholding [24]. Then the morphological opening and closing operations are
being performed over the bit map image to implement the approximated threshold value.

3.4 Adaptive Otsu Thresholding
The adaptive Otsu thresholding is used to work with smaller regions with a similar property

efficiently. The bitmap image that is generated will be precise in the process of discarding the
non-essential regions from the CT scan image. OTSU thresholding assesses the uncertainty of the
gray level variance to find the threshold. Based on the pixel intensity values, it classifies them into
the liver region and Non-essential region. As part of identifying the optimal threshold value, it
performs a set of actions that include probabilistic approximation and means of the liver region’s
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grey level intensity value and non-liver region, assessing the inter-class, intra-class, between-class
variance, and picking the optimal threshold.

The grey level intensities of the image f (i, j) range between [0, 1,. . ., m−1], the optimal
threshold value ot that lies between [0≤ ot ≤m− 1]. The probabilities of the liver and non-liver
region are approximated as follows in Eqs. (24) and (25)

plr=
ot∑
x=0

px (24)

pnlr=
m−1∑
x=ot

px (25)

where plr in the Eq. (24) is the probability of the pixels in the liver region, pnlr in the Eq. (25)
is the probability of the pixels in the non-liver region. px is the ratio of a group of pixels gx
of the grey level intensity x among the entire intensity range. The occurrence probability of the
particular grey level intensity is being approximated through Eq. (26)

px = gx
g

(26)

The mean of the greyscale intensity values of the liver region is identified through mlr and
non-liver region are identified through the mnlr. The same has been presented in the Eqs. (27) and
(28) presented below

mlr =
ot∑
x=0

xpx
plr

(27)

mnlr=
m−1∑

x=ot+1

xpx
pnlr

(28)

The interclass variance that is identified through σinter that is presented in the Eq. (29) and
the intraclass variance that is identified through σintra that is presented in the Eq. (30) that are
stated below

σ 2
intra= plrσ

2
lr+ pnlrσ

2
nlr (29)

σ 2
inter = plr(mlr−mavg)

2 + pnlr(mnlr−mavg)
2 (30)

σ 2
tot=

m−1∑
x=0

(x−mavg)
2px (31)
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The Eq. (31) represents the total variance among the pixels in the CT scan image. The mavg
is the mean of the average of the pixel intensities determined through the following Eq. (32)

mavg =
m−1∑
x=0

xpx (32)

The optimal threshold is approximated through the Eq. (33) that is stated below

σ 2
t = [mavgplr(t)−mlr(t)]

2

plr(t)[1− plr(t)]
(33)

Based on the approximated threshold, the bitmap image is generated. All the pixel intensities
above the approximated threshold are set to white, and the rest of the pixels are set to black in
the image. The binarization is done through the Eq. (34)

if pint ≥ σ 2
t set pint = 1

else pint < σ 2
t then set pint = 0

(34)

3.5 Image Morphological Operations
The bitmap image generated from the approximated threshold value and the bitmap image

is considered the kernel for performing the morphological operations. A close morphological
procedure is carried out by performing a dilation trail via erosion to fill out the gaps in the area of
interest by smoothing the surface using the square modeling feature STREL, taking into account
and filling up the voxel of all the 8 neighboring pixels. Upon filling out the holes, the resultant
reference kernel overlaid over the original image and the morphological opening procedure, imply-
ing that the bitmap’s image is the attaching feature. A close morphological operation is performed
to remove the non-liver region from the CT scan image. The morphological open and close are
the compound operations that are performed through dilation and erosion operators.

Morphological Opening:

A morphological opening operation is performed to eliminate the thin protrusions of the
input image, and the opening operation includes erosion followed by the dilation process. The
Eq. (35) represents the morphological opening operation

(I ◦ k◦)(i,j) = ((I � k◦)⊕ k◦)(i, j) (35)

Morphological Closing:

A morphological closing operation is performed to fill out the holes by smoothening the
regions’ surface in the image and merging the narrow gaps among the image regions. The Eq. (36)
represents the morphological closing operation

(I · k·)(i, j) = ((I ⊕ k·)� k·)(i, j) (36)

The images in Fig. 2 present the outcome of the proposed approach for removing the non-
liver artifacts from the image. On removing the non-liver artifacts from the CT scan image,
assessing the affected region would be easy. IT also enhances the approximated outcomes accuracy
in determining the irregularity’s impact. Moreover, the anomaly is being recognized based on
the intensity at the particular impacted region. The non-liver artifacts may sometimes lead to
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the misinterpretation of the non-tumorous region as the tumorous region. And this phase is
considered to be one of the pre-processing stages in approximating the damaged region.

Figure 2: The outcome image on removing the non-liver artifacts

3.6 Dataset
The experimental study images are acquired from the online repository. The Cancer Imaging

Archive-LIHC data set version 3, released in March 2017, is a part of The Cancer Genome Atlas
(TCGA) The dataset consists of data related to 97 homo sapiens collected over 1,25,397 images in
237 studies [25]. The experimentation is performed over 75 anatomical Liver CT Modality images
that are accessed through the OHIF. The dataset is associated with the ground facts for assessing
the proposed approach by performing the auto segmentation over the OHIF viewer TCIA Alpha.
The results are obtained correlated with the results obtained in the OHIF viewer. The CT images
acquired from the open-source data Liver Tumor Segmentation Challenge (LiTS) from MICCAI
2017 [26] are downloaded from the experimental study’s repository to examine against the ground
facts. The comparative analysis of the proposed model is done against the available ground facts.

3.7 Experimental Setup
The experimentation is performed in the environment as follows: The machine CPU is an

Intel Core I3-3240 processor that works with a fundamental frequency of 3.33 GHz Quad-Core
technology. The hard disk is 500 GB, and RAM is 8 GB installed with the Windows 7 operating
system’s ultimate version. The experimental setup is run over the MATLAB R2017b using the
image processing toolbox. In pre-processing, various built-in methods are used by importing the
libraries that include Image Type Conversion, Image Batch Processing, Image registration, Block
Processing, Image Region Analyzer as part of the proposed implementation model.

4 Experimental Results and Discussion

The automated segmentation of the Liver CT images of various patient samples acquired
from the open-source repositories like the National Cancer Institute, India, and SMIR of multiple
sizes is being segmented through the Anisotropic Weighted-HARIS algorithm. The efficiency and
the accuracy of the proposed AW-HARIS are being scrutinized in concern with its counterparts
like traditional HARIS, Single Block Linear Detection (SBLD), and twin centric GA with Social
Group Optimization (SGO) [17]. The performance of the approaches mentioned above is being
assessed through various metrics like sensitivity, Specificity, Jaccard Similarity index, and the
Matthews Correlation Coefficient from the examined value of True Positive, True Negative, and
the False Positive, False Negative that is determined from several successful executions. The
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acquired images are initially pre-processed in the proposed model through the Adaptive Multiscale
Data Condensation (AMDC) Kernel-based approach. The quality of the resultant outcome of
the proposed model relies on the quality of the image. The pre-processed image quality is being
assessed through the metrics like PSNR, MSE, RMSE, IQI against the images of sizes 256× 256
and 512× 512.

Figure 3: The resultant outcomes of the proposed AW-HARIS approach
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In Fig. 3, the leftmost image is the original CT image acquired from the equipment, and
the second image from the left represents the de-noise and contrast-enhanced image. The third
image is the stripped image for removing the unwanted abdominal tissues. The image next to it
represents the segmented image on applying the color-map to the resultant image. The final image
is the segmented image with a threshold value of 75. The resulting segmented image is more
pleasing when the threshold is appropriately chosen. The color-map is being generated based on
the intensities of the underlying tissue are at various grey-level values. The colors-mapping with
different grey-level intensities for the segmented image for ease of identification of the abnormal
region, the region this is affected is highlighted in the pale green color. As the colormap is applied
over the pixel intensity ranges, the neighboring pixels share almost the same color. The actual
region of interest can be recognized easily by using the thresholding over the resultant image.

It can be observed from the Tabs. 1 and 2, the performance of the Adaptive Multiscale
Data Condensation Kernel is promising. The value of the Peak Signal to noise ratio is increasing
with decreased noise variance. The root means square error value has reasonably reduced with
an increase in the noise. The IQI value is almost close to the referred high-quality image. It is
observed that the AMDC kernel’s performance is more accurate for smaller size CT images over
the larger size CT image. The proposed AW-HARIS approach’s performance is being evaluated
through metrics like Sensitivity (SEN), Specificity (SPE), Accuracy (AUC), Jaccard Correlation
Coefficient (JCI), and Matthews Correlation Coefficient (MCC).

Table 1: Performance of proposed AW-HARIS model over 256 × 256 size CT image with
AMDCK

AW-HARIS through AMDCK AW-HARIS without AMDCK

S. No. NV PSNR MSE RMSE IQI PSNR MSE RMSE IQI

1 10 37.68 21.96 4.68 .858 36.01 24.72 4.97 .345
2 9 39.54 19.64 4.43 .872 37.17 21.46 4.63 .497
3 8 40.19 16.89 4.12 .884 39.23 18.59 4.31 .556
4 7 42.26 13.77 3.71 .893 40.64 15.67 3.96 .639
5 5 43.95 9.68 3.11 .907 41.52 12.94 3.60 .768
6 3 45.32 6.35 2.52 .918 42.72 8.83 2.97 .803
7 2 46.77 4.23 2.06 .926 43.96 5.35 2.31 .872
8 1 49.41 2.11 1.45 .939 45.09 2.31 1.52 .889

In the experimental studies, the proposed approach is reasonably fair with minimal compu-
tation time. However, it takes quite more time than the traditional HARIS algorithm due to
assessing the Anisotropic Weight for the pixel assignment. Still, the accuracy is comparatively
much better than the HARIS. The experimental values of the proposed model from Tab. 3,
that is reasonably good for all the considered parameters. Twin Centric Genetic algorithm-based
approach is also an enhanced version of the traditional Genetic algorithm that would allow rigors
in moving towards the solution, resultantly that would consume an optimal amount of time in
converging towards the best possible number of segments, and to improvise the performance of it,
the SG has been incorporated the proposed AW-HARIS yet is computationally feasible with the
exact results that can be observed from the experimentation of the proposed approach. The mean
execution time automated segmentation of the CT image of size 256×256 is identified as 2.124 s.
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The CT image of size 512× 512 is identified as 3.218 s that involve the images pre-processing
through the AMDC filter.

Table 2: Performance of proposed AW-HARIS model over 512 × 512 size CT image with
AMDCK

AW-HARIS through AMDCK AW-HARIS without AMDCK

S. No. NV PSNR MSE RMSE IQI PSNR MSE RMSE IQI

1 10 38.79 20.04 4.47 .876 38.12 23.69 4.86 .462
2 9 39.47 17.93 4.23 .880 38.97 20.87 4.57 .501
3 8 40.89 15.86 3.98 .887 40.56 17.98 4.24 .634
4 7 42.93 13.56 3.68 .898 41.76 16.45 4.05 .702
5 5 44.96 9.16 3.03 .914 42.43 13.73 3.70 .729
6 3 46.09 5.04 2.31 .932 43.62 8.17 2.86 .796
7 2 47.91 3.12 1.77 .941 44.88 5.39 2.32 .885
8 1 50.33 1.23 1.11 .952 47.01 2.34 1.53 .903

Table 3: Performance analysis table for the proposed AW-HARIS approach

256× 256 size image 512× 512 size image

SEN SPE ACC JSI MCC SEN SPE ACC JSI MCC

Twin centric GA with SGO .801 .843 .699 .842 .7936 .789 .851 .696 .839 .787
SBLD .819 .859 .769 .854 .8186 .796 .858 .744 .848 .798
HARIS .819 .865 .765 .865 .8194 .808 .865 .765 .859 .808
AW-HARIS .824 .876 .785 .876 .8213 .819 .871 .784 .861 .812

5 Conclusions and Future Scope

It is observed from the practical implementation of the proposed AW-HARIS approach that
the resultant outcome is outperforming when validated against ground facts. The proposed method
needs a very minimal computational effort than supervisory approaches like CNN, RNN, which
needs training, requiring meticulous efforts that would consume more computational resources.
The availability of training data is also a challenging task in many cases. In such a context, the
proposed approach is technically feasible in identifying the abnormality with its multi-objective
function that refines the resultant segmented image over multiple iterations to an adequate level.
Every minute region is being focused on appropriately. It incorporates the anisotropic weight that
can precisely assign the pixels to the appropriate segment by considering the correlation between
the pixel and the segment centroid would significantly impact the segmentation’s accuracy and
converges faster towards the solution.

The suggested heuristic approach through the anisotropic weight is reasonably fair in seg-
menting the CT images. However, it was incredibly challenging when working with original CT
images caused due to the suppressed contrast levels that would be burdensome for recognizing
the smaller regions from the CT image. This is one of the aspects in which more research can be
done. And while working especially with liver CT images, there are many unwanted surrounded
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regions whose texture appears to be brighter and identical to the damaged region’s texture. Hence
it is advisable to discard the non-liver tissues well before the actual segmentation begins so that
the algorithm can precisely identify the tumor region.
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