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Abstract: Lumbar spine stenosis (LSS) is a narrowing of the spinal canal that
results in pressure on the spinal nerves. This orthopedic disorder can cause
severe pain and dysfunction. LSS is a common disabling problem amongst
elderly people. In this paper, we developed a finite element model (FEM) to
study the forces and the von Mises stress acting on the spine when people
bend down. An artificial lumbar spine (L3) was generated from CT data by
using the FEM, which is a powerful tool to study biomechanics. The proposed
model is able to predict the effect of forces which apply to the lumbar spine. In
addition, FEM allows us to investigate the tests into the lumbar spine instead
of applying the tests to the real spine in humans. The proposed model is highly
accurate and provides precise information about the lumbar spine (L3). We
investigate the behavior of humans in daily life which effects to the lumbar
spine in a normal person and a patient with LSS. The computational results
revealed high displacement levels around the spinal canal and lower displace-
ment levels in the spinal body when bending down. The total displacement of
the axial load in a normal person was higher when compared with patients
with LSS. Higher degree bends resulted in a lower total displacement when
compared with lower degree bends, while the vonMises stress decreased as the
bending degree increased.
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1 Introduction

As the population is aging, the incidence of orthopedic problems among elderly people such
as osteoporosis, osteonecrosis, primary and secondary bone tumors, scoliosis, low bone density,
osteoarthritis, Paget’s disease, and gout is increasing. These orthopedic disorders can cause severe
pain and dysfunction, particularly when affecting the spine. The spine or backbone is an important
part of the human body because it supports the body structure and connects the nervous system.
The spine is composed of the cervical, thoracic, lumbar, sacrum, and coccyx. The lumbar spine
consists of five spinal columns (L1-L5) and supports most of the upper part of the body while
also protecting the spinal cord and nerves from injury. Lumbar spinal stenosis (LSS) is a common
disease found in the elderly population all around the world [1,2]. This disease was first described
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in the 1950s [3]. LSS occurs as a result of narrowing of the spinal canal, which results in
pressure on the spine and the spinal nerve root. The pressure causes pain in the back, buttocks,
and legs [4]. It may also cause loss of sensation and weakness in the feet and legs, as well as
sexual dysfunction. Therefore, in order to reduce the incidence of LSS and to develop appropriate
therapeutic interventions, there is a need to understand the biomechanics of LSS.

Finite element simulation models (FEM) are now increasingly used to explore the biome-
chanical properties of the spine and to guide surgical interventions [5–9]. Xu et al. [10] utilized
this method to develop five FEMs of the lumbar spines (L1-L5). They showed that the models
confirmed that the computational results were consistent with the experimental results. Finley
et al. [11] developed an open-access FEM of the human lumbar spine for both healthy and
degenerating lumbar spine. These models could be used to study the biomechanics of the lumbar
spine. Gupta et al. [12] used finite element analysis to model the internal stress and strain in the
craniovertebral junction (CVJ) region caused by different implants. On the other hand, Chung
et al. studied the effect of implanting an artificial disc on L4 and L5 using the FEM [13],
and Zhong et al. [14] also used this model to evaluate the impact of a new cage as a space
holder on the lumbar spine. A number of research studied about the von Mises stress and
total displacement of spine [15–18]. The von Mises stress is often used to analyze the risk of
developing burst fracture in bones of various grades [19]. It is also used to interpret the six
stress components acting on the materials [20]. However, to our knowledge, no FEM has yet been
developed evaluating the stress and strain in LSS.

This study aimed to develop a FEM to compare the effect of the total displacement and von
Mises stress in a normal person and in a patient with LSS while bending down using an artificial
lumbar spine by using a lumbar vertebra model reconstructed from a computed tomography (CT)
scan.

2 Materials and Methods

2.1 Construction of the Lumbar Vertebra Model
A two-dimensional and three-dimensional model of the third lumbar (L3) vertebra was con-

structed using the CT data of a human lumbar spine. The CT data were taken from a healthy
person and a patient with LSS. The complete geometry of a healthy lumbar spine is illustrated
in Fig. 1, and the geometry of a patient with LSS is illustrated in Fig. 2. The finite element
representation of the lumbar spine models was obtained by subdividing the solids into a mesh of
triangular elements. The bone dimensions were 7.02 cm × 7.70 cm × 4.5 cm. The mesh of the
normal lumbar spine geometry consisted of 22,630 elements, and the mesh of lumbar spinal with
stenosis consisted of 19,008 elements, as shown in Fig. 3.

Figure 1: (a), (b) Three-dimensional and (c) two-dimensional geometry of a normal lumbar
spine (L3)
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Figure 2: (a), (b) Three-dimensional and (c) two-dimensional geometry of lumbar spinal (L3) with
stenosis

Figure 3: Mesh patient geometry of a normal lumbar spine and a lumbar spinal with stenosis

2.2 Mechanical Simulation
The lumbar spine was assumed to consist of von Mises elastoplastic material. According to

the principles of continuum mechanics, the displacement, stress fields, and stress equilibrium in
the lumbar spine can be defined using the following equations;

σij+ fi = 0, (i= 1, 2)

ξij (u)= 1
2

(
ui,j+ uj,i

)
(1)

σij =Cijkl · εkl
where σ is the stress tensor, ξ is the strain tensor, u is the displacement, fi is the body force, and
Cijkl is the tensor-elastic constant.

The parameters used during the numerical simulation are shown in Tab. 1. For the domain,
shown in Fig. 3, we imposed three boundary conditions based on the axial load on a person with
a normal spine and a person with LSS while bending down. The outer boundaries of the lumbar
spine for both normal person and LSS patients were fixed to prevent translation and rotation of
the domain. The inner boundaries of the domains were not fixed because this study investigated
the effect of the force on the spinal structure.
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Table 1: Experiment parameters used in the numerical simulation [14].

Parameters Lumbar spine (L3) Units

Young‘s modulus (E) 12000 PA
Poisson’s ratio (ν) 0.3 –
Density (ρ) 2000 Kg/m3

2.3 Effect of Forces Applied on the Human Lumbar Spine
The effect of forces applied on the human lumbar spine was simulated based on an average

woman’s weight of 58.58 Kg. The forces on the human body when a person bends down at 30-
degrees (F30), 45-degrees (F45), and 60-degrees (F60) that apply to the lumbar spine in the X -axis
and Y -axis can be described as follows;

(I) F30 : Fx =−298.27 N, Fy =−483.14 N

(II) F45 : Fx = 256.88 N, Fy = 416.08 N

(III) F60 : Fx =−92.02 N, Fy=−149.05 N.

2.4 Formulation of the FEM
The FEM was used to find the numerical solution of the boundary value by multiplying

Eq. (1) with the weighting function v (x) . The total weighted residual error was then set to zero,
and the following equations were used to derive the model.∫

Ω

σij,jvi dΩ+
∫

Ω

fivi dΩ= 0. (2)

From symmetry of σij,j, we obtained

σij,jvi = (σij,jvi)j − σijvi,j. (3)

Substituting Eq. (3) into Eq. (2), we obtained∫
Ω

[
(σij,jvi

)
j − σijvi,j] dΩ+

∫
Ω

fivi dΩ= 0. (4)

The divergence theorem was then applied as follows∫
Ω

(σij,jvi)j dΩ=
∫

∂Ω

σijvini dS. (5)

Eq. (5) was then substituted into Eq. (4) to obtain∫
Ω

−σijvi,j dΩ+
∫

Ω

fivi dΩ+
∫

∂Ω

σijvini dS= 0. (6)

The surface fraction boundary condition was explained by the equation{
Fx
Fy

}
=

[
σxx τxy

τxy σyy

]{
nx
ny

}
(7)
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which is equivalent to

Fi = σijnj. (8)

From Eq. (8) and Eq. (6), we obtained∫
Ω

−σijvi,j dΩ+
∫

Ω

fivi dΩ+
∫

∂Ω

viFi dS= 0,

∫
Ω

σijvi,j dΩ=
∫

Ω

fivi dΩ+
∫

∂Ω

viFi dS. (9)

Since

σijvi,j = σij

[
1
2

(
vi,j+ vj,i

)]= σijξij (v) ,

we arranged Eq. (9) to∫
Ω

σijξij (v) dΩ=
∫

Ω

vifi dΩ+
∫

∂Ω

viF dS. (10)

The third equation was substituted in the system (1) into Eq. (10) to obtain the equation∫
Ω

Cijklξklξij dΩ=
∫

Ω

vifi dΩ+
∫

∂Ω

viF dS. (11)

We then assumed that

u=
[
ux
uy

]
, v=

[
vx
vy

]
, ξ =

[
ξxx ξxy

ξxy ξyy

]
, σ =

[
σxx σxy

σxy σy

]
,

f =
[
fx
fy

]
and D=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂y
∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦
. (12)

Eq. (11) was subsequently rearranged to obtain∫
Ω

Cξ (Dv) dΩ=
∫

Ω

vf dΩ+
∫

∂Ω

vF dS,

∫
Ω

C (Du) (Dv) dΩ=
∫

Ω

vf dΩ+
∫

∂Ω

vF dS,

∫
Ω

(Dv)T C (Du) dΩ=
∫

Ω

vTf dΩ+
∫

∂Ω

vTF dS.
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Hence, the variational statement for the boundary value problem was finally stated as follows:

Find u ∈V such that

a (u, v)=L (v) ∀ v∈V , (13)

where

a (u, v)=
∫

Ω

(Dv)T C (Du)d	,

L (v)=
∫

Ω

vTfd	+
∫

∂Ω

vTF dS,

V =
{
v ∈ [H1 (Ω)]2 | v= 0 on ∂Ω

}
.

In order to find the numerical solution of this variational boundary value problem, we
imposed this problem in an N-dimensional subspace by using the basic function {φi}Ni=1 with an
approximate u and v as follows;

u=
N∑
i=1

�iui and v=
N∑
i=1

�ivi (14)

where

�j =
[
φj 0

0 φj

]
, uj =

[
uxj
uyi

]
and vj =

[
vxj
vyi

]
. (15)

Eq. (14) was substituted into Eq. (13). Since vi was an arbitrary value, we then obtained the
following equation;

a
(
�j,�i

)
uj =L (�i) , (i, j= 1, 2, . . . ,N) (16)

which represented a system of 2N equations in terms of unknowns
{(
uxj,uyj

)}
for j= 1, 2, . . . ,N.

Finally, this problem was solved using the quasi-Newton method. The computational analysis
was performed using the COMSOL multiphysics (COMSOL Inc., MA, USA).

3 Results and discussion

The effects of the total displacement and von Mises stress on a patient with a normal lumbar
spine and a patient with LSS while bending down are illustrated in Figs. 2 and 3. Figs. 4 to 6
show the total displacement of the axial load of the LSS patient and for a person without disease
while bending down at 30, 45, and 60 degrees, respectively. The findings of this study indicate
that the highest displacement occurs around the spinal canal and the lowest displacement occurs
around the external part of the lumbar spine. This means that when a human bends down, there
are some parts of the spine perturbing, especially in the areas around the spinal canal.
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Figure 4: Comparison of the total displacement of the axial load in a normal patient and in a
patient with LSS while bending down at 30 degrees

Figure 5: Comparison of the total displacement of the axial load in a normal patient and in a
patient with LSS while bending down at 45 degrees

Figure 6: Comparison of the total displacement of the axial load in a normal patient and in a
patient with LSS while bending down at 60 degrees
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Figure 7: Line a-b illustrates the cross-sectional domain of the lumbar spine in a normal person
and a patient with LSS

Figure 8: Total displacement of the axial load in a patient with LSS and a person without disease
while bending down at (a) 30 degrees, (b) 45 degrees, and (c) 60 degrees
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The total displacement was then compared using the cross-section line of the domain of the
lumbar spine, as shown in Fig. 7. We then transformed the length of the cross-section line into a
unit length. The findings of this analysis indicate that the total displacement is higher in a person
with a normal spine when compared with a person with LSS, as illustrated in Fig. 8. Moreover,
as the bending degree increased, the total displacement decreased, as shown in Fig. 9. This means
that a smaller degree bend resulted in high perturbation on parts of the spine and affected the
displacement of the lumbar spine.

Figure 9: Total displacement profile for the three different bending degrees, in (a) a person with a
normal lumbar spine and (b) a patient with LSS

Figure 10: Comparison of the von Mises stress on the axial load of the lumbar spinal in a normal
patient and in a patient with LSS while bending down at 30 degrees
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Figs. 10–12 show the von Mises stress of the axial load in the lumbar spine in a normal
person and a patient with LSS when both people bend down at 30, 45, and 60-degrees. The results
indicate a high level of stress closer to the spine canal. Fig. 13 shows the von Mises stress of the
lumbar spine in a normal person and a patient with LSS at the cross-section lines described in
Fig. 7. The results indicate higher von Mises stress levels on the axial load of the lumbar spine in
a normal person when compared with a patient with LSS. In Fig. 13, the cross-sectional line was
transformed into a unit length. The cross-sectional von Mises stress analysis indicated that the left
half of the lumbar spine has higher stress levels when compared with the right side. Moreover, the
von Mises stress in both normal and diseased spines increased as the bending degree decreased,
as shown in Fig. 14.

Figure 11: Comparison of the von Mises stress on the axial load of the lumbar spinal in a normal
patient and in a patient with LSS while bending down at 45 degrees

Figure 12: Comparison of the von Mises stress on the axial load of the lumbar spinal in a normal
patient and in a patient with LSS while bending down at 60 degrees
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Figure 13: Von Mises stress on the axial load of a normal patient and a patient with LSS while
bending down at (a) 30 degrees, (b) 45 degrees, and (c) 60 degrees
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Figure 14: Von Mises stress profile at three different bending degree levels for (a) a person with a
normal spine and (b) a patient with LSS

4 Conclusion

A mathematical model of the lumbar spine has been developed to study the total displacement
and von Mises stress between a normal person and a patient with LSS by using the finite
element method. Numerical simulations were carried out to evaluate the effect of the forces on the
lumbar spine when people bend down. The results showed that high displacement levels occurred
around the spinal canal, while a lower displacement was observed around the periphery of the
human spine. The total displacement of the axial load in a normal person was higher when
compared with a patient with LSS. Higher degree bends resulted in a lower total displacement
when compared with lower degree bends, while the von Mises stress decreased as the bending
degree increased.
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